Recent results on vector meson photoproduction and interference effects in Ultra Peripheral Collisions at STAR

Ashik Ikbal Sheikh (For the STAR Collaboration) Kent State University

VESTATE TY

Brookhaven National Laboratory

11th Workshop of the APS Topical Group on Hadronic Physics

March 14 - 16, 2025, Anaheim, USA

Supported in part by **U.S. DEPARTMENT OF =)|=;(c)**

Heavy lons miss each other: Ultra-Peripheral Collisions (UPCs)

Collisions where nuclei do NOT collide

No hadronic collisions happen

lons interact through photon-ion and photon-photon collisions

> => Called Ultra-peripheral collisions (UPCs)

The strongest EM-fields in UPCs

In UPCs,

 $E_{max} = 10^{18}$ V/m , $B_{max} \sim 10^{14} - 10^{18}$ T

=> Strongest EM-field in the universe, but

• EM-field treated in terms of quasi-real photons

$$E_{\gamma,max} \sim \gamma \hbar c/R$$
;

 $E_{\gamma,max} \sim 30 \text{ GeV} (\text{RHIC@Au+Au 200 GeV})$

 $E_{\gamma,max} \sim 80 \text{ GeV} (LHC@Pb+Pb 2.76 \text{ TeV})$

=> EM-fields are quantized as photons in UPCs

Photon-gluon scattering: Vector meson (VM) production via photon-nuclear interactions

Photoproduction of Vector Mesons (VM) in UPC

UPC VM: Powerful probe of parton densities inside nuclei

• Probes parton density & fluctuations inside nuclei constraints for A+A collisions initial state

Modification of parton densities in heavy nuclei => VM helps to probe parton density inside nuclei before EIC era

Satre simulation of parton density fluctuations, Fig: A.

5/23

KI	Ir	n	21	6
			a	

UPC events with STAR detector

- Neutron(s) detected in ZDCs
- ZDC signals show peak structure for neutrons
- No activity in both BBCs => Diffractive events $(\eta$ -gap)

=> Method to trigger UPC events

6/23

J/\u00fc measurements in 200 GeV Au+Au UPCs

=> Coherent and incoherent contributions can be disentangled via the combined fit of mass and p_T

incoherent

7/23

Rapidity dependence J/ψ production cross-section

- Measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic uncertainties in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation

=> Important to constrain theoretical models related to nuclear geometry

STAR, Phys Rev Lett 133 (2024) 5, 052301

J/ψ Nuclear suppression factors

- Coherent cross-section suppressed by ~30% w.r.t free nucleon
- The incoherent supp. is ratio b/w incoh x-sec with HERA (H1) free proton data
- Incoherent photoproduction has been suppressed by ~65% (at $W_{\gamma^*N} = 25$ GeV) w.r.t free proton H1 data
- Stronger incoherent suppressions than model predictions — Even does not directly support the CGC with subnucleonic fluctuations

=> Provides constraints to the parton density and baseline for future measurements in EIC

STAR, Phys Rev Lett 133 (2024) 5, 052301

VM spin interference: A novel quantum phenomenon for high resolution gluon imaging

Polarized Photons from colliding nuclei

Transverse view of Lorentz contracted nuclei

=> Photons in UPC are linearly polarized polarization is roughly along impact parameter

STAR, Phys. Rev. Lett. 127 (2021) 52302

Experimental access to photon polarization demonstrated by STAR, measuring the Breit-Wheeler process, $\gamma\gamma \rightarrow e^+e^-$

Ashik Ikbal, APS GHP-2025, Anaheim, USA

11/23

Polarization of photon → Inherited by VM

=> The cos(2 ϕ) modulation in VM momentum distribution w.r.t photon polarization direction

Decay VM $\rightarrow d_1 d_2$ daughters preferentially emitted (L+S conservation)

Photon polarization correlated with Impact parameter -> random from one event to the next

= Event average washes out the cos(2 ϕ) modulation w.r.t photon polarization direction

Photon source ambiguity

PATH - 1

=> Two independent paths of VM production -> The paths are indistinguishable

14/23

Interference makes the modulation observable in experiment

Photon source ambiguity: Interference among amplitudes of two possible paths

Double Slit Experiment

Best analogy: Double slit experiment in Optics

=> Two indistinguishable paths may interfere and make the $cos(2\phi)$ modulation observable

Observation of interference for $\rho^0 \rightarrow \pi^+ \pi^-$ at STAR

Observed the interference for coherent ρ⁰ photoproduction in UPCs

SCIENCE ADVANCES | RESEARCH ARTICLE

STAR, Sci. Adv. 9, eabq 3903 (2023) PHYSICS

Tomography of ultrarelativistic nuclei with polarized photon-gluon collisions

STAR Collaboration

A linearly polarized photon can be quantized from the Lorentz-boosted electromagnetic field of a nucleus traveling at ultrarelativistic speed. When two relativistic heavy nuclei pass one another at a distance of a few nuclear radii, the photon from one nucleus may interact through a virtual quark-antiquark pair with gluons from the other nucleus, forming a short-lived vector meson (e.g., ρ^{0}). In this experiment, the polarization was used in diffractive photoproduction to observe a unique spin interference pattern in the angular distribution of $\rho^0 \rightarrow 0$ $\pi^+\pi^-$ decays. The observed interference is a result of an overlap of two wave functions at a distance an order of magnitude larger than the ρ^0 travel distance within its lifetime. The strong-interaction nuclear radii were extracted from these diffractive interactions and found to be 6.53 \pm 0.06 fm (¹⁹⁷Au) and 7.29 \pm 0.08 fm (²³⁸U), larger than the nuclear charge radii. The observable is demonstrated to be sensitive to the nuclear geometry and quantum interference of nonidentical particles.

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative **Commons Attribution** NonCommercial License 4.0 (CC BY-NC).

Measured in 3 different collision systems: Au+Au, U+U, p+Au \longrightarrow Sensitive to nuclear shape/size

Clear p_T dependence of interference observed

Interference gets weak at higher p_T — Incoherent processes take over

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative **Commons Attribution** NonCommercial License 4.0 (CC BY-NC).

Impact of spin interference on |t| distribution studied in different ϕ bins

Improved measurement of mass radii using spin interference effect

 $R(Au) = 6.53 \pm 0.06 \text{ fm}; R(U) = 7.29 \pm 0.08 \text{ fm}$

18/23

Spin interference with $J/\psi \rightarrow e^+e^-$

$$J/\psi \rightarrow e^+e^-$$

Fermions Boson

Mass: 3.1 GeV/c² Mass: 0.7 GeV/c² Lifetime: 1.3 fm/c Lifetime: 2160 fm/c

Measured sign of the interference tells us whether the interference occurring in daughter or parent level

ρ⁰

Interference of quantum particles —> Spin interference

 J/ψ heavier than ρ^0 and J/ψ has longer lifetime

Probes finer structure and captures high quality images of the gluon distributions

Measured spin interference with $J/\psi \rightarrow e^+e^-$

Observable for J/ψ spin interference

Interference signal fitted with: $1 + a_2$ $cos(2\phi) => a_2$ is the measure of the modulation

Measured $cos(2\phi)$ for spin interference of J/ ψ s

Observed spin interference for $J/\psi \rightarrow e^+e^-$

The p_T -dependent interference of J/ ψ

Diff+Int predictions : Mäntysaari et al. Phys.Rev.C 109 (2024) 2, 024908 • Interference signal for J/ ψ shows p_T dependence

- Positive modulation for p and negative for J/ ψ ($a_2 \sim -12\%$ with 3 σ for pT<100 MeV)
- Diffractive+interference calculations cannot describe the data well => Useful for gluon tomography within the nucleus

Ashik Ikbal, APS GHP-2025, Anaheim, USA

21/23

Decay anisotropy of photo-produced J/ψ in heavy ion peripheral collisions

=> Significant modulation (~39%) w.r.t reaction plane => Probes photon polarization and the initial collision geometry

Summary and take home

- STAR Measured the coherent and incoherent J/ψ production in Au+Au UPCs
- STAR observed the spin interference of the photoproduced ρ^0 and J/ψ
- \bullet Measured interference signal has p_T dependence
- Measured the photon induced J/ψ polarization w.r.t reaction plane in peripheral collisions
- Measurements are sensitive to nuclear geometry and useful to constrain the theoretical models
- RHIC, LHC and future EIC experiments can provide further insights into these

Thank You!

STAR detector

Main central barrel detectors for UPC measurements: TPC, TOF, BEMC

Forward detectors: BBC or EPD, ZDC

Incoherent J/ ψ production cross-section vs p²

Incoherent production compared with H1 data with free proton

- Strong nuclear suppression (~49%) seen (Mäntysaari et. al, Phys. Rev. Lett. **117** (2016) 5, 052301)
- Models found H1 data supports subnucleonic fluctuations

(Mäntysaari et. al, Phys. Rev. D 106 (2022) 7, 074019) STAR data shows the bound nucleon has similar shape as the free proton — similar sub-nucleonic fluctuations in heavy nuclei

=> Strong nuclear suppression and subnucleonic fluctuations in Au nucleus

Ashik Ikbal, APS GHP-2025, Anaheim, USA

STAR, Phys Rev Lett 133 (2024) 5, 052301

Corrections for interference signal

• The $\gamma + \gamma \rightarrow e^+ + e^-$ has also the J/Ψ interference like pattern due to detector effect

 $f = \frac{N_{bkg}}{N_{sig} + N_{bkg}}$ • Correct for the 2 γ process with : $a_2 = f \times a_2^{bkg} + (1 - f) \times a_2^{sig}$, with • Considered the Bremsstrahlung process and $J/\psi \rightarrow e^+ + e^- + \gamma$, using the STARLight+Geant

simulations

=> Background correction is done to extract true modulation signal

21/24

