

中国科学院近代物理研究所

Institute of Modern Physics, Chinese Academy of Sciences

Observation of $\frac{4}{\Lambda}\overline{H}$ **in Heavy lons Collisions at RHIC**

Hao Qiu (仇浩) for the STAR Collaboration

Institute of Modern Physics, CAS 中国科学院近代物理研究所

1st Symposium on Nuclear Physics in Guangdong-Hong Kong-Macao Greater Bay Area

Introduction

- The search for antimatter particles has a history of nearly 100 years
- Antinuclei heavier than anti-proton have been observed only at accelerators

Hao Qiu (仇浩)

STAR A Introduction

• STAR has observed 2 of the recently discovered antimatter particles: $\frac{3}{\Lambda}\overline{H}$ and $4\overline{He}$

- Our universe has much more matter than antimatter. This is the basis for the existence of human civilization.
- Matter-antimatter asymmetry is a research topic of fundamental interest.
- Discovering new antimatter particles paves the way for studying matter-antimatter asymmetry.

- Same order of magnitude of production yield for $\frac{3}{\Lambda}\overline{H}$ and $^{3}\overline{He}$
- 3 order of magnitude lower production yield for each additional antibaryon number
- All A=5 nuclei are very unstable
- One candidate for the next easiest-to-find anti-particle is $\frac{4}{\Lambda}\overline{H}$

5

 \overline{n}

RHIC-STAR

- Relativistic Heavy-Ion Collider
- 3.8 km circumference
- Typical collision: Au+Au @ 200 GeV
- Mainly built to create and study the properties of quark-gluon plasma

RHIC-STAR

RHIC-STAR

Solenoidal Tracker At RHIC

Time of Flight (TOF) detector

• Particle identification with M²/Q²

- Time Projection Chamber (TPC)
- Charged particle tracking
- Momentum & charge +/-
- Particle identification from energy loss dE/dx

Hao Qiu (仇浩)

Data sets

data set	year	N events	
AuAu@200 GeV	2010	~660 M	
AuAu@200 GeV	2011	~680 M	
UU@193GeV	2012	~660 M	
ZrZr+RuRu(Isobar)@200GeV	2018	~4.6 B	

Triggers used:

- Minimum bias
- Central
- Non-photonic electron
- Hadronic
- Di-muon
- High-level trigger

• Only minimum bias trigger used for yield ratios measurement

Daughter particle identification

- ³*He* & ⁴*He* : p>2
- ${}^{3}He$ & ${}^{3}\overline{He}$: $|n_{\sigma 3He}| < 3$; if TOF matched, $1 < M^{2}/Q^{2} < 3$
- ${}^{4}He$ & ${}^{4}\overline{He}$: $|n_{\sigma 4He}| < 3$; $n_{\sigma 3He} > 3.5$ or 2.8<M²/Q²<4.1
- π[±]: |n_{σπ}|<3

(Anti-)hypernuclei reconstruction

$${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$$
 ${}^{4}_{\overline{\Lambda}}\overline{H} \rightarrow {}^{4}\overline{He} + \pi^{+}$

- KF(Kalman Filter) Particle package is used for the reconstruction
- Topology cuts obtained by optimizing $\frac{3}{\Lambda}\overline{H}$ significance
 - Blind analysis for $\frac{4}{\Lambda}\overline{H}$ search

S. Gorbunov and I. Kisel, CBM-SOFT-note-2007-003, 2007 M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016

Particle	χ^2 prim He	$\chi^2_{\text{prim }\pi}$	χ^2_{ndf}	χ ² topo	L/dL	L	He DCA
$^{3}_{\Lambda}H$ & $^{4}_{\Lambda}H$	<2000	>10	<5	<2	>3.5	>3.4cm	<1cm
$\frac{3}{\Lambda}\overline{H}$ & $\frac{4}{\Lambda}\overline{H}$	<2000	>10	<5	<3	>3.5	>3.4cm	-

The signal

Counts

Counts

• A signal of 17 $\frac{4}{\Lambda}\overline{H}$ obtained

STAR 🛧

- Equivalent Gaussian significance = 5.5σ
 - Meaning the possibility of 17 candidates all coming from background fluctuation is 4.0 × 10⁻⁸

Hao Qiu (仇浩)

Yield ratio measurement - efficiencies

Transverse momentum spectra – A=3

Transverse Momentum Spectra

• For ${}^{3}He$, ${}^{3}\overline{He}$, ${}^{3}_{\Lambda}H$ & ${}^{3}_{\overline{\Lambda}}\overline{H}$, yields are obtained by integrating over the measured p_T range: 0.7<p_T/M<1.5

Yield measurement – A=4

- For A = 4 particles, the yields are too low to obtain a p_T spectrum.
- An average efficiency is obtained for the whole measured p_T range, assuming Blast Wave functional shape with the same T and β as those of A = 3 particles.

Yield Ratios

- Branching fractions:
 - 25% for $^{3}_{\Lambda}H$ 2 body decay

TAR 🕁

- 50% for ${}^{4}_{\Lambda}H$ 2 body decay
- Phase space of this analysis:
 - 0.7<p_T/M<1.5, |rapidity|<0.7

- STAR Science 2010: Au+Au@200GeV
- ALICE PLB: Pb+Pb@2.76TeV
- Thermal Model: T=164MeV, μ_B =24MeV

Scince 328, 58 (2010) PLB 754, 360 (2016) PLB 697, 203 (2011)

Yield ratios

• For the ratios of anti-matter over matter:

rar 🖈

- Our results are consistent with thermal model and STAR measurement in 2010
- $\frac{4}{\overline{\Lambda}}\overline{H} / \frac{4}{\Lambda}H \sim \frac{4}{\overline{He}} / \frac{4}{\overline{He}} = \frac{3}{\overline{\Lambda}}\overline{H} / \frac{3}{\Lambda}H \sim \frac{3}{\overline{He}} / \frac{3}{\overline{He}} / \frac{3}{\overline{He}} = \frac{3}{\overline{He}} / \frac{3}{\overline{He}} = \frac{3}{\overline{He}} + \frac{3}{\overline{He}} = \frac{3}{\overline{He}} = \frac{3}{\overline{He}} + \frac{3}{\overline{He}} = \frac{3}{\overline{He}}$

Scince 328, 58 (2010) PLB 754, 360 (2016) PLB 697, 203 (2011)

Yield ratios

• For the ratios of (anti-)hypernuclei over (anti-)nuclei:

TAR 🕁

- The Au+Au and U+U results constitute a fair comparison to previous results in Au+Au and Pb+Pb collisions due to similar system sizes.
- The newly measured ${}^{3}_{\Lambda}H / {}^{3}He \& {}^{3}_{\overline{\Lambda}}\overline{H} / {}^{3}\overline{He}$ and are consistent with previous measurements, as well as the thermal model calculations.

Yield ratios

• For the ratios of (anti-)hypernuclei over (anti-)nuclei:

FAR 🖈

- With all the collision systems combined, ${}^{4}_{\Lambda}H / {}^{4}He \& {}^{4}_{\overline{\Lambda}}\overline{H} / {}^{4}\overline{He}$ seem larger than ${}^{3}_{\Lambda}H / {}^{3}He \& {}^{3}_{\overline{\Lambda}}\overline{H} / {}^{3}\overline{He}$.
- This may hint at the production of ${}^{4}_{\Lambda}H$ & ${}^{4}_{\overline{\Lambda}}\overline{H}$ with both spin 0 and 1 states.
- Thermal model here has not considered ${}^{4}_{\Lambda}H \& {}^{4}_{\overline{\Lambda}}\overline{H}$ with both spin 0 and 1 states yet.

 ${}^{4}_{\Lambda}H \& {}^{4}_{\overline{\Lambda}}\overline{H}$ feed down

- ${}^{4}_{\Lambda}H$ exited state (J=1) has higher population due to degeneracy 2J+1 = 3
- Considering feed-down from J=1 state, the total yield is enhanced by a factor of 4

Lifetime measurements

- Lifetime is calculated by measuring relative signal yields in 3 $I/\beta\gamma$ bins
 - $I/\beta\gamma \propto$ decay time in the hypernuclei rest frame

Lifetime measurements

Consistent with earlier measurements and a theoretical prediction

PRL 128 (2022) 202301

- ~17 signal candidates of $\frac{4}{\Lambda}\overline{H}$ observed, with equivalent Gaussian significance of 5.5 σ
 - Second & heaviest anti-hypernuclei observed in experiment
- Various ratios among (anti-)particles are measured
 - $\frac{4}{\overline{\Lambda}}\overline{H} / \frac{4}{\Lambda}H \sim \frac{4}{\overline{He}} / \frac{4}{\overline{He}} = \frac{3}{\overline{\Lambda}}\overline{H} / \frac{3}{\Lambda}H \sim \frac{3}{\overline{He}} / \frac{3}{\overline{He}} / \frac{3}{\overline{He}} = \frac{3}{\overline{He}} / \frac{3}{\overline{He}} = \frac{3}{\overline{He}} + \frac{3}{\overline{He}} = \frac{3}{\overline{He}} = \frac{3}{\overline{He}} + \frac{3}{\overline{He}} = \frac{3}{\overline{He}}$
 - ${}^{4}_{\Lambda}H \;/\; {}^{4}He \gtrsim {}^{3}_{\Lambda}H \;/\; {}^{3}He \qquad {}^{4}_{\overline{\Lambda}}\overline{H} \;/\; {}^{4}\overline{He} \gtrsim {}^{3}_{\overline{\Lambda}}\overline{H} \;/\; {}^{3}\overline{He}$
 - Hint at the production of ${}^{4}_{\Lambda}H$ & ${}^{4}_{\overline{\Lambda}}\overline{H}$ with both spin 0 and 1 states
- Lifetimes measured: $\tau_{AH}^{4} \sim \tau_{AH}^{4}$

Outlook

- STAR inner TPC upgrade finished in 2019
 - Reach to lower $p_T \Rightarrow$ critical to reconstruct the soft daughter pions from (anti-)hypernuclei
 - Larger η coverage
- STAR will take ~20B Au+Au 200 GeV data from 2023 to 2025
 - Search for $\frac{4}{\Lambda}\overline{He}$, mult-strange hypernuclei...

Thanks ©