



## Quarkonium measurements in heavy-ion collisions at the STAR experiment

**Qian Yang** (for the STAR Collaboration) Shandong University

Qian Yang @ ATHIC 2018, November 3th - 6th 2018, USTC

# Outline



- Motivation
- STAR experiment
- J/ψ measurements in p+Au collisions
- ${\scriptstyle \odot}\,\Upsilon$  measurements in p+Au and Au+Au collisions
- Summary

### Quarkonium: sensitive probe to QGP



Heavy quarkonium: heavy mass (m<sub>c</sub> = ~1.5 GeV/c<sup>2</sup>, m<sub>b</sub> = ~ 4.5 GeV/c<sup>2</sup>) → early creation. long lifetime



Illustration: A. Rothkopf

# Quarkonium is a sensitive probe of the deconfinement in the QGP: color screening dissociation

## Cold nuclear matter effects



#### nPDF effect

- Modification of gluon PDF distributions in nucleus

- Shadowing and Anti-shadowing

#### Nuclear absorption effect

- Break-up of quarkonium by remnant of incident nuclei.

#### Co-mover effect

- Break-up of quarkonium by comoving hadrons outside of nuclear remnant.



### $\Upsilon$ : a cleaner probe at RHIC



#### $\Upsilon$ is a cleaner probe at RHIC:

- Regeneration is expected to be small
  - [A. Emerick, X. Zhao and R. Rapp: EPJ A48, 72 (2012)] [X. Du, M. He, and R. Rapp: PRC 96, 054901 (2017)]
- Co-mover absorption is expected to be small for  $\Upsilon(1S)$

[Z. Lin and C. Ko: PLB 503, 104 (2001)]

## The Solenoidal Tracker at RHIC





### Inclusive J/ $\psi$ R<sub>pA</sub> at $\sqrt{s_{NN}} = 200$ GeV





EPS09+NLO, Ma & Vogt, Private Comm. nCTEQ, EPS09+NLO, Lansberg Shao, Eur.Phys.J. C77 (2017) no.1, 1 Comp. Phys. Comm. 198 (2016) 238-259 Comp. Phys. Comm. 184 (2013) 2562-2570

- Model calculations with only nPDF effect can touch upper limit of data within uncertainties.
- Data favor nPDF effects with additional nuclear absorption.

## Inclusive $\Upsilon R_{pA}$ at $\sqrt{s_{NN}} = 200 \text{ GeV}$





- Indication of Y(1S+2S+3S) suppression in p+Au collisions
  - → Cold nuclear matter effects: R<sub>pA</sub> (|y|<0.5): 0.82 ± 0.10 (stat.) <sup>-0.07</sup>/<sub>+0.08</sub> (sys.) ± 0.10 (global)

### Inclusive $\Upsilon$ R<sub>AA</sub> vs. N<sub>part</sub> at $\sqrt{s_{NN}} = 200$ GeV





## Υ(1S) suppression





CMS: PLB 770, 357 (2017)

#### $\Upsilon$ (1S) suppression is similar at RHIC and LHC and no significant p<sub>T</sub> dependence:

- Medium temperature is higher at LHC due to higher collision energy
- Regeneration contribution is larger at LHC
- CNM
- Strong suppression of excited  $\Upsilon$  states that feed-down to  $\Upsilon(1S)$

### Υ(2S+3S) suppression



Υ(2S+3S):

Indication of less suppression at RHIC than at LHC.
STAR: Υ(2S+3S) R<sub>AA</sub>: 0.35 ± 0.08 (stat.) ± 0.10 (sys.) (0 < p<sub>T</sub> < 10 GeV/c, 0-60%)</li>
CMS: Υ(2S) R<sub>AA</sub>: 0.08 ± 0.05 (stat.) ± 0.03 (sys.) (0 < p<sub>T</sub> < 5 GeV/c, 0-100%)</li>

## **Υ(1S)** suppression





[CMS: PLB 770, 357 (2017)] [B. Krouppa, A. Rothkopf, M. Strickland: PRD 97, 016017 (2018)] [X. Du, M. He, and R. Rapp: PRC 96, 054901 (2017)]

#### Υ(1S) R<sub>AA</sub>:

Both Rothkopf's and Rapp's models describe data

Rothkopf's model: use a lattice-vetted heavy-quark potential Rapp's model: use in-medium binding energies predicted by thermodynamic T-matrix calculations using internal-energy potentials, from lattice QCD

### Υ(2S+3S) suppression





[CMS: PLB 770, 357 (2017)] [B. Krouppa, A. Rothkopf, M. Strickland: PRD 97, 016017 (2018)] [X. Du, M. He, and R. Rapp: PRC 96, 054901 (2017)]

#### $\Upsilon$ (2S+3S) R<sub>AA</sub> :

- Rapp's model describes data
- Rothkopf's model calculation is slightly lower than data in 30-60%

## Summary



- P+Au collisions at √s<sub>NN</sub> = 200 GeV
  - Indication of  $\Upsilon$  suppression
  - J/ $\psi$  R<sub>pA</sub> favors additional nuclear absorption effect on top of nPDF effect
- Output Au Collisions at √s<sub>NN</sub> = 200 GeV

The precision of  $\Upsilon$  measurements is improved by combining results of dielectron and dimuon channels from dataset taken in different year (2011, 2014 and 2016)

Υ(1S):

- Indication of stronger suppression towards central collisions
- Similar suppression as at LHC
- Both models are consistent with data at RHIC and LHC

Υ(2S+3S):

- More suppressed than  $\Upsilon(1S)$  in 0-10% sequential melting
- Indication of less suppression at RHIC than at the LHC