

Non Photonic $e-D^0$ correlations in pp and AA collisions at $\sqrt{s_{NN}} = 200 \ GeV$

AR

Artemios Geromitsos for the STAR collaboration

Overview of the Presentation

Motivation PYTHIA Simulation STAR Experiment Analysis Method Results in pp Collisions MicroVertexing Method Status in AuAu Collisions Summary and Future Plans

Motivation

MOTIVATION STAR PRL, 98, 192301 (2007)

Heavy quarks are produced in initial state of the collision

M. Gyulassy and Z. Lin, PRC 51, 2177 (1995)

Non photonic electron yield at high pT shows a similar suppression in central AuAu colissions as observed for the light quark hadrons. Not expected according to the <u>dead-cone effect.</u>

D.Kharzeev et al. Phys Letter B. 519:1999

Theoretical Models explaining the charm and bottom quark energy loss are still inconclusive Experimentally disentagle the Charm & Bottom contribution

4

MOTIVATION (cont'd)

A novel Method separating Charm and Bottom Contribution

Non photonic electrons are used to *trigger* on C or B quark pairs.

D meson is being reconstructed by its <u>hadronic</u> decay: *probe side*.

 $D^0 \to K^- \pi^+$

Calculate the Invariant Mass

Calculate the Background:

I) Rotational Background Kaon candidates are rotated by 180 degrees II)Samesign Background

$$\begin{array}{c} D^0 \nrightarrow K^- \pi^- \\ \bar{D}^0 \nrightarrow K^{\not =} \pi^+ \end{array}$$

PYTHIA SIMULATION

STAR Experiment

STAR DETECTOR

Solenoidal Tracker at RHIC

Tracking and PID:

TPC $|\eta| < 1.5$ $\Delta p/p = 2-4\%$ $\frac{\sigma_{dE/dx}}{dE/dx} = 8\%$

Energy Measurement:

Barrel EMC

 $\begin{aligned} |\eta| < 1.0 \\ \text{Lead scintillation} \left(21 \ X_0 \right) \end{aligned}$

Shower Maximum Detector

Wire proportional detector with strip readout Situated at 5 X_0

Strip Resolution:
 $(\Delta\phi, \Delta\eta) = (0.007, 0.007)$ 80% of the EM shower energy is being deposited in 2-3 strips

Magnet: B=0.5 T

STAR DETECTOR(cont'd) INNER SILICON DETECTORS

Silicon Drift Detector <u>3 layers:</u> 6.85 cm 10.8 cm 14.7 cm $\sigma_Z = \sigma_{r\phi} = 40 \ \mu m$

 $1.5\% X_0$ per layer

Silicon Strip Detector

I layer positioned at: 23 cm

SVI

 $\sigma_{r\phi} = 30 \ \mu m$ $\sigma_Z = 800 \ \mu m$

 $1\% X_0$ per layer

Analysis Methodology

METHODOLOGY

General Event Cuts

|vertex-Z |<30 cm

Trigger: Demanding events with $E_t > 5.4 \ GeV$

Track Selection

dca <1.5 cm (distance of closest approach)

TPC hits >25 (maximum is 45) pseudorapidity coverage: $|\eta| < 1.0$

TPC hits Beam Axis

dca

PV

METHODOLOGY (cont'd)

Selection of trigger particle: e⁻ /e⁺

Applying Cuts: rejecting region

p measured by the TPC E measured by the EMC

$$\begin{array}{l} 0 < \frac{p}{E} < 2 \\ 3.5 < \frac{dE}{dx} < 5.0 (keV/cm) \\ p > 1.5 GeV/c \end{array}$$

EM showers:

Almost the whole amount of the particle's energy is being deposited on the BEMC

13

Electrons should peak for p/E=1

microVertexing

microVertexing (cont'd)

Transverse(XY) and longitudinal(Z) DCA resolution

$$\sigma(p) = \sqrt{a^2 + \frac{b^2}{p^2}}$$

Improvement of resolution with the inclusion of Silicon Detectors

pp2006 results

PP2006 RESULTS Monte Carlo(PYTHIA+GEANT)

Heavy flavor contribution to non-photonic electrons in pp collisions

B much heavier than D: Sub leading electrons get a larger kick from B Near side e-h correlation is broadened

B contribution to non photonic electrons is ~50% at pT~ 5 GeV/c, based on e-h and e-D correlations

J. Phys. G35, 104117 (2008)

$AuAu@\sqrt{s_{NN}} = 200 \ GeV$ MinBias

$AuAu@\sqrt{s_{NN}} = 200~GeV$ Analysis including Silicon Detectors at low multiplicity

Nr. of tracks $< 100 \frac{dn}{dm}$ SVT + SSD > 0 $|\eta| < 1.8$ parent $|\eta| < 1$ daughters Decay Length $< 700 \ \mu m$ $|vtxZ| < 10 \ cm$ $p_T > 0.3 \ GeV/c$

Heavy Flavor Tracker The New Silicon Detector at STAR

Summary & Plans

Summary & Future Plans

Summary

Heavy quark decay electrons show the same suppression as the light quarks.

Importance to distinguish the contribution of charm and beauty.

e-h and e-D are the two methods to separate the signal of charm and bottom contributions due to their different decay kinematics

At $pp@\sqrt{s} = 200 \ GeV$,(2006) this method was applied succesfully providing yields in agreement with PYTHIA predictions.

MicroVertexing techniques have been developed and succesfully applied in AuAu collisions. We can see a hint of a D^0 signal with the help of inner silicon detectors

We are working on understanding cuts, optimization, PID and quite a lot on silicon tracking and calibrations. So, stay tuned.

Plans

Next plan is to apply in AuAu collisions and to combine the e-D0 and microVertexing methods in. order to extract the C/B ratio.

The Heavy Flavor Tracker will be the next STAR upgrade to improve microVertexing.

