

Probing the parton shower with multidifferential jet substructure measurements in pp collisions at STAR

Youqi Song (youqi.song@yale.edu)

for the STAR Collaboration

BOOST 2023, Berkeley, CA

8/2/2023

Jets and SoftDrop grooming

Jet is a multi-scale object

To enhance perturbative contributions, SoftDrop grooming is often used to remove soft wide-angle radiation

STAR

Jets and SoftDrop grooming

• STAR has measured SoftDrop jet substructures

Jets and SoftDrop grooming

STAR

STAR has measured SoftDrop jet substructures ۲

... and in a multi-dimensional fashion!

CollinearDrop grooming: probes the soft component Chien and Stewart JHEP 06 (2020) 64.

• General case: difference of an observable with two different SoftDrop selections ($z_{cut 1}, \beta_1$) and ($z_{cut 2}, \beta_2$)

- For this analysis, $(z_{cut 1}, \beta_1) = (0,0)$ and $(z_{cut 2}, \beta_2) = (0.1,0)$: difference in the original and SoftDrop groomed observable
- Observables: e.g., $\Delta M/M = \frac{M-M_{\rm g}}{M}$

where
$$M = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - |\vec{p}|^2}$$

soft and wide-angle radiation: interesting region of phase space that deserves more study!

CollinearDrop vs SoftDrop correlation:

probes the soft-hard correlation

 How does the amount of soft radiation correlate with the angular and momentum scale of a hard splitting? → how an early emission affects a later splitting

BOOST, 08/02/2023

Jet reconstruction at STAR

Important subdetectors for 200 GeV pp collisions data-taking during 2012 RHIC run

- **TPC** (Time Projection Chamber)
 - For **charged** particle track reconstruction
 - |η| < 1, full azimuthal coverage
- **BEMC** (Barrel ElectroMagnetic Calorimeter)
 - For **neutral** energy measurement and triggering
 - |η| < 1, full azimuthal coverage
- > Reconstruct anti- k_T full jets
 - Jet resolution parameter **R=0.4**
 - |η_{jet}| < 0.6

Additional selections

- Tracks (Towers): $0.2 < p_T(E_T) < 30 \text{ GeV/c}$
- Jets
 - $p_{\rm T}$ > 15 GeV/*c*, *M* > 1 GeV/*c*²
 - Passes SoftDrop with z_{cut} = 0.1 and β = 0

BOOST, 08/02/2023

Unfolding method

- Jet measurements need to be corrected for detector effects for comparison with theory/model
- Unfolding methods:
 - Iterative Bayesian unfolding (D'Agostini. arXiv:1010.0632(2010))
 - MultiFold (Andreassen et al. PRL 124, 182001 (2020))
 - Machine learning driven
 - Unbinned
 - Simultaneously unfolds many observables
 → Correlation information is retained!
- First application of MultiFold on RHIC data!

- Jet observables
 - p_{T} : transverse momentum

•
$$Q^{\kappa} = \frac{1}{(p_{\mathrm{Tjet}})^{\kappa}} \sum_{i \in \mathrm{jet}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}$$

•
$$M = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - |\vec{p}|^2}$$

- R_g: groomed jet radius
- z_{g} : shared momentum fraction

$$z_{\rm g} = \frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} (R_{\rm g}/R_{\rm jet})^{\beta}$$

• *M*_g: groomed jet mass

All 6 observables are simultaneously unfolded in an unbinned way!

 Uncertainties due to prior choice accounted for through 6D reweighting based on PYTHIA8 or HERWIG (see backup)

Does MultiFold work on our data?

$$M = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - |\vec{p}|^2}$$

MultiFolded result agrees with RooUnfolded result (STAR Collaboration. PRD 104, 052007(2021)) HEPData

... but MultiFold also gives us high-dimensional correlation between observables!

* 2D reweighting used for prior variation, to be consistent with RooUnfolded measurement

BOOST, 08/02/2023

9

Measurement excludes jets with $\Delta M = 0$ (45.5% of jets in this jet p_T range)

- First CollinearDrop groomed jet measurement, sensitive to soft radiation within jets
- MC predictions qualitatively consistent with data; some tension from HERWIG7 in small ΔM region
- MultiFold allows us to correlate (combinations of) unfolded quantities

BOOST, 08/02/2023

• The mean of $\Delta M/M$ distribution is <u>anti-correlated</u> with mean of R_g^{-} \rightarrow consistent with angular ordered parton showers

Soft radiation vs hard splitting momentum imbalance

 R_g and z_g are correlated, $\Delta M/M$ affects $R_g \rightarrow$ correlation between $\Delta M/M$ and z_g

- The more mass that is groomed away relative to the original mass, the flatter the z_q distribution is
 - Demonstrates that **early** soft wide angle radiation constrains the momentum imbalance of **later** splittings
- MC models describe the trend of data

BOOST, 08/02/2023

Summary

presented

• Fully corrected CollinearDrop jet measurement is

Probing **soft** wide-angle radiation within jets

- Probing soft-hard correlation within jets
 - MultiFold allows for access of multi-dimensional correlations on a jet-by-jet basis. First application to RHIC data!
 - Jets with a more asymmetric splitting are more likely to have small early-stage radiation
 - Anti-correlation between the amount of early-stage radiation and the angular scale of a later-stage splitting is observed

Improve understanding of jet substructure and the correlations between different substructure observables!

What's next?

- Study hadronization with jet substructure by measuring r_c

$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$

Chien et al. PRD 105 051502 (2022)

• h_1h_2 : same charge tracks, $h_1\overline{h_2}$: opposite charge tracks

• To be validated with STAR data!

Youqi Song

What's next?

• Correct for detector effects for r_c ?

Problem: piOs (and other neutral hadrons) decay at the detector-level;

leading/subleading is neutral
→ don't consider this jet

leading/subleading are both charged

 \rightarrow include this jet for analysis

 \rightarrow mistagged jet (shouldn't include this jet for analysis, but cannot identify it from data)

- How should we account for the neutral background?
- Is a "charged jet" measurement meaningful?
- Discussions are welcomed!

Jets at RHIC are great for the study of parton shower ... and have an enhanced sensitivity for non-perturbative effects like hadronization!

Backup

CollinearDrop groomed jet mass

• Theoretical calculation (next-to-leading log precision, using SCET calculational framework, and not including hadronization) agrees with PYTHIA8

Method: machine learning Detector-level E.g., Iteration 1, step 1: **Detector-level** 1/N dN/dx Weights: $w(x) = p_0(x)/p_1(x)$ Ok for 1D Data Data Natural $p_0(x)$ $\approx f(x)/(1 - f(x))$ (Andreassen and Nachman PRD 101, 091901 (2020)) where f(x) is a neural network and trained with the binary crossentropy loss function Χ Step 1: Reweight Sim. to Data Simulation: 1/N dN/dx $\nu_{n-1} \xrightarrow{\text{Data}} \omega_n$ to distinguish jets **PYTHIA+GEANT** Synthetic coming from data vs Simulation $p_1(x)$ from simulation Х Unfolding \rightarrow Reweighting histograms Where does the machine \rightarrow Classification \rightarrow Neural network learning part come in?

Method: machine learning

- Architechture: Dense neural network Activation function for dense layers: Rectified linear unit
- Activation function for output layer: Sigmoid
- Loss function: Binary cross entropy

$$\log(f(x)) = -\sum_{i \in \mathbf{0}} \log f(x_i) - \sum_{i \in \mathbf{1}} \log(1 - f(x_i))$$

- Optimization algorithm: Adam <u>https://arxiv.org/pdf/1412.6980.pdf</u>
- Nodes per dense layer: [100,100,100]
- Output dimension: 2
- Input dimension: 6
- All hyperparameters are default: <u>https://energyflow.network/docs/archs/#dnn</u>

Activation function for dense layers: Rectified linear unit $f(x) = x^+ = \max(0, x)$

Closure test for unfolding

• Step 1: Separate matched jets from PYTHIA and PYTHIA+GEANT into 2 samples

* 2D reweighting used for prior variation

- Among truth jets with 20 < pT < 30 GeV, 44% of PYTHIA6 jets, 48% of PYTHIA8 jets, and 43% of HERWIG jets have dM=0.
- Among reco jets with 20 < pT < 30 GeV, 36% of PYTHIA6 embedding jets and 37% of data jets have dM=0. (Higher pT jets have a smaller fraction of dM=0).

Soft radiation vs hard splitting momentum imbalance

Steeply falling ~ DGLAP 1/z: pQCD

 \rightarrow The first splitting that passes SoftDrop can still be nonperturbative, but if we apply the $\Delta M = 0$ selection, we can filter out some npQCD contribution due to the parton splitting

BOOST, 08/02/2023

- The more mass that is groomed away relative to the original mass, the flatter the Zg distribution is
 - Demonstrates that early soft wide angle radiation constrains the momentum imbalance of & the amount of npQCD contributions to later splittings
- MC models describe the trend of data

Systematic uncertainties

- Detector systematics
 - Hadronic correction $100\% \rightarrow 50\%$
 - Tower scale +3.8%
 - Tracking uncertainty -4%
- Unfolding systematics
 - Unfolding seed
 - Iteration number variation
 - Prior shape variation to HERWIG7 and PYTHIA8
 - Nominal: prior = (generation, simulation)
 - = (PYTHIA6, PYTHIA6 + GEANT3 + embedding)
 - Varied to: prior \rightarrow reweight \bigotimes nominal prior ,

with reweight $(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g}) = \frac{\text{Herwig truth}(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g})}{\text{Pythia6 truth}(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g})}$

Jet mass: Comparison with models and calcaulations

STAR Collaboration. PRD 104, 052007(2021)