

Di-electron Measurements in STAR

Frank Geurts (Rice University) for the STAR Collaboration

Outline

- Di-electrons in heavy-ion collisions
- STAR: data sample & electron identification
- Background estimates
- Results for p+p and Au+Au at √s_{NN}=200GeV
- Di-electrons at lower energies (BES)
- Di-electron elliptic flow
- Future
- Summary

Motivation

- Di-lepton spectra cover a wide range of physics that may bare signatures from the QGP
 - Leptons are emitted throughout the evolution of the system
 - Leptons practically do not interact with the hot & dense medium
- Low Mass Range (LMR)
 - $m_{ee} < 1.1 \, \text{GeV/c}^2$
 - In-medium modification of vector mesons
 - Possible link to chiral symmetry restoration
- Intermediate mass range (IMR)
 - $1.1 < m_{ee} < 3 \text{ GeV/c}^2$
 - QGP thermal radiation
 - Heavy Flavor modification
- High Mass Range (HMR)
 - $m_{ee} > 3 \text{ GeV/c}^2$
 - Primordial emission, J/ Ψ and Υ suppression, Drell-Yan

p_r(GeV/c)

Motivation (cont'd)

- At SPS: different slopes in m_T spectra in low and intermediate masses
 - hint of partonic thermal dileptons
- How about at RHIC?
 - measure production cross sections
 - measure elliptic flow

NA60, PRL 100, 022302 (2008) STAR, NPA 757,102 (2005) PHENIX, PRL 98, 232301 (2007)

The STAR detector

Electron Identification

- dE/dx PID only: significant hadron contamination
- TOF velocity cut removes "slow" hadrons
 - purity ~99% in p+p, ~97% in Au+Au (min-bias)

Frank Geurts for STAR

Resonance Workshop UT Austin, March '12

Event Selection & Data Sample

- p+p at √s=200GeV
 - RHIC Run 9
 - 107M minimum-bias events
 - Collision vertex selection |Vz|<50cm
 - 72% TOF coverage
- Au+Au at √s_{NN}=200GeV
 - RHIC Run 10
 - 270M minimum-bias events
 - 150M central events (10% most central)
 - Collision vertex selection |Vz|<30cm
 - 100% TOF coverage

Invariant Mass & Background

- Background sources
 - Combinatorial background (non-physical)
 - Correlated background, e.g. double Dalitz decay, jet correlation.
- Background methods
 - Combinatorials: mixed-event and/or like-sign method
 - Correlated background: like-sign method
 - Pair cuts that remove photon conversions
- Other signals
 - Meson decays (photon background, hadron contamination)
 - Remove by comparing real data with simulations for hadron contamination

Signal to Background Ratios

- Mixed-Event Method
 - Combinatorial only
 - Statistics can be made significantly large
 - No acceptance difference between unlike-sign and mixed-event
- Like-Sign Method
 - Same event: combinatorial + correlated background
 - Statistics comparable to Unlike-Sign, i.e. original raw spectra
 - Acceptance differences between unlikesign and like-sign
- Combine both methods, carefully normalized using an overlap region in inv. mass m_{ee}
 - p+p: $LS < 0.4 \text{ GeV/c}^2 < ME$
 - Au+Au: LS < 0.75 GeV/ c^2 < ME×LS

Signal/Background @ $m_{ee}^{\sim} 0.5 GeV/c^2$

- 1/10 for p+p
- 1/(200-250) for Au+Au min-bias, central

Di-electrons in p+p

QM/SQM/CPOD2011

- LMR and IMR in p+p min-bias
 efficiency corrected
- Hadron cocktail simulation consistent with data
 - NPA 855(2011)269
- Charm contribution dominates IMR
 - scaled with STAR charm crosssection
 - PRL 94(2005)062301

Incl. stat. + syst. errors:

- green -- syst. error on data
- yellow -- syst. error on cocktail

Di-electron in Au+Au (minbias)

QM/SQM/CPOD2011

- A hint of enhancement at LMR between 150 - 750 MeV/c²:
 - 1.53 ± 0.07 (stat) ± 0.41 (syst)
 - PHENIX: 4.7 ± 0.4 ± 1.5
 - compared to hadron cocktail without $\boldsymbol{\rho}$

Hadron cocktail

- ρ contribution not included
- charm contribution based on N_{bin}scaled PYTHIA simulation (0.96mb)

Incl. stat. + syst. errors:

- green -- syst. error on data
- yellow -- syst. error on cocktail

Di-electron in Au+Au (central)

QM/SQM/CPOD2011

Compared with min-bias ...

- LMR: more pronounced enhancement
 - between $150 750 \text{ MeV/c}^2$
 - 1.72 ± 0.10(stat) ± 0.50(syst)
 - PHENIX: 7.6 ± 0.5 ± 1.3
 - compared to cocktail without ρ
- IMR: cocktail overshoots data
 - but consistent within uncertainties
 - modification of charm?
 - further study needed (HFT,MTD)

Incl. stat. + syst. errors:

- green -- syst. error on data
- yellow -- syst. error on cocktail

Systematic Uncertainties

Comparison to Theoretical Calculations

by Ralf Rapp (priv. comm.)

- blue dotted line contribution from hadron gas
- pink dotted line contribution from QGP
- upper solid line
 cocktail + HG + QGP
- lower solid line cocktail only

Comparison to Theoretical Calculations (2)

PHSD model, Phys. Rev. C85 0249010 (2012)

Frank Geurts for STAR

Resonance Workshop UT Austin, March '12

Transverse Mass Spectra

- p+p results consistent with PYTHIA charm
- m_⊤ slope parameter Au+Au higher than p+p
 - hint of thermal di-lepton production and/or charm modification
- Inclusive di-lepton slope for Au+Au (RHIC) higher than NA60 measurement
 - NA60 data has charm/DY subtracted

QM2011

Di-electrons in BES (Vs_{NN}=39GeV)

- Beam Energy Scan: explore QCD phase diagram
 - di-electrons can serve as an additional probe
- RHIC Run 10: low material budget, high statistics
 - 39GeV data set: 115M MB events, |Vz|<30cm
 - but, only 20% with one or more e^+e^- pairs

- work underway to determine background & hadron cocktail
- involve more energies, such as √s_{NN}=62GeV

LMR: di-electron flow

Goals:

- Study integral elliptic flow for the dominant particles
- Study p_T dependence in different mass ranges

Di-electron Elliptic Flow

First measurements from STAR

Dataset: Au+Au @200GeV

- 220M minbias events
- statistical error only
 Background determination
- like-sign m_{ee}<0.7GeV/c²
- mixed-event m_{ee}>0.7GeV/c²

Work underway to determine systematic uncertainties

$$v_2^{\text{total}}(m_{ee}) = v_2^{\text{signal}} \left[\frac{N_S}{N_B + N_S} \right] (m_{ee}) + v_2^{\text{background}} \left[1 - \frac{N_S}{N_B + N_S} \right] (m_{ee})$$

Frank Geurts for STAR

Di-electron Elliptic Flow

- Measured flow in π^0 mass range is consistent with simulations of the v_2 of "Dalitz decayed" charged pions
 - input parameterized STAR π^{\pm} spectra
- For η mass range simulation similar procedure
 - assume similar v_2 as K_s
- This is still work in progress ...
 - estimate systematical uncertainties, study other inv. mass regions

Muon Telescope Detector

- A large area muon detector, located outside STAR magnet steel
 - based on proven technologies used in STAR TOF
- muons versus electrons:
 - no γ conversion
 - significantly less Dalitz decay
 - less affected by radiative losses in detector materials
- single-muon measurements:
 - look for e-µ correlations to distinguish heavy flavor production from initial lepton pair production
- di-muon measurements
 - QGP thermal radiation
 - Quarkonia (Υ separation), light vector mesons, resonances
 - Drell-Yan production
- Installation schedule: Run 12 10%, Run 13 43%, Run 14 – 80%, completion March 2014.

Summary

- STAR has measured di-electron spectra in p+p and Au+Au at Vs_{NN}=200 GeV When compared to hadron cocktail:
 - p+p: consistent with hadron cocktail; charm contribution dominates IMR
 - Au+Au (min-bias): hint of enhancement in LMR
 - Au+Au (central): more pronounced enhancement in LMR, hint of charm modification in IMR
- STAR has measured di-electron spectra in BES data. Work in progress.
- STAR has measured di-electron elliptic flow. Work in progress.
 - proof of principle established
- STAR is constructing the MTD and HFT detectors
 - scheduled for 2014
 - expect significant improvements in di-lepton measurements, e-μ correlations, etc.

Backup Slides

LMR Enhancement

Reproduce PHENIX cocktail

- Reproduce the cocktail within PHENIX acceptance by our method.
- The momentum resolution are still from STAR.

Scaled by all the yields from PHENIX paper[1], we can reproduce the PHENIX cocktail.

[1]. Phys. Rev. C 81, 034911 (2010).

Check with acceptance difference

