

Exclusive J/\psi Photoproduction and Entanglement-Enabled Spin Interference in Ultra-Peripheral Collisions at STAR

STAR

Ashik Ikbal Sheikh (for the STAR Collaboration) Kent State University

UPC 2023: International workshop on the physics of Ultra Peripheral Collisions Playa del Carmen (Riviera Maya), Mexico 11 - 15 December, 2023

The strongest EM-fields in UPCs

In heavy-ion collisions,

 $E_{max} = 10^{18}$ V/m , $B_{max} \sim 10^{14} - 10^{18}$ T

=> Strongest EM-field in the universe, but transient

 In UPCs, relativistic nuclei pass with large distance, and EM-field treated in terms of quasi-real photons

$${
m E}_{\gamma,max}\sim\gamma\hbar c/R$$
 ; ${
m E}_{\gamma,max}\sim3$ GeV (RHIC) ${
m E}_{\gamma,max}\sim80$ GeV (LHC)

=> EM-fields are quantized as photons in UPCs

UPC photons are polarized

- The EM-fields are highly Lorentz contracted
- E-field points radially outward and **B-field circulating**
- Quantized photons are polarized and polarization vector is radially outward along the emitting source

STAR Collaboration, Phys. Rev. Lett. **127**, 052302 (2021)

Transverse view of Lorentz contracted nuclei

by STAR

3/13

Photoproduction of J/ψ occurs in UPCs

 \rightarrow Polarization of J/ ψ

=> Decay electrons of the photo produced are correlated

Leads to cos(2φ) pattern (L+S conservation)

4/13

Spin interference effect with J/ψ

pattern survives

=> Entanglement ensures the spin interference in J/ ψ photoproduction Ashik Ikbal, UPC2023, Playa del Carmen, Mexico 5/13

Klein et. al, Phys. Rev. Lett. 84, 2330 (2000) Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

- Polarization direction changes event-by-event $=> < \cos(2\phi) >$ vanishes over many events
- Two ways for J/ψ photoproduction the two wave functions are created independently
- Wave functions locked in phase through phase entanglement of initial y and Pomeron
- Entanglement allows to observe the interference $=> (\cos(2\varphi))$
- Analogy: Double slit experiment with two entangled sources

New insight on spin interference effect with J/ψ

• $\rho^0 \rightarrow \pi^+ \pi^-$: short lifetime (1 fm/c), localized wave function << b - interference occurs in the daughter pions (spin 0) level

STAR Collaboration, Sci. Adv. 9, eabq 3903 (2023)

- lacksim STAR observed the entanglement-enabled spin interference effect with UPC ho^0

 - J/ψ has longer lifetime, extended wave function
 - J/ψ decay daughters, electrons (spin 1/2) are fermions, $J/\psi \rightarrow e^+e^-$
 - Measurements of the spin interference with J/ψ will bring more info
 - $=> J/\psi$ spin interference is an opportunity to study new physics in this domain

UPC events with STAR detector

- Both nuclei get excited and emit neutrons in
 beam direction
- Neutron(s) detected in ZDCs
- ZDC signals show peak structure for neutrons => Way to trigger UPC events

• Two tracks of opposite charges in TPC

No activity in both BBCs => Diffractive events (n-gap)

Spin interference of J/ψ

• Measured the raw cos(2 ϕ) modulations of e^+e^- from J/ ψ mass window (2.95 < $m_{\rho\rho}$ < 3.2 GeV) with $p_T < 200$ MeV/c

• The $cos(2\phi)$ modulation strength obtained from fit: $1 + a_2 cos(2\phi) => a_2$ is the measure of the modulation = Cos(2 ϕ) modulation is present in the raw data – Need to extract the modulation strength 8/13 Ashik Ikbal, UPC2023, Playa del Carmen, Mexico

Corrections for interference signal

• The $\gamma + \gamma \rightarrow e^+ + e^-$ has also the J/ ψ interference like pattern due to detector effect

• We correct for the 2 γ process with : $a_2 = f >$

• We considered the Bremsstrahlung process and $J/\psi \rightarrow e^+ + e^- + \gamma$, using the STARLight+Geant simulations

=> Background correction is done for true modulation signal

$$a_2^{bkg} + (1 - f) \times a_2^{sig}$$
, with $f = \frac{N_{bkg}}{N_{sig} + N_{bkg}}$

9/13

Signal for J/ψ Spin interference

Theory predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712

=> Observed spin interference signal ~10% in the measured kinematic range

• Measured and corrected signal for J/ψ spin interference in $p_T < 200$ MeV/c:

 $a_2 = 0.102 \pm 0.027 \pm 0.029$

- Measurement has $\sim 3\sigma$ significance above zero
- Compared with STARLight and theory calculations
- STARLight has no spin interference physics - consistent with zero
- Theory (Diffractive+Interference) predicts negative modulation

The p_T -dependent interference of J/ ψ

- Measured interference signal shows strong p_T dependence and rises towards positive
- STARLight prediction is consistent with zero
- Diffractive+interference calculations are negative at low and high p_T
- O Diffractive+interference with additional γ radiation predicts negative at low p_T and rises towards positive value at higher p_T

Diff+Int predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712 Diff+Int+Rad predictions : Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

= Modulation strength positively increases with p_T

- 11/13

Summary and take home

- with $\sim 3\sigma$ significance
- soft photon radiation
- models
- RHIC, LHC and future EIC experiments can provide further insights into these

• STAR observed the spin interference of the photoproduced J/ ψ in p_T < 200 MeV/c

 \bullet Measured modulation strength increases with p_T , consistent with the expectation from

• Measurements are sensitive to nuclear geometry and useful to constrain the theoretical

Au+Au 200 GeV **STAR Preliminary** $2.95 < m_{e^+e^-} < 3.2 \text{ GeV/c}^2$ $\gamma + Au \rightarrow J/\psi + Au$ 0.5 ு Data • و⁰ 0.3 — Diff+Int 0.1 -0.1 Diff+Int+Rad — STARLight -0.3 0.06 0.1 0.2 0 p_T (GeV/c)

Ashik Ikbal, QM2023, Huston, Texas, USA

STAR detector

Main central barrel detectors for UPC measurements: TPC, TOF, BEMC

Forward detectors: BBC or EPD, ZDC

Ashik Ikbal, QM2023, Huston, Texas, USA

