

Electric charge and strangeness dependent splitting of the rapidity-odd directed flow in Au+Au collisions

Ashik Ikbal Sheikh (for the STAR Collaboration)

Kent State University

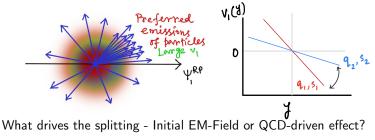
Directed flow (v_1) and splitting (Δv_1)

 First harmonic coefficient of Fourier decomposition of particle azimuthal distribution, v1 - Directed Flow

$$E\frac{d^3N}{dp^3} = \frac{d^2N}{2\pi p_T dp_T dy} \left(1 + 2\sum_{n=1}^{+\infty} v_n cos[n(\phi - \Psi_{RP})]\right)$$

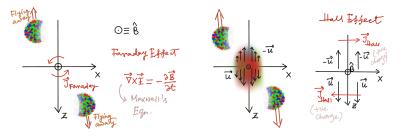
where $v_n = \langle cos[n(\phi - \Psi_{RP})] \rangle$

Probe early stage of the collisions - strong EM-Field



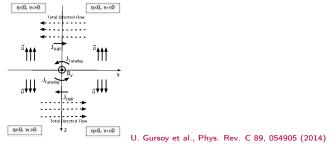
• Measure splitting with charge (Δq) and strangeness (ΔS)

EM-Field driven splitting (Δv_1) - Faraday and Hall effect?



- Beam direction: \hat{z} and Impact parameter: $\hat{x} =>$ Reaction Plane: xz
- ▶ Colliding nuclei produce B-field, \perp to RP (approx) => B along \hat{y}
- Time varying \vec{B} induces \vec{E} field => Faraday effect
- ▶ Medium expands longitudinally $(\vec{u} \perp \vec{B})$ Lorentz force pushes +ve and -ve charged particles in opposite directions => Hall effect

EM-Field driven splitting (Δv_1) ?



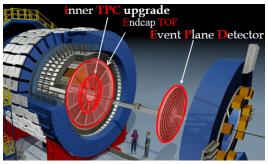
- Faraday and Hall are competing effects Net effect affects v₁
- ▶ v_1 for +ve particles shown (when Faraday > Hall)

Multi-strange and the splitting (Δv_1)

- Enhanced strange quarks production and identity retains during hadronization => multiply multi-strange baryons (Ξ and Ω)
- Low scattering cross section and early thermal freeze-out good probe of early stage of the collisions
- Multi-strange v₁ might be important for strangeness related splitting

4/14

Towards measurements: STAR detector at BES-II



Journal of Physics: Conference Series 742 (2016) 012022

- ► TPC+TOF for PID: TPC measures -dE/dx of tracks ($|\eta| < 1$, $0 < \phi < 2\pi$) and TOF measures time of flight ($|\eta| < 0.9$)
- ▶ EPD (2.1 < $|\eta|$ < 5.1) or ZDC ($|\eta|$ > 6.3) for event plane reconstruction
- ▶ Data sets (analyzed): Au+Au at $\sqrt{s_{NN}} = 27$ GeV (year-2018) and $\sqrt{s_{NN}} = 200$ GeV (year-2016)

Splitting (Δv_1) : Choice of particles?

(1) Measurements with heavy flavors?

- Measurements of HFs are challenging
- Less abundantly produced suffer large uncertainties
- Absence of HFT in STAR BES-II and low production rate HF measurements are difficult

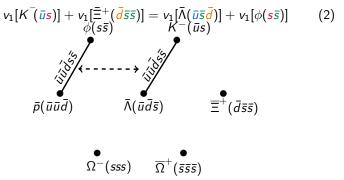
(2) Measurements with light hadrons?

- Light hadrons produced in abundance precise measurements
- Δv₁ measurements come with drawbacks:
 (a) Most of the (anti)-particles contain transported quarks (u and d)
 (b) Transported quarks have different v₁ than the produced => Δv₁ becomes difficult to interpret
- Avoiding transported quarks => Splitting can be measured with light hadrons
 Ashik Ikbal Sheikh (STAR Collab.), ATHIC 2021

Splitting (Δv_1) : Our Approach

- Use only produced particles, K^- , \bar{p} , $\bar{\Lambda}$, ϕ , Ξ^+ , Ω^- and $\overline{\Omega}^+$
- Based on Quark coalescence
- Coalescence-inspired sum rule: v_1 (Hadron) = $\sum v_1^i(q_i)$
- A new way to test coalescence sum rule (same $y p_T/n_q$ phase space, with $n_q \rightarrow$ no. of constituent quarks):

$$v_1[\bar{K}(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}\bar{s}\bar{d})] = v_1[\bar{p}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$$
(1)

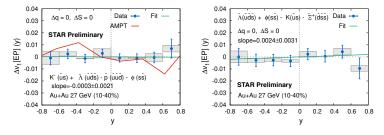


Splitting (Δv_1) : Our Approach

New idea to show the coalescence sum rule holds (with identical quarks):

$$v_1[\bar{K}(\bar{u}s)] + v_1[\bar{\Lambda}(\bar{u}s\bar{d})] = v_1[\bar{\rho}(\bar{u}\bar{u}\bar{d})] + v_1[\phi(s\bar{s})]$$
(1)

$$v_1[\overline{\mathcal{K}(\bar{u}s)}] + v_1[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] = v_1[\overline{\Lambda}(\bar{u}\overline{s}\overline{d})] + v_1[\phi(s\overline{s})]$$
(2)
(1)



▶ With produced particles, K^- , \bar{p} , $\bar{\Lambda}$, ϕ , Ξ^+ , Ω^- and $\overline{\Omega}^+$ and make combinations - having same quark mass but different Δq and ΔS

Rearranging the Δv_1 in Δq and ΔS Particles: $K(\bar{u}s)$, $\bar{p}(\bar{u}\bar{u}\bar{d})$, $\bar{\Lambda}(\bar{u}\bar{d}\bar{s})$, $\phi(s\bar{s})$, $\Xi^+(\bar{d}s\bar{s})$, $\Omega^-(sss)$, $\overline{\Omega}^+(\bar{s}s\bar{s})$

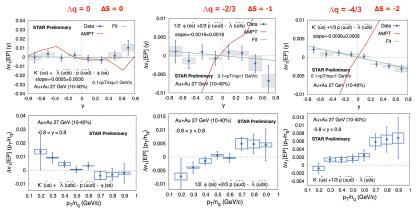
Index	Quark Mass	Charge	Strangeness	Expression
1	$\Delta m = 0$	$\Delta q = 0$	$\Delta S = 0$	$[\bar{p}(\bar{u}\bar{u}\bar{d}) + \phi(s\bar{s})] - [\bar{K}(\bar{u}s) + \bar{\Lambda}(\bar{u}\bar{d}\bar{s})]$
2	$\Delta m pprox 0$	$\Delta q = rac{2}{3}$	$\Delta S = 1$	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{2}\phi(sar{s}) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$
3	$\Delta m pprox 0$	$\Delta q = 1$	$\Delta S = 2$	$[ar{\Lambda}(ar{u}ar{d}ar{s})] - [rac{1}{3}\Omega^-(sss) + rac{2}{3}ar{p}(ar{u}ar{u}ar{d})]$
4	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$[\bar{\Lambda}(\bar{u}\bar{d}\bar{s})] - [\bar{\kappa}(\bar{u}s) + \frac{1}{3}\bar{p}(\bar{u}\bar{u}\bar{d})]$
5	$\Delta m pprox 0$	$\Delta q = rac{4}{3}$	$\Delta S = 2$	$[\overline{\Xi}^+(ar{d}ar{s}ar{s})] - [\phi(sar{s}) + rac{1}{3}ar{p}(ar{u}ar{u}ar{d})]$
6	$\Delta m = 0$	$\Delta q = 2$	$\Delta S = 6$	$[\overline{\Omega}^+(\overline{sss})] - [\Omega^-(sss)]$
7	$\Delta m \approx 0$	$\Delta q = rac{7}{3}$	$\Delta S = 4$	$[\overline{\Xi}^+(\overline{d}\overline{s}\overline{s})] - [\overline{K}(\overline{u}s) + \frac{1}{3}\Omega^-(sss)]$

- ► Combinations have same $\Delta m \approx 0$ different Δq and ΔS 7 combinations
- Degenerate combinations (Indices 4 and 5) Good cross check
- Measure splitting with Δq and ΔS

v_1 vs y : Ξ and Ω Baryons



Splitting (Δv_1) at 3 different Δq and ΔS (27 GeV)

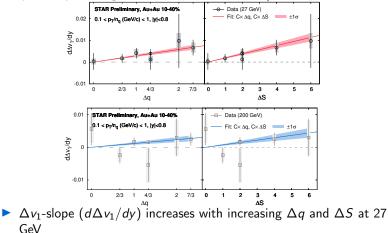


Δv₁ for same mass, different charge and strangeness

- Δv_1 increases at larger y for $\Delta q \neq 0$
- Δv_1 also increases with p_T/n_q when $\Delta q \neq 0$

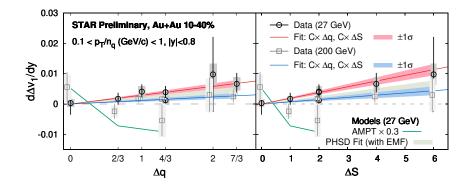
► AMPT (Phys. Rev. C 100, 054903 (2019)) has opposite trend for $\Delta q \neq 0$ -No EM-Field is implemented in AMPT Ashik Ikbal Sheikh (STAR Collab.). ATHIC 2021

Δv_1 -slope - splitting: hints of QED and/or QCD effect



- Δq and ΔS are correlated (see Table at page-9)
- ▶ For 27 GeV, slope = 0.002905 ± 0.000481 (with Δq); > 5 σ effect
- ► For 200 GeV, slope = 0.001159 ± 0.00038 (with Δq); > 2.5σ effect
- $d\Delta v_1/dy$ -slope is less for 200 GeV than 27 GeV

Δv_1 -slope - splitting: Model comparison



AMPT can not explain the data (Phys. Rev. C 100, 054903 (2019))

PHSD(+EM-Field) can describe the data within the uncertainties

Summary

- First measurements of v_1 of multi-strange baryons Ξ and Ω
- Measured charge (Δq) and strangeness (ΔS) dependent splitting, Δv₁, at BES-II
- Δv_1 -slope $(d\Delta v_1/dy)$ increases as Δq and ΔS increase at 27 GeV
- PHSD+EM-Field calculations can describe data within uncertainties
 Hints of EM-Field effect in the splitting
- Net strangeness is also an important key factor for Δv_1 -slope

THANK YOU