

Exclusive J/ψ Photoproduction and Entanglement-Enabled Spin Interference in Ultra-Peripheral Collisions at STAR

STAR

Ashik Ikbal Sheikh (for the STAR Collaboration) Kent State University

The 30th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Brookhaven National Laboratory

SEPTEMBER 3-9, 2023 | HOUSTON, TEXAS

UPC J/ ψ : powerful probe of parton densities inside nuclei

- UPC J/ ψ probes parton density & fluctuations inside nuclei constraints for A+A initial state
- Modification of parton densities in heavy nuclei informative toward day-1 EIC science
 - $=> J/\psi$ in UPCs helps to probe parton density inside nuclei before EIC era

Satre simulation, Fig: A. Kumar

2/16

UPC events with STAR detector

- Both nuclei get excited and emit neutrons in
 beam direction
- Neutron(s) detected in ZDCs
- ZDC signals show peak structure for neutrons =>Way to trigger UPC events

Two tracks of opposite charges in TPC

No activity in both BBCs => Diffractive events (n-gap)

J/\u03c6 measurements in 200 GeV Au+Au UPCs

of mass and p_T

=> Coherent and incoherent contributions can be disentangled via the combined fit

Rapidity dependence J/ψ production cross-section

- Rapidity dependent cross-section is
 measured for coherent and incoherent contributions for different neutron emission in ZDCs
- Systematic uncertainties in incoherent to coherent cross-section ratio are largely cancelled
- Sensitive to the nuclear structure and deformation

=> Important to constrain theoretical models related to nuclear geometry

Incoherent J/ ψ production cross-section vs p_T^2

- Incoherent production compared with H1 data with free proton
- Strong nuclear suppression seen for both coherent (~40%) and incoherent (~60%) production (Mäntysaari et. al, Phys. Rev. Lett. 117 (2016) 5, 052301)
- Models found H1 data supports sub-nucleonic fluctuations (Mäntysaari et. al, Phys. Rev. D 106 (2022) 7, 074019)
- STAR data shows the bound nucleon has similar shape as the free proton — similar sub-nucleonic fluctuations in heavy nuclei

=> Strong nuclear suppression and subnucleonic fluctuations in Au nucleus

Entanglement-enabled spin interference of UPC J/ ψ

Polarized Photons from colliding nuclei

- Lorentz boosted nuclei produce strong EM fields
- E-field points radially outward and B-field circulating in the azimuthal direction
- Quantized as a flux of quasireal photons — Linearly polarized

=> Photons in UPC are linearly polarized

Transverse view of Lorentz contracted nuclei

J/ψ spin and decay daughter correlations in UPCs

Photoproduction of J/ψ occurs in UPCs

Polarization of photon \rightarrow Polarization of J/ ψ

Decay $J/\psi \rightarrow e^- e^+$ Leads to cos(2φ) pattern (L+S conservation)

$=> J/\psi$ are photoproduced in UPCs and decay electrons are correlated

9/16

Spin interference effect with J/ψ

pattern survives

=> Entanglement ensures the spin interference in J/ ψ photoproduction 10/16 Ashik Ikbal, QM2023, Houston, Texas, USA

Klein et. al, Phys. Rev. Lett. 84, 2330 (2000) Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

- Polarization direction changes event-by-event => $<\cos(2\phi)>$ vanishes over many events
- Two ways for J/ψ photoproduction the two wave functions are created independently
- Wave functions locked in phase through phase entanglement of initial y and Pomeron
- Entanglement makes sure to observe the interference $=> (\cos(2\phi))$
- Analogy: Double slit experiment with two entangled sources

New insight on spin interference effect with J/ψ

occurs in the daughter pions (spin 0) level

STAR Collaboration, Sci. Adv. 9, eabq 3903 (2023)

- STAR observed the entanglement-enabled spin interference effect with UPC ho^0
- $\rho^0 \rightarrow \pi^+ \pi^-$: short lifetime (1 fm), localized wave function << b interference
 - J/ψ has longer lifetime, extended wave function
 - J/ψ decay daughters, electrons (spin 1/2) are fermions, $J/\psi \rightarrow e^+e^-$
 - Measurements of the spin interference with J/ψ will bring more info
 - $=> J/\psi$ spin interference is an opportunity to study new physics in this domain

modulation

= Cos(2 ϕ) modulation is present in the raw data – Need to extract the modulation strength 12/16 Ashik Ikbal, QM2023, Houston, Texas, USA

• Measured the raw cos(2 ϕ) modulations for J/Ψ (2.95 < m_{ee} < 3.2 GeV) with p_T < 200 MeV/c • The $cos(2\phi)$ modulation strength obtained from fit: $1 + a_2 cos(2\phi) => a_2$ is the measure of the

Corrections for interference signal

• The $\gamma + \gamma \rightarrow e^+ + e^-$ has also the J/Ψ interference like pattern due to detector effect

• We correct for the 2 γ process with : $a_{\gamma} = f >$

 \odot We considered the Bremsstrahlung process and J/Ψ STARLight+Geant simulations

=> Background correction is done for true modulation signal

$$< a_2^{bkg} + (1 - f) \times a_2^{sig}$$
, with= $\frac{N_{bkg}}{N_{sig} + N_{bkg}}$
and $J/\Psi \rightarrow e^+ + e^- + \gamma$, using the

Signal for J/ψ Spin interference

Theory predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712

=> Observed spin interference signal ~10% in the measured kinematic range

• Measured and corrected signal for J/Ψ spin interference:

 $a_2 = 0.102 \pm 0.027 \pm 0.029$

- Measurement has $\sim 3\sigma$ significance above zero
- Compared with STARLight and theory calculations
- STARLight has no spin interference physics - consistent with zero
- Theory (Diffractive+Interference) predicts negative modulation

The p_T -dependent interference of J/ ψ

- Measured interference signal shows strong p_T dependence and rises toward positive
- STARLight prediction is consistent with zero
- Diffractive+interference calculations have the negative value and increase with p_T
- Diffractive+interference with additional γ radiation predicts negative at low p_T and rises towards positive value at higher p_T

Diff+Int predictions : W.B. Zhao et al. (private communication) & arXiv:2207.03712 Diff+Int+Rad predictions : Brandenburg et. al, Phys. Rev. D 106, 074008 (2022)

= Modulation strength positively increases with p_T

15/16

Summary and take home

- Measured separately the coherent and incoherent J/ ψp_T distributions in Au+Au UPCs
- $\odot\,$ STAR observed the spin interference of the photoproduced J/ ψ
- \odot Measured interference signal increases with p_T
- Measurements are sensitive to nuclear geometry and useful to constrain the theoretical models
- RHIC, LHC and future EIC experiments can provide further insights into these

STAR detector

Main central barrel detectors for UPC measurements: TPC, TOF, BEMC

Forward detectors: BBC or EPD, ZDC

