

♦ meson production and cold nuclear matter effect in d+Au collisions at $\sqrt{s_{NN}} = 200$ GeV in STAR Xiaoping Zhang (LBNL/NJU)

For the STAR Collaboration

• Cronin effect

STAR

- $\bullet \ \phi$ meson measurements and nuclear modification factor
- Summary and outlook

Introduction: Cronin effect in p+A collisions

≻Enhanced production of high p_T hadrons in proton-nucleus collisions

$$I_i(p_\perp, A) = I_i(p_\perp, 1) A^{\alpha_i(p_\perp)}$$

 $\checkmark \alpha$ is larger than 1 at high p_T

✓ Indicating the cold nuclear matter has extra effect on particle production

✓ Enhancement: proton > kaon> pion

Phys. Rev. D 11, 3105 (1975) Phys. Rev. D 19, 764 (1979)

Cronin effect in d+Au collisions at RHIC

Initial state and final state effect

≻Traditional models: initial state effect before hard scattering

- partonic multiple rescatterings with target nucleons
- transverse momentum broadening of the projectile parton
- particle species dependence not understood

To exactly infer the initial conditions of collisions we need to know ≻Final state effects: after hard scattering

- partonic interactions
- hadronization mechanisms
- hadronic rescatterings

X.N. Wang, Phys. Rev. C 61, 064910 (2000) R.C. Hwa et al., Phys. Rev. Lett. 93, 082302 (2004)

Implications from transport model (AMPT)

- ✓ What is the effect of final state interactions (FSI) on observables?
- ✓ Hadronization: Lund string fragmentation
- ✓ Without FSI, no obvious particle species dependence for $p_T > 1$ GeV/c
- \checkmark Final-state hadronic rescatterings lead to hadron mass dependent R_CP
- ✓ With FSI included, AMPT can reproduce the R_{CP} ratio between antiproton and π^-

Why **\$\$ meson?**

 ✓ AMPT calculations:
Final-state hadronic interactions important! Hadron mass dependent R_{CP}

✓ Another possibility: meson/baryon dependence

 ✓ φ meson: unique probe to distinguish mass effect or meson/baryon effect

Mass: $\phi \sim p$, Λ Meson v.s. Baryon

✓ **Decouples early, provides early time information** Small hadronic cross section with other non-strange particles

✓ Dataset: STAR year 2008 d+Au 200 GeV run A factor of 3 higher statistics compare to year 2003 run

H. van Hecke, et al., Phys. Rev. Lett. 81, 5764 (1998) STAR, Phys. Rev. Lett. 99, 112301 (2007) X. Zhang et al., arXiv:1001.4734

\$\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overlin}\everlin{\overline{\over

Particle identification: ($\phi \rightarrow K^+K^-$ decay, branching ratio 49.2%)

Measure the momentum v.s. energy loss of particles with Time Projection Chamber Identification of pion, kaon, proton and electron etc. Large acceptance: 2π azimuthal coverage, $-1.5 < \eta < 1.5$ Reduced material: inner tracker removed, lower γ conversion background

$\boldsymbol{\phi}$ meson reconstruction

Reconstruct background by mixed event method

Breit-Wigner + linear function is used to fit ϕ invariant mass distribution after background subtraction

$\boldsymbol{\phi}$ meson reconstruction efficiency and spectra

- Spectra scaled by number of binary collisions
- Compared to p+p collisions, enhanced \$\ophi\$ meson production at large p_T in d+Au central collisions.

Nuclear modification factor R_{dAu}

 π , p data: STAR, Phys. Lett. B616, 8 (2005); Phys. Lett. B637, 161 (2006); K_{s}^{0} , Λ : STAR preliminary data, QM09, statistical error only

Mid-rapidity (|y|<0.5), statistical error only

> $p_{T:}$ 2.5 – 4 GeV/c $R_{dAu}(\Lambda, p) > R_{dAu}(K^0_s, \pi)$ consistent with AMPT

Large uncertainty to distinguish mass dependence or meson-baryon separation (due to large error bar in p+p reference)

Summary

- STAR preliminary results of ϕ meson production in 200 GeV d+Au collisions are presented.
- Enhanced ϕ meson production at large p_T in most central d+Au collisions.
- The particle species dependence of nuclear modification factor R_{dAu} for proton, Λ , K_{s}^{0} and π is consistent with the default AMPT calculations which includes hadronic rescatterings in the final state.

Large uncertainty on ϕ meson R_{dAu} prevents decisive conclusion on mass dependent or meson-baryon separation.

Outlook: rapidity asymmetry of hadron production will provide further information.

Backup

R_{CP} without final state interactions (AMPT)

No obvious particle species dependence for $p_T > 1$ GeV/c Associate production NN \rightarrow N \land K+ in initial state sbar > s at mid-rapidity

X. Zhang et al., <u>arXiv:1001.4734</u>

AMPT model: final-state hadronic rescatterings

Final-state hadronic rescatterings modify R_{CP} At large p_T , the differences of R_{CP} with/without final state hadronic rescatterings depend on the rest masses of different hadrons. Lighter hadrons (π , K), larger contribution X. Zhang et al., arXiv:1001.4734 14

Mass effect in hadronic rescatterings

M. Bleicher *et al.* J. Phys. G 25 (1999) 1859B. Li et al. Phys. Rev. C 52, 2037 - 2063 (1995)

✓ Cross-section v.s. center of mass energy

- ✓ $E_{cm} = [(E_1 + E_2)^2 (p_1 + p_2)^2]^{0.5}$
- The probable outgoing particles which might have rescatterings will go in the similar direction, open angle between them is small
- ✓ For example, $\pi^+ \pi^-$ scatterings, open angle is chosen to be 5 degree, in our p_T and rapidity range, p increases, E_{cm} is more close to resonance peak
- ✓ Mass effect is important in calculating center of mass energy

After including final state effects (AMPT)

(a)

default

ج ق

1.4

1.2

String fragmentation +
hadronic rescatterings:
mass dependence

- \checkmark Other particles? ϕ ?
 - Mass $\phi \sim p$, Λ
 - Meson v.s. baryon

പ്പ

(b) string melting