

Probing the Parton Shower and Hadronization with Novel Jet Substructure Measurements at STAR

Youqi Song (youqi.song@yale.edu)

for the STAR Collaboration

2nd workshop on advancing the understanding of non-perturbative QCD using energy flow

11/7/2023

Office of Science

Study the non-perturbative contribution in jets

- Soft component of the parton shower
 → CollinearDrop jet measurement
- Hadronization
 → Charge correlator ratio measurement

CollinearDrop grooming

Aims to probe the **soft and wide-angle radiation** within a jet

- General case: difference of an observable with two different SoftDrop selections $(z_{cut 1}, \beta_1)$ and $(z_{cut 2}, \beta_2)$
- For this analysis, $(z_{cut 1}, \beta_1) = (0,0)$ and $(z_{cut 2}, \beta_2) = (0.1,0)$: difference in the original and SoftDrop groomed observable

Observables: e.g.,
$$\Delta M/M = rac{M-M_{
m g}}{M}$$
 where $M=|\Sigma_{i\in{
m jet}}\;p_i|=\sqrt{E^2-|ec p|^2}$

soft and wide-angle radiation: interesting **region of phase space** that deserves more study!

Chien and Stewart JHEP 06 (2020) 64.

CollinearDrop vs SoftDrop correlation

Aims to probe the **soft-hard correlation** within a jet

 How does the amount of soft radiation correlate with the angular and momentum scale of a hard splitting? → how an early emission affects a later splitting

CollinearDrop vs SoftDrop correlation @ STAR: Analysis

- Reconstruct anti- k_T full jets with R=0.4 from 200 GeV pp collisions
- Unfolding methods:
 - Iterative Bayesian unfolding (D'Agostini. arXiv:1010.0632(2010))
 - MultiFold (Andreassen et al. PRL 124, 182001 (2020))
 - Machine learning driven
 - Unbinned
 - Simultaneously unfolds many observables
 → Correlation information is retained!

• First application of MultiFold on RHIC data!

- Jet observables
 - $p_{\rm T}$: transverse momentum

•
$$Q^{\kappa} = \frac{1}{(p_{\mathrm{Tjet}})^{\kappa}} \sum_{i \in \mathrm{jet}} q_i \cdot (p_{\mathrm{T}i})^{\kappa}$$

•
$$M = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - |\vec{p}|^2}$$

- R_g: groomed jet radius
- *z*_g: shared momentum fraction

$$z_{\rm g} = \frac{\min(p_{\rm T,1}, p_{\rm T,2})}{p_{\rm T,1} + p_{\rm T,2}} > z_{\rm cut} (R_{\rm g}/R_{\rm jet})^{\beta}$$

• *M*_g: groomed jet mass

All 6 observables are simultaneously unfolded in an unbinned way!

 Uncertainties due to prior choice accounted for through 6D reweighting based on PYTHIA8 or HERWIG (see backup)

5

CollinearDrop vs SoftDrop correlation @ STAR: Results

Study the non-perturbative contribution in jets

- Soft component of the parton shower
 → CollinearDrop jet measurement
- Hadronization
 → Charge correlator ratio measurement

Charge correlator ratio

The charge correlator ratio r_c can probe for evidence of string-like fragmentation, by distinguishing the charge signs of leading and subleading particles within jets. Chien et al. PRD 105 051502 (2022)

Measure in pp collisions at RHIC & LHC and in ep(A) at the future EIC!

Talk by Charles earlier in this session

This measurement can also establish a baseline for studying medium modification of hadronization in the QGP! The choice of leading dihadrons makes it less susceptible to the background.

Measure in heavy-ion collisions!

Charge correlator ratio @ STAR: Analysis

- Reconstruct anti- k_T full jets with R=0.4 from 200 GeV pp collisions
- At detector level, the decay of neutral hadrons affects the ordering of particles in jet, so we consider a charged r_c measurement. See backup slides for an example.

$$r_c(X) = \frac{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X - \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}{\mathrm{d}\sigma_{h_1h_2}/\mathrm{d}X + \mathrm{d}\sigma_{h_1\overline{h}_2}/\mathrm{d}X}$$

 h_1h_2 : same charge **tracks**, $h_1\overline{h_2}$: opposite charge **tracks**

 In addition, we performed a mistagged subtraction to account for incorrectly identifying tracks that are not leading/subleading, followed by a bin-by-bin reweighting procedure to account for the jet energy scale.

Charge correlator ratio @ STAR: Result

Random pairs in an uncorrelated (infinite) bath with no net charge: $r_c = 0$

Data show a preference of opposite sign pairs over same sign pairs, in:

- pair of random tracks within a jet; influenced by jet charge ~ 0 on average: $r_c \approx -0.2$
- leading and subleading tracks in jet. additional correlation from fragmentation: $r_c \approx -0.3$

PYTHIA6 Perugia + STAR tune: <u>Skands. PRD 82, 074018 (2010)</u> <u>J. K. Adkins, PhD thesis (Kentucky U., 2015)</u> PYTHIA8 Detroit tune: <u>Aguilar et al. PRD 105, 016011(2022)</u> HERWIG7: <u>Bellm, et al. EPJC 76, 196 (2016)</u>

Charge correlator ratio @ STAR: Result

Weak dependence on jet $p_{
m T}$

Models based on Lund string fragmentation and cluster hadronization both underpredict r_c in data.

→ In the future, study r_c as functions of observables sensitive to pQCD→npQCD transition! (k_T , t_f , z...)

 PYTHIA6 Perugia + STAR tune: <u>Skands. PRD 82, 074018 (2010)</u>

 J. K. Adkins, PhD thesis (Kentucky U., 2015)

 PYTHIA8 Detroit tune: <u>Aguilar et al. PRD 105, 016011(2022)</u>

 HERWIG7: <u>Bellm, et al. EPJC 76, 196 (2016)</u>

Conclusions

- Study the soft-hard correlation within jets with CollinearDrop vs SoftDrop jet observables
 - The NP early-stage radiation is correlated with the later-stage splittings
 - MultiFold allows for access of multi-dimensional correlations on a jet-by-jet basis. First application to RHIC data!
- Study hadronization with the charge correlator ratio
 - Data show a **weaker correlation** between leading and subleading particles in jet than models
 - How does r_c depend on other jet substructure observables? Can potentially provide more distinguishing power for models and help us better understand the npQCD evolution!

Backup

CollinearDrop groomed jet mass

• Theoretical calculation (next-to-leading log precision, using SCET calculational framework, and not including hadronization) agrees with PYTHIA8

Method: machine learning

learning part come in?

Method: machine learning

- Architechture: Dense neural network Activation function for dense layers: Rectified linear unit
- Activation function for output layer: Sigmoid
- Loss function: Binary cross entropy

$$\operatorname{loss}(f(x)) = -\sum_{i \in \mathbf{0}} \log f(x_i) - \sum_{i \in \mathbf{1}} \log(1 - f(x_i))$$

- Optimization algorithm: Adam <u>https://arxiv.org/pdf/1412.6980.pdf</u>
- Nodes per dense layer: [100,100,100]
- Output dimension: 2
- Input dimension: 6
- All hyperparameters are default: <u>https://energyflow.network/docs/archs/#dnn</u>

Activation function for dense layers: Rectified linear unit $f(x) = x^+ = \max(0,x)$

100 nodes in each layer

Activation function for output: Sigmoid

f(x)

Closure test for unfolding

Step 1: Separate matched jets from PYTHIA ٠ and PYTHIA+GEANT into 2 samples

Х

Closure test for unfolding

* 2D reweighting used for prior variation

STAR

Does MultiFold work on our data?

$$M = |\Sigma_{i \in \text{jet}} p_i| = \sqrt{E^2 - |\vec{p}|^2}$$

... but MultiFold also gives us high-dimensional correlation between observables!

* 2D reweighting used for prior variation, to be consistent with RooUnfolded measurement

STAR

CollinearDrop groomed jet mass

Measurement excludes jets with $\Delta M = 0$

- First CollinearDrop groomed jet measurement, sensitive to soft radiation within jets.
- MC predictions qualitatively consistent with data.
- MultiFold allows us to correlate (combinations of) unfolded quantities.

Soft radiation vs hard splitting angle

• The mean of $\Delta M/M$ distribution is <u>anti-correlated</u> with mean of $R_g \rightarrow$ consistent with angular ordered parton showers

 ΔM

Soft radiation vs hard splitting momentum imbalance

Steeply falling ~ DGLAP 1/z: pQCD

 \rightarrow The first splitting that passes SoftDrop can still be nonperturbative, but if we apply the $\Delta M = 0$ selection, we can filter out some npQCD contribution due to the parton splitting

- STAR
- The more mass that is groomed away relative to the original mass, the flatter the Zg distribution is
 - Demonstrates that early soft wide angle radiation constrains the momentum imbalance of & the amount of npQCD contributions to later splittings
- MC models describe the trend of data

Systematic uncertainties

- Detector systematics
 - Hadronic correction $100\% \rightarrow 50\%$
 - Tower scale +3.8%
 - Tracking uncertainty -4%
- Unfolding systematics
 - Unfolding seed
 - Iteration number variation
 - Prior shape variation to HERWIG7 and PYTHIA8
 - Nominal: prior = (generation, simulation)
 - = (PYTHIA6, PYTHIA6 + GEANT3 + embedding)
 - Varied to: prior \rightarrow reweight \bigotimes nominal prior ,

with reweight $(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g}) = \frac{\text{Herwig truth}(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g})}{\text{Pythia6 truth}(p_{\rm T}, Q, M, M_{\rm g}, R_{\rm g}, z_{\rm g})}$

Jet mass: Comparison with models and calcaulations

STAR Collaboration. PRD 104, 052007(2021)

STAR

Correction for detector effects

Problem: piOs (and other neutral hadrons) decay at the detector-level

leading/subleading is neutral
→ don't consider this jet

leading/subleading are both charged

ightarrow include this jet for analysis

 \rightarrow mistagged jet (shouldn't include this jet for

analysis, but cannot identify it from data)

• How should we account for the neutral background?

Solution: Switch to a "charged jet" measurement

found in Sec.2.1 of this STAR analysis note. In addition to leptons, protons and anti-protons, several other particles are also deemed as stable particles at the particle level. Their list is available below.

$$\pi^{0}, \pi^{\pm}, \eta, K^{+}, K^{0}_{S}, K^{0}_{L}, \Sigma^{\pm}, \bar{\Sigma}^{\pm}, \Lambda, \bar{\Lambda}, \Xi^{-}, \bar{\Xi}^{+}, \Omega^{-}, \bar{\Omega}^{+}$$
(3)

Systematic uncertainty

