

 $(|\Delta u| + |\Delta d| + \Delta s + |\Delta \bar{u}| + |\Delta \bar{d}| + \Delta \bar{s})dx$ $\Delta \Sigma =$

The polarized parton distribution functions (PDFs) of sea quarks are still not well constrained compared to valence quarks.

 $\int_{\otimes(x_1,x_2)} \left[\bar{d}(x_1) u(x_2) (1 + \cos\theta)^2 + u(x_1) \bar{d}(x_2) (1 - \cos\theta)^2 \right]$

• W production provide direct sensitivity to the u and d quark and anti-quark

helicity distributions.

- Large scale defined by W mass (~80 GeV).
- Simple final state of charged leptons:

No dependency on fragmentation

functions.

Background Estimation

There are still some residual background events, that passed all the W selection cuts

Electroweak Background: This background arise from wellunderstood electroweak processes: \circ Z \rightarrow e⁻+e⁺

Beam Polarization = 56%

Particle energy was measured using the **BEMC** and **EEMC**

Event Selection

 $\circ W \rightarrow \tau + v$ Estimated using MC simulations.

QCD Background: • Second EEMC:

Background (di-jets) which counts as a W events by escaping detection through non-existing calorimeter coverage ($-2 < \eta < -1$). Estimated using endcap calorimeter at $1 < \eta < 2$.

• **Data-driven QCD:** Background which passes e^{\pm} isolation cuts.

Estimated using a data-driven method.

