Latest results on triangular flow, correlations and jets from STAR

Jana Bielcikova (for the STAR Collaboration)

Nuclear Physics Institute ASCR Czech Republic

h3QCD workshop, ECT*, Trento, Italy, June 17-21, 2013

Outline

- STAR experiment at RHIC
- Measurements of triangular flow
- Ridge studies in d+Au collisions
- Forward di-hadron correlations
- Ongoing jet studies in Au+Au collisions
- Summary and outlook

STAR experiment

- Time Projection Chamber: *dE/dx, PID, momentum*
- Time Of Flight detector: *PID, 1/\beta*
- Barrel ElectroMagnetic Calorimeter: *E/p, trigger*
- Endcap ElectroMagnetic Calorimeter ($1.0 \le |\eta| < 2.0$)
- Forward Meson Spectrometer (2.5 < $|\eta|$ < 4.0)
- Forward Time Projection Chambers (2.8 < $|\eta|$ < 3.8)

Triangular flow (v_3) ...

B. Alver, G. Roland, PRC81 (2010) 054905

B. Schenke, S. Jeon, C. Gale PRL 106, 042301

Methods to determine v_3

determination of v_3 from event plane method:

η dependence of v_3 in Au+Au collisions

Data: Run 4 Au+Au @ 200 GeV

Two different event plane methods used: TPC: sub-events with a small $\Delta\eta$ gap of 0.05 reduces self-correlation

FTPC: a large $\Delta\eta$ gap between EP and TPC particles used for v₃ no self-correlation

 v₃{TPC} shows a small peak around midrapidity

 v₃{FTPC} is flat with pseudorapidity

$|\Delta\eta|$ dependence of v_3 in Au+Au collisions

Comparison with the Glasma model:

decreasing effect of fluctuations in the model?

Glasma model is in a qualitative agreement with the data, but the data show a steeper decrease.

- v_3^2 {2} gradually decreases with $|\Delta \eta|$
- within the STAR acceptance v₃²{2} does not approach a constant value
- LS and US charge-sign combinations show only little difference despite different contributions from resonances, fluctuations and FS interactions
- similar decrease of v_n²{2} observed also by ATLAS *PRC 86 014907 (2012)*

For each v_3 value one must always quote $\Delta \eta$ range for which it was calculated!

v₃(p_T) dependence and comparison with models

Good agreement:

- hydro with η/s=0.08
 +Glauber initial conditions
- NeXSPheRIO for p_T<1 GeV/c and 20-40% centrality
- Parton-Hadron-String-Dynamics model semi-central collisions

- AMPT is a bit higher

 HIJING has negligible v₃ (not shown here)

Glasma model captures $\approx v_3(\Delta \eta)$ + models including fluctuations describe $v_3(p_T)$ $\rightarrow v_3$ is likely mainly due to $\Delta \eta$ dependent fluctuations (+ possibly non-flow contributions).

Comparison of v_3 to other experiments

STAR, arXiv:1301.2187

STAR data for v₃{TPC} agree well with PHENIX v₃{RXN} BUT: RXN acceptance: 1<η<2.8 i.e. <η> of RXN > TPC (?)

Surprisingly good agreement also with the LHC experiments (?):

ALICE v₃ for $|\eta| < 0.8$ and $|\Delta \eta| > 1$ ATLAS v₃ for $|\eta| < 2.5$ and $|\Delta \eta| > 2.5$

BUT: fluctuations are expected to be largely independent of collision energy ©

Di-hadron correlations in d+Au @ 200 GeV

Jana Bielcikova (STAR)

$\Delta \phi$ projections in different $\Delta \eta$

- ZYAM syst. error from different sizes of $\Delta \phi$ region for ZYAM.
- efficiency corrected: 85 ± 5%

Jana Bielcikova (STAR)

$\Delta \eta \text{ projections in different } \Delta \phi$ (TPC multiplicity $|\eta| < 1$ as centrality)

- ZYAM syst. error from different sizes of $\Delta \phi$ region for ZYAM.
- efficiency corrected: $85 \pm 5\%$

Jana Bielcikova (STAR)

Central-peripheral correlation functions, charge dependence DIS < p_T^{trig} < 3.0 GeV/c, 1 < p_T^{assoc} < 2 GeV/c FTPCmult, 1 < p_T < 2 GeV/c Constructions

"Near-side peak" shows jet-like features of charge-ordering.

Jana Bielcikova (STAR)

Conditional yield vs multiplicity

Conditional yield in d+Au is consistent with zero for 1.4 < $|\Delta\eta|$ <1.8 as a function of centrality.

 $\mbox{ \bullet }$ ongoing studies of $\mbox{ }_{\mbox{ T}}$ dependence

Jana Bielcikova (STAR)

Comparison with PHENIX

Forward $\pi - \pi$ azimuthal correlations

 $<\eta_{\pi,L}>=3, <\eta_{\pi,S}>=3$

- forward π⁰ pairs probe the lowest x
 2→2 scattering:
 0.001 < x < 0.005
- forward π^0 pairs detected via 4 γ
- jet-like correlations for p+p consistent with NLO pQCD description of inclusive forward π⁰ cross section

significant broadening of awayside correlation peak observed in d+Au relative to p+p

Centrality dependence of forward $\pi-\pi$ correlations

Leading $p_T \pi^0 > 2 \text{ GeV/}c$

- note: uncorrected coincidence probabilities
- away-side peaks evident in p+p and peripheral d+Au
- peripheral d+Au: away-side ~ 50% wider than in p+p

Away-side peak in d+Au shows significant centrality dependence \rightarrow clear azimuthal decorrelation.

Corrected p+p coincidence probability

Apply off-mass-peak subtraction and efficiency correction to p+p data

Conclusions:

- away-side peak width comparable to uncorrected azimuthal correlations N.B. σ (uncorr.) = 0.68±0.01
- near-side peak agrees with PYTHIA
- away-side peak broader than PYTHIA
- pedestal appears larger than PYTHIA

Pseudorapidity dependence of forward π^{0} +jet-like correlations

study correlations of π⁰ from FMS (η~3) with "jet-like" clusters from EEMC (η~1.5) or BEMC (η~0)
"jet-like" clusters

are reconstructed within a cone of R=0.6 with a seed from high-tower

EEMC/BEMC selection criteria:

- 600 (400) MeV tower threshold
- 0.4 (0.2) GeV/c² lower
- $\int_{-+5.4}^{-+5.4}$ mass limit for jet-like cluster

FMS (π⁰) - jet-like cluster correlations

- mixed event correction applied
- *caveat:* jet energy scale not fixed between different detectors, but this does not change conclusions
- p+p correlations become narrower as η increases
- d+Au correlations become broader as η increases

FMS-EEMC:

$$\sigma_{dAu} - \sigma_{pp} = 0.10 \pm 0.02^{+0.04}_{-0.02}$$

FMS-BEMC:

Significant broadening from p+p to d+Au for FMS-EEMC correlations observed.

Centrality dependence of π^0 +jet-like correlations

• mixed-event corrections applied, results in ~15% bin-to-bin changes

 use beam-beam counter facing Au beam to select peripheral (ΣQ<250) and central (2000<ΣQ<4000) collisions

No evidence of away-side peak for central d+Au collisions. Pronounced cold nuclear matter effects in the forward direction.

Full jet reconstruction in Au+Au collisions ...

Early Quark Matter '09 results on Run 7 Au+Au data at 200 GeV
limited statistics, new methods developed since then

Large and fluctuating background in Au+Au collisions **STAR** Prelimina

 event-wise estimate of background density (k_t, FastJet):

 $\rho = \text{median}\{p_{T,i}/A_i^{\text{jet}}\}$

A ... jet area

Caution: definition of ρ is not unique:

- e.g. exclude two hardest jets in event
- \$3.5.5.8 1 0 vary choice \rightarrow contribution to syst. uncertainty
- jet candidate p_T is corrected event-wise for ρ :

Large fraction of jet population has $p_{\tau}^{<\text{corr}>} < 0$:

not interpretable as physical jets

b.8.6.4.2

BUT this component contains crucial information about background or "combinatorial" jets

Note: it is rejected implicitly at later step by imposition of bias on jet candidates

Inclusive jet spectrum in central Au+Au

- Run11 Au+Au data at 200 GeV
- jets reconstructed using IR safe anti- k_t algorithm with R=0.4
- currently only charged jets (for simplicity)
- minimum constituent cut (p_T^{const}>200 MeV/c for tracks)
- exploratory study on small fraction of data (1%)

Stable unfolding requires each jet candidate to have at least one constituent with p_T greater than a threshold value.

G. de Barros et al., arXiv:1208.1518

Jana Bielcikova (STAR)

Unfolding of background fluctuations

10

102

10

-10⁻¹ 10⁻²

10-3

ີ 10⁻⁴ ສູ10⁻⁵

 10^{-7}

10⁻⁸ – 30

RHIC Kinematics

_{vents} = 1M

Anti-k₊ R = 0.4

_{recojet} > 0.4sr

^{iding} > 0.2 GeV/c

-20

Toy model

10

20

-10

0-5% Central Collisions

(sr c/GeV)

ਙ

i/2π d[∠]N/dp_

Standard methods:

- Bayesian
- Singular Value Decomposition (SVD)

Methods tested in parallel using a "Toy model" Monte-Carlo

Response matrix measured by embedding simulated "jets" into real events $\rightarrow \delta p_T$

Stable convergence for $p_T^{\text{leading}} > 5 \text{ GeV}/c$, ~20% sensitivity to choice of prior.

- Truth

--- Measured

30

Estimate of jet yields in Run11 Au+Au data

Run 11 Au+Au integrated luminosity: ~ 2.8/nb

Estimate jet production yield (i.e. $R_{AA}=1$):

$$\sim T_{AA} \cdot \frac{d\sigma_{pp}^{jet}}{dp_T d\eta}$$

10% central Au+Au in Run11: We expect ~2K jets with p_T >50 GeV/c.

STAY tuned 😳

Summary and outlook

- v_3 may be due to $\Delta \eta$ dependent fluctuations (e.g. a la Glasma).
- STAR data show no ridge, within measurement uncertainties, in d+Au collisions.
- Observed pronounced cold nuclear matter effects in di-hadron correlations in forward direction.
- Work in progress on full jet reconstruction in Au+Au collisions. methods tested, unfolding under control

More interesting results from STAR to come ③