Measurement of the Cross Section for W Boson Production at \sqrt{s} = 500 GeV at STAR

Justin Stevens for the STAR Collaboration

APS Meeting February 16, 2010

Ψ

Justin Stevens - APS 2010

Justin Stevens - APS 2010

500 GeV Data Set from Run 9

BTOW ADC, all towers W Trigger: 10' High Tower Hardware LO Trigger 10³ $(E_{\tau} > 7.3 \text{ GeV})$ High E_T 2x2 Cluster Software L2 $(E_{\tau} > 13 \text{ GeV})$ 500 2500 1000 2000 1500 3000 ,qd 16 ۲۱ (L Integrated Luminosity rawAdc-ped p+p√s=500GeV STAR BHT3 trigger Integrated Luminosity @ 500 GeV: using $\sigma_{
m BHT3}$ = 481 nb \pm 23%(syst) •Vernier Scan technique used to measure cross systematic uncertainty 10 section for high tower trigger $\sigma_{BHT3} = 481 \text{ nb} \pm 10 \text{ (stat.)} \pm 110 \text{ (syst.)}$ •Scaling the number of background-subtracted high tower triggers by $1/\sigma_{BHT3}$ yields the 2 integrated luminosity of L=13.7 pb⁻¹ 0 75 (See talk by Ross Corliss: Session D7) 80 85 90 95 100 calendar day in 2009

W Algorithm: Lepton Isolation

Lepton Isolation Cuts:

- •Require TPC track with $p_T > 10 \text{ GeV}$
- •Extrapolate track to Barrel Calorimeter

•Require highest 2x2 cluster around

- pointed tower sum $E_T > 15 \text{ GeV}$
- •Require excess E_T in 4x4 cluster < 5%

•Match track to 2x2 cluster position

W Algorithm: Suppress QCD Background

Suppress jets with leading hadron
Near side jet-cone veto
Suppress di-jets and multi-jet events
Away side p_T sum veto
Require an imbalance in p_T of the lepton cluster and any jets reconstructed outside the near side jet cone

Background Subtraction

Justin Stevens - APS 2010

STAR Ws from Run 9

Data/MC Shape Comparison

Monte-Carlo is full PYTHIA+GEANT simulation of W→e+v events at 500 GeV

Cross Section

$$\sigma_{W} = \int dE_{T}^{e} \int d\eta^{e} \frac{d^{2}\sigma_{W \to ev}}{d\eta^{e} dE_{T}^{e}} = \frac{1}{L} \frac{1}{\epsilon_{trig}} \frac{1}{\epsilon_{vertex}} \frac{1}{\epsilon_{reco}} \left\{ \Psi_{W}^{obs} - N_{back} \right\}$$

Kinematic acceptance : $\left| \eta_{e} \right| < 1$ and $E_{T}^{e} > 25 \,\text{GeV}$

Efficiencies Calculated from full PYTHIA + GEANT simulations

Efficiency Component	$W^- \rightarrow e^- + \bar{\nu}_e$	$W^+ \rightarrow e^+ + \nu_e$
Trigger: ϵ_{trig}	0.86 ± 0.04	0.88 ± 0.04
Vertex: ϵ_{vertex}	0.91 ± 0.03	0.91 ± 0.03
Reconstruction: ϵ_{reco}	$0.72 \ ^{+0.13}_{-0.11}$	$0.71 \ ^{+0.14}_{-0.11}$
Total: ϵ_{total}	$0.56 \begin{array}{c} +0.11 \\ -0.09 \end{array}$	$0.56 \begin{array}{c} +0.12 \\ -0.09 \end{array}$

Cross Section Uncertainties

- W Reconstruction Systematic
 - Track Reconstruction: 15-20%
 - Vertex Reconstruction: 4%
 - Energy Scale: < 1%</p>
- Normalization/Luminosity Systematic
 Vernier scan absolute cross section: 23%
- Background Systematic
 - Vary data driven QCD background shape and normalization region

W Production Cross Section at STAR

Justin Stevens - APS 2010

Conclusions

- STAR has measured the production cross section for W \rightarrow e+v in p+p collisions at $\sqrt{s} = 500$ GeV
- Charge separation provided by the TPC demonstrated for lepton E_T up to 50 GeV
- Large QCD background reduced to 9% and 16% of the W⁺ and W⁻ signal, respectively at $E_T^e > 25$ GeV
- The theoretically expected and experimentally measured cross sections are in agreement to within uncertainties