Azimuthal anisotropy measurement of ϕ mesons in Au+Au collisions at $\sqrt{s_{NN}}=27$ and 54.4 GeV at STAR

Prabhupada Dixit (for the STAR Collaboration) Indian Institute of Science Education and Research, Berhampur

Abstract

The hadronic interaction cross section for ϕ mesons is expected to be small. Hence, the study of azimuthal anisotropy of ϕ mesons allows one to access the collective properties of the medium at the early stage in heavy-ion collisions. The STAR experiment recently recorded high statistics data for Au+Au collisions at the new centre-of-mass energies $(\sqrt{s_{NN}})$ of 54.4 GeV (~600 million events) and 27 GeV (~350 million events). The newly installed Event Plane Detectors (EPDs) allow one to measure the azimuthal anisotropy of particles with high precision and less non-flow contributions using event planes with large gaps in rapidity.

In this talk, we will present the second-order azimuthal anisotropy (v_2) of ϕ mesons measured at midrapidity (|y| < 1.0) as a function of transverse momentum (p_T) and centrality at $\sqrt{s_{NN}} = 27$ and 54.4 GeV. Measurement will be carried out using event planes from both Time Projection Chamber $(|\eta| < 1.0)$ and EPDs $(2.1 < |\eta| < 5.1)$. A high precision test of the number of constituent quark scaling of ϕ meson v_2 (by including measurements for other hadrons) will be shown. The results will be compared to transport-based model calculations. Finally, the physics goals of such measurements at the other collision energies $\sqrt{s_{NN}} = 19.6, 11.5, 9.2$ and 7.7 GeV of the RHIC beam energy scan phase II will be discussed.