Strangeness and electric charge dependent splitting of the rapidity-odd directed flow between quarks and anti-quarks in Au+Au collisions

Ashik Ikbal Sheikh (for the STAR Collaboration)

Department of Physics, Kent State University, Kent, OH 44242, USA

Email: ashikhep@gmail.com

We report the first measurement of the rapidity-odd directed flow (v_1) of multi-strange baryons (Ξ

and Ω) in Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider.

³ We focus on particle species where all constituent quarks are produced, as opposed to possibly

transported, and demonstrate using a novel analysis method that the coalescence sum rule holds
for hadrons with identical guark content. We examine the coalescence sum rule as a function

 $_{6}$ of rapidity for non-identical quark content having the same mass but different strangeness (ΔS)

⁷ and electric charge (Δq). The difference in the directed flow of different guark and anti-guark

⁸ combinations, e.g., $v_1(\Omega^-(sss)) - v_1(\bar{\Omega}^+(\bar{s}\bar{s}\bar{s}))$, is a measure of coalescence sum rule violation,

⁹ and we call it directed flow splitting (Δv_1) between quarks and anti-quarks. This measurement

¹⁰ uses the latest high statistics data sample from $\sqrt{s_{NN}} = 27$ GeV Au+Au collisions where we ¹¹ take advantage of the improved event plane resolution of recently installed Event-Plane Detector

take advantage of the improved event plane resolution of recently installed Event-Plane Detector (EPD). We measure v_1 as a function of rapidity; and then ΔS and Δq dependence of the Δv_1 -

¹³ slope between produced quarks and anti-quarks in Au+Au collisions at $\sqrt{s_{NN}} = 27$ GeV and

¹⁴ 200 GeV. The Δv_1 -slope increases when ΔS and Δq increase. This Δv_1 -slope signal becomes

weaker going from collision energy $\sqrt{s_{NN}} = 27$ GeV to 200 GeV. We compare our measurements

¹⁶ with the Parton-Hadron String Dynamics (PHSD) model + EM-field calculations.