

Jet-Hadron Correlations in STAR

Alice Ohlson

Yale University for the STAR Collaboration

Outline

- Motivation
 - Jet Quenching Models
- Introduction
 - Jet Reconstruction at STAR
 - Jet-Hadron Correlations
- Systematics
 - Comparing Trigger Jets
- Results

- Nearside and Awayside I_{AA}, Widths, Energy Balance
- Comparison of jets with different p_{T}
- Conclusions

Jet Quenching

- Radiative energy loss models
 - Partons lose energy and are
 scattered as they traverse the
 medium

- What would we see in angular correlation studies?
 Softer and broader distribution of hadrons around the jet axis than seen in pp
- "Black-and-white" models
 - Partons either escape the medium unmodified or are entirely thermalized/absorbed
 - Unmodified jet shapes compared to those in pp collisions

We can use jet-hadron correlations to study jet quenching!

Jet Reconstruction at STAR

Data sets: Run 7 AuAu and Run 6 pp $\sqrt{s_{_{\rm NN}}} = 200 \text{ GeV}, \text{ High Tower (HT) Trigger.}$ **Online Trigger** Trigger Jets found with Anti-kT algorithm [1] $E_{T} > 5.4 \text{ GeV}$ in one tower $(R = 0.4, p_{T}^{track,tower} > 2 \text{ GeV/}c).$ $\Delta \phi \ge \Delta \eta = 0.05 \ge 0.05$ [1] M. Cacciari and G. Salam, Phys. Lett. B 641, 57 (2006) Au+Au 0-20% $p_{t,ie}^{rec} \approx 22 \text{ GeV/}c$ **STAR Preliminary** 10

Intro to Jet-Hadron Correlations

Study azimuthal angular correlations of associated particles (all charged hadrons in an event) with respect to the axis of a reconstructed HT trigger jet.

• Jet reconstruction increases the partonic kinematic reach compared to dihadron correlations.

May 27, 2011

Background Subtraction

- In the presence of broad jet peaks (i.e. central collisions, low p_{T}^{assoc}), ZYAM overestimates background levels. < p_^{jet} < 20 GeV/c
- Jet v_2 is *a priori* unknown.
- In this analysis:

May 27, 2011

- background levels estimated by fitting 2 Gaus + B*(1+2* $v_2^{assoc} v_2^{jet} cos(2\Delta \phi))$
- $v_2^{assoc} = (v_2 \{2\} + v_2 \{4\})/2$ (as a function of $p_T) g_{T}$
- $v_2^{jet} = v_2 \{2\} (p_T = 6 \text{ GeV}/c)$
- maximum v_2 uncertainties: no v_2 and +50%of $v_2^{jet} v_2^{assoc} \{2\}$
- (higher harmonic terms are not considered here)

Comparing Trigger Jets

- We need to compare jet-hadron correlations in AuAu with a pp reference → How can we select similar trigger (nearside) jets in both systems?
- Assumption:

• Embed pp HT events in AuAu MB events

 \rightarrow Even after accounting for detector effects, the shape of the pp HT + AuAu MB spectrum does not quite match the AuAu HT spectrum.

Comparing Trigger Jets

- We need to compare jet-hadron correlations in AuAu with a pp reference → How can we select similar trigger (nearside) jets in both systems?
- Assumption:

• Embed pp HT events in AuAu MB events

 \rightarrow Even after accounting for detector effects, the shape of the pp HT + AuAu MB spectrum does not quite match the AuAu HT spectrum.

 $\rightarrow \Delta E = -1 \text{ GeV}/c$ energy shift included in systematic uncertainties to account for possible trigger jet energy mismatch.

Nearside I_A

- High- p_T suppression observed in the nearside I_{AA} \rightarrow consistent with apparent ΔE .
- Possible low- p_{T} enhancement

Nearside Energy Balance D

- Values of $\Delta B \sim 0$ indicate that pp and AuAu jet energies are being matched correctly
- For $10 < p_T^{jet} < 20 \text{ GeV/}c$:

$$\Delta B = 0.6^{+1.9+0.5}_{-1.0-0.4}$$
 (syst.) GeV/c

• Include trigger jet energy shift $(+\Delta B^*3/2)$ in systematic uncertainties to force $\Delta B = 0$

Maximum Trigger Jet Energy Scale Uncertainties

• Shift to match trigger jet spectrum with embedding \rightarrow corresponds to scenario in which AuAu HT jets are pp-like (for all p_T^{assoc})

 \rightarrow "low p_{T}^{assoc} enhancement is bulk"

• Shift to force $\Delta B = 0 \rightarrow$ energy mismatch is due to jet modification

 \rightarrow "low p_T^{assoc} enhancement is jet"

With these two extreme cases covered, we can now move to the awayside!

- Significant enhancement at low p_T^{assoc} and suppression at high p_T^{assoc} on the awayside.
- Significant broadening of awayside jets in AuAu compared to pp.

 \rightarrow Jet quenching in action!

Energy Balance on the Awayside

- Awayside $\Delta B = 1.5^{+1.7+0.5}_{-0.4-0.4}$ (syst.) GeV/c
- Significant amount of low- p_T^{assoc} enhancement balanced by high p_T^{assoc} suppression on the awayside in this p_T^{assoc} range.

Jet Quenching from 10 to 40 GeV/c

- Significant enhancement at low p_T^{assoc} and suppression at high p_T^{assoc} This is not z! on the awayside as well as significant broadening of awayside jets in AuAu compared to pp.
- Conclusions hold for reconstructed jet energies between 10 and 40 GeV/c.

Jet Quenching from 10 to 40 GeV/c

 $D_{AA}(p_T^{assoc}) = Y_{AA}(p_T^{assoc}) \cdot p_{T,AA}^{assoc} - Y_{pp}(p_T^{assoc}) \cdot p_{T,pp}^{assoc}$

• Majority of high- p_T^{assoc} suppression is balanced by low- p_T^{assoc} enhancement for all p_T^{jet} .

Conclusions

Using jet-hadron correlations we observe:

Jet modification seems to be consistent with radiative energy loss picture; black + white models are disfavoured.

May	27,	2011
-----	-----	------

Backup

Uncertainties

- Detector uncertainties include:
 - relative tracking efficiency between AuAu and pp
 - tower energy scale
 - jet v₂ uncertainties

Alice Ohlson Jet-Hadron Correlations in STAR

The Effect of v

- Do jets to have a non-zero v_3 ? If yes, must include a $\cos(3\Delta \phi)$ in background subtraction.
- Even with extreme v_3^{jet} assumption, the qualitative conclusions about quenching on the awayside hold: low- p_T enhancement, high- p_T suppression, p_T redistribution

Broadening, Not Deflection

 $p_{\text{Trec,jet}} > 20 \text{ GeV/c}, p_{\text{Trec,dijet}} > 10 \text{ GeV}$ Di-jet: highest p_{T} with $|\phi_{\text{jet}}-\phi_{\text{dijet}}| > 2.6$

 $\Delta \phi \text{ of identified di-jets}$ $\sigma_{Au-Au} = 0.2$ $\sigma_{PYTHIA,Embed} = 0.14$ $\sigma_{d-Au} = 0.15$ $\sigma_{p-p} \sim \sigma_{PYTHIA} = 0.1$

Low p_T assoc Au-Au away-side width broader High p_T assoc Au-Au away-side width same Majority of broadening due to fragmentation not deflection

Helen Caines - QM - May 2011

15