Exclusive Vector Meson Photoproduction and Interference Effects in Ultra Peripheral Collisions at STAR

ENT STATE. RSITY

(For the STAR Collaboration) Kent State University

April 3 - 6, 2024 Sacramento & Virtual

Ashik Ikbal Sheikh

April 3 - 6, 2024, Sacramento, USA

Supported in part by **U.S. DEPARTMENT OF**

Heavy lons miss each other: Ultra-peripheral Collisions (UPCs)

Collisions where nuclei do NOT collide

No hadronic collisions happen

lons interact through photon-ion and photon-photon collisions

> => Called Ultra-peripheral collisions (UPCs)

The strongest EM-fields in UPCs

$E_{max} = 10^{18}$ V/m , $B_{max} \sim 10^{14} - 10^{18}$ T

=> Strongest EM-field in the universe, but

• EM-field treated in terms of quasi-real photons $E_{\gamma,max} \sim 30 \text{ GeV}$ (RHIC) $E_{\gamma,max} \sim \gamma \hbar c/R$;

 $E_{\gamma,max} \sim 80 \text{ GeV}$ (LHC)

=> EM-fields are quantized as photons in UPCs

Photon-gluon scattering: Vector meson (VM) production via photon-nuclear interactions

Photoproduction of Vector Mesons (VM) in UPC

UPC VM: Powerful probe of parton densities inside nuclei

• Probes parton density & fluctuations inside nuclei constraints for A+A initial state

Modification of parton densities in heavy nuclei => VM helps to probe parton density inside nuclei before EIC era

Satre simulation of parton density fluctuations, Fig: A.

5/24

KI	Ir	n	9	r
	Л		a	

UPC events with STAR detector

- Neutron(s) detected in ZDCs
- ZDC signals show peak structure for neutrons
- No activity in both BBCs => Diffractive events (n-gap)

=> Method to trigger UPC events

6/24

J/\u03c6 measurements in 200 GeV Au+Au UPCs

=> Coherent and incoherent contributions can be disentangled via the combined fit of mass and p_T

7/24

STAR, arXiv:2311.13632

Rapidity dependence J/ψ production cross-section

- Measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic unc. in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation

=> Important to constrain theoretical models related to nuclear geometry

STAR, arXiv:2311.13637

Incoherent J/ ψ production cross-section vs p_T^2

Incoherent production compared with H1 data with free proton

- Strong nuclear suppression (~49%) seen (Mäntysaari et. al, Phys. Rev. Lett. **117** (2016) 5, 052301)
- Models found H1 data supports subnucleonic fluctuations

(Mäntysaari et. al, Phys. Rev. D 106 (2022) 7, 074019) STAR data shows the bound nucleon has similar shape as the free proton — similar sub-nucleonic fluctuations in heavy nuclei

=> Strong nuclear suppression and subnucleonic fluctuations in Au nucleus

STAR, arXiv:2311.13632

VM spin interference: A novel quantum phenomenon for high resolution gluon imaging

Polarized Photons from colliding nuclei

Transverse view of Lorentz contracted nuclei

=> Photons in UPC are linearly polarized

STAR, Phys. Rev. Lett. 127 (2021) 52302

Experimental access to photon polarization demonstrated by STAR, measuring the Breit-Wheeler process, $\gamma\gamma \rightarrow e^+e^-$

11/24

Polarization of photon → Inherited by VM

=> The cos(2 ϕ) modulation in VM momentum distribution w.r.t photon polarization direction

Decay VM $\rightarrow d_1 d_2$ daughters preferentially emitted (L+S conservation)

Photon polarization correlated with Impact parameter -> random from one event to the next

= Event average washes out the cos(2 ϕ) modulation w.r.t photon polarization direction

13/24

Photon source ambiguity

PATH - 1

=> Two independent paths of VM production -> The paths are indistinguishable

14/24

Interference makes the modulation observable in experiment

Photon source ambiguity: Interference among amplitudes of two possible paths

Double Slit Experiment

Best analogy: Double slit experiment in Optics

=> Two indistinguishable paths may interfere and make the $cos(2\phi)$ modulation observable

15/24

Observation of interference for $\rho^0 \rightarrow \pi^+ \pi^-$ at STAR

Observed the interference for coherent ρ⁰ photoproduction in UPCs

SCIENCE ADVANCES | RESEARCH ARTICLE

STAR, Sci. Adv. 9, eabq 3903 (2023) PHYSICS

Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions

STAR Collaboration

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultrarelativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus, forming a short-lived vector meson (e.g., ρ^{0}). In this experiment, the polarization was used in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of $\rho^0 \rightarrow 0$ $\pi^+\pi^-$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ^0 travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions and found to be 6.53 \pm 0.06 fm (¹⁹⁷Au) and 7.29 \pm 0.08 fm (²³⁸U), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of nonidentical particles.

Authors, some rights reserved; exclusive licensee Works. Distributed under a Creative NonCommercial

Measured in 3 different collision systems: Au+Au, U+U, p+Au \longrightarrow Sensitive to nuclear shape/size

Clear p_T dependence of interference observed

Interference gets weak at higher p_T — Incoherent processes take over

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative **Commons Attribution** NonCommercial License 4.0 (CC BY-NC).

Radius measurement with interference for $\rho^0 \rightarrow \pi^+ \pi^-$ at STAR STAR, Sci. Adv. 9, eabq 3903 (2023)

 $R(Au) = 6.53 \pm 06 \text{ fm}; R(U) = 7.29 \pm 08 \text{ fm}$

18/24

Spin interference with $J/\psi \rightarrow e^+e^-$

$$J/\psi \rightarrow e^+e^-$$

Boson Fermions Mass: 0.7 GeV/c² Mass: 3.1 GeV/c² Lifetime: 1.3 fm/c Lifetime: 2160 fm/c

Measured sign of the interference tells us the level of interference

ρ⁰

Interference of quantum particles —> Spin interference

 J/ψ heavier than ρ^0 and J/ψ has longer lifetime

Probes finer structure and captures high quality images of the gluon distributions

Measured spin interference with $J/\psi \rightarrow e^+e^-$

Observable for J/ψ spin interference

Interference signal fitted with: 1 + a₂ $cos(2\phi) => a_2$ is the measure of the modulation

Measured the spin interference of $J/\psi s$

Corrections for interference signal

• The $\gamma + \gamma \rightarrow e^+ + e^-$ has also the J/Ψ interference like pattern due to detector effect

• We correct for the 2 γ process with : $a_{\gamma} = f >$

• We considered the Bremsstrahlung process and $J/\Psi \rightarrow e^+ + e^-$ STARLight+Geant simulations

=> Background correction is done to extract true modulation signal

$$< a_2^{bkg} + (1 - f) \\ \times a_2^{sig}, \text{ with} = \frac{N_{bkg}}{N_{sig} + N_{bkg}}$$

and $J/\Psi \rightarrow e^+ + e^- + \gamma$, using the

21/24

Signal for J/ψ Spin interference

Diff+Int predictions : Mäntysaari et al. Phys.Rev.C 109 (2024) 2, 024908 => Observed spin interference signal ~10% in the measured kinematic range

• Measured and corrected signal for J/Ψ spin interference:

 $a_2 = 0.102 \pm 0.027 \pm 0.029$

- Measurement has $\sim 3\sigma$ significance above zero
- Compared with STARLight and theory calculations
- STARLight has no spin interference physics - consistent with zero
- Theory (Diffractive+Interference) predicts negative modulation

22/24

The p_T -dependent interference of J/ ψ

- Interference signal shows strong p_T dependence and rises toward positive
- STARLight predicts zero
- O Diffractive+interference calculations are negative at low and high p_T
- Output Diffractive+interference with additional soft y radiation predicts negative at low p_T and rises towards positive value at higher p_T

Diff+Int predictions : Mäntysaari et al. Phys.Rev.C 109 (2024) 2, 024908 Diff+Int+Rad predictions : Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

= Modulation strength positively increases with p_T

23/24

Summary and take home

- Measured the coherent and incoherent J/ψ production in Au+Au UPCs
- STAR observed the spin interference of the photoproduced ρ^0 and J/ψ
- Measured interference signal increases with p_T
- Measurements are sensitive to nuclear geometry and useful to constrain the theoretical models
- RHIC, LHC and future EIC experiments can provide further insights into these

STAR detector

Main central barrel detectors for UPC measurements: TPC, TOF, BEMC

Forward detectors: BBC or EPD, ZDC

