

Quarkonium production at STAR

Daniel Kikoła for the STAR collaboration

- What can we learn?
- Issues and open questions
- STAR detector
- Results
 - J/ ψ in p+p and A+A
 - Υ
- Near future

Why?

Relativistic Heavy Ion Collisions

UrQMD Frankfurt

• c, b quarks produced early in the collision

 \rightarrow good probe of created medium

- Quarkonium:
 - $c\overline{c}$ (J/ ψ , ψ ', χ_c ...) $b\overline{b}$ (\Upsilon, \Upsilon', \Upsilon'' ...)

Quark-Gluon Plasma

Quark-Gluon Plasma

Quark-Gluon Plasma

Quark-Gluon Plasma

Sequential melting

\rightarrow Temperature of QGP

T/T_c 1/
$$\langle r \rangle$$
 [fm⁻¹]
2 - Y(1S)
- $\chi_b(1P)$
1.2 J/ $\psi(1S)$ Y'(2S)
 $\leq T_c$ $\chi_b'(2P)$ Y''(3S)
 $\chi_c(1P)$ $\psi'(2S)$

A. Mocsy Eur.Phys.J.C61: 705-710,2009

Complications

"Normal" suppression

Nuclear absorption

Effects in QGP

- secondary production
- dissociation by gluons, energy loss

Issues & Open questions

- Feed-down from excited states
 - same nuclear absorption and shadowing as 1s states?
- $B \rightarrow J/\psi$ feed-down
- Production mechanism
 - Color singlet or octet \rightarrow is energy loss in QGP important?
 - Recombination of $c\overline{c}$ in QGP?
- Co-mover absorption

How to address these issues?

High- $p_{T} J/\psi$

- Helps to constrain $B \to J/\psi$ feed-down and production mechanism

Y

- Negligible co-mover abs. and recombination
- Less sensitive to nuclear absorption and shadowing

STAR detector & analysis technique

STAR detector

Time Projection Chamber

Tracking: p_{τ} , η , ϕ PID via dE/dx

 $J/\psi \rightarrow e+e \Upsilon \rightarrow e+e-$

- Large acceptance:
- full 2π coverage in ϕ

• |η|< 1

Barrel E-M Calorimeter

Electron ID via E/p Fast Trigger

Shower Max Detector

Spatial resolution Electron/hadron separation via shower shape

Experimental approach

1. baseline – **p+p**

2. "cold" nuclear matter effects – **d+Au** $R_{dAu} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{dAu}}{dN/dy^{pp}}$

R_{AA (dAu)} = 1 if no modification in the medium

3. modification in the hot/dense medium – Au+Au

 $R_{AA} = \frac{1}{\langle N_{coll} \rangle} \frac{dN/dy^{AuAu}}{dN/dy^{pp}}$

High-p_T J/ψ

High-p_T J/ ψ in p+p and Cu+Cu 200 GeV

Tight cuts for correlation study

J/ ψ production: p_{τ} spectrum

NRQCD (LO Color-Octet + Color-Singlet) describes data well, little room for feed down G. C. Nayak, M. X. Liu, and F. Cooper, Phys. Rev. D68, 034003 (2003), and private communication

NNLO Color-Singlet predicts a steeper p_{τ} dependence

P. Artoisenet et al., Phys. Rev. Lett. 101, 152001 (2008), and J.P. Lansberg private communication

Accessing B $\rightarrow J/\psi$: J/ ψ - h correlation

Thomas Ullrich, Workshop on Heavy Quark Production in HIC, Purdue Univ, 2011

- If $B \to J/\psi$ then strong near side azimuthal corr.
- Model dependent: Pythia 8, LO NRQCD for prompt J/ ψ production with ψ ', χ_c , LO B production
- Little difference between CO and CS

High- p_{T} J/ ψ - h correlation

p+p 200 GeV:

$B \rightarrow J/\psi$ feed-down in p+p

No significant beam energy dependence

High-p_T J/ ψ in-medium interactions

Cu+Cu 200 GeV

- Contrast to open charm suppression: CS vs. CO?
- Trend reproduced when B feed-down and formation time effects included

Υ

Negligible co-mover abs. and recombination

Less sensitive to nuclear absorption and shadowing

Small combinatorial background

Υ is a challenge

Small cross-section \rightarrow large luminosity required

Baseline: Y in p+p 200 GeV

Consistent with CEM, (inconsistent with CSM: $\sim 2\sigma$)

Phys. Rept. 462, 125 (2008)

Cold nucl. matter: Y in d+Au

- Consistent with N_{bin} scaling
- Cold Nuclear Matter effects (shadowing) are rather small

Υ in Au+Au 200 GeV

- 4.6 σ significance, 95 Signal counts in 8 < m < 11 GeV/c²
- Includes Υ , Drell-Yan + bb

 ΥR_{AA} in Au+Au 200 GeV

 Υ (8.5<m<11 GeV) = N₊₋ - 2√N₊₊N₋₋ - ∫DY+bb̄ = 64±16(stat)± 25(sys)

 $R_{AA} = 0.78 \pm 0.32(stat) \pm 0.22(sys,Au+Au) \pm 0.09(sys,p+p)$

 ΥR_{AA} in Au+Au 200 GeV

 $\Upsilon(8.5 < m < 11 \text{ GeV}) =$ N₊₋ - 2 $\sqrt{N_{++}N_{--}} - \int DY + b\overline{b}$ = 64±16(stat)± 25(sys)

Need considerably more statistics to constrain theory

 $R_{AA} = 0.78 \pm 0.32(stat) \pm 0.22(sys,Au+Au) \pm 0.09(sys,p+p)$

Summary & A look into the near future

Rich quarkonia program at STAR

- J/ ψ : focus on high $p_{_T}$
 - p_{T} spectra, B feed-down
 - R_{AA} in Cu+Cu at high-p_T consistent with unity
- Y
 - first cross-section measurement in p+p at 200 GeV
 - d+Au: $R_{dAu} = 0.78 \pm 0.28(stat) \pm 0.20(sys)$
 - Au+Au:

 $R_{AuAu} = 0.78 \pm 0.32(stat) \pm 0.22(sys,Au+Au) \pm 0.09(sys,p+p)$

Near future

- J/ψ
 - Polarization measurements at high $p_{_{T}}$
 - R_{AA} at high-p_T in Au+Au 200 GeV
 - J/ψ elliptic flow at 200 GeV
 - J/ψ from Beam Energy Scan
- Y
 - New cross-section measurements in p+p and Au+Au 200 GeV
 - R_{AuAu} vs centrality in Au+Au
 - Separation of Υ from Υ'' and Υ'' states

Backup

Low-p_T J/ ψ in Au+Au 200 GeV

- Model (green band) includes: color screening in QGP, dissociation in hadronic phase, statistical recombination, B \rightarrow J/ ψ feed-down and formation time effects
- New Au+Au results with minimum inner material soon (5x higher statistics)

J/ ψ production test: high-p_T

 $R_{AA}(p_T > 5 \text{ GeV/c}) =$ 1.4 ± 0.4 ± 0.2

• Contrast to strong suppression of open charm

B.Abedev et al., Phys.Rev.Lett. 98 (2007), 192301, S.Adler et al., Phys.Rev.Lett. 96(2006) 032301, [4] A. Adil and I. Vitev, Phys. Lett. B649, 139 (2007), and I. Vitev private communication; [3] S. Wicks et al., Nucl. Phys. A784, 426 (2007), and W. A. Horowitz private communication.

• Rising trend reproduced when B feed-down and formation time effects included [2] R. Rapp, X. Zhao, nucl-th/0806.1239

High $p_T J/\psi$ at STAR

Single High Tower trigger for high $p_T J/\psi$ •Higher p_T electron: dE/dx (TPC) + EMC (p/E) + SMD (shower size and cluster position) •Lower- p_T electron: dE/dx (TPC)

Heavy quarks = early productionInterpenetration time: $t \approx 2R/\gamma$ $m_c \approx 1.3 \text{ GeV}$ SPS: $t \ge 1fm$ $m_b \approx 4.2 \text{ GeV}$ RHIC: $t \leqslant 0.2fm$ $t_c^{production} = 1/2m_c \leqslant 0.1fm$ LHC: $t \leqslant 5 \times 10^{-3}fm$

Yield Extraction 0-60% Centrality

• Do we see $\Upsilon(1S+2S+3S)$ in 0-60% centrality?

- Yes!

Raw yield of 0 is many sigma away from minimum $\chi^{\rm 2}$

