CPOD2022 - Workshop on Critical Point and Onset of Deconfinement

Beam Energy Dependence of Triton Production and Yield Ratio in Au+Au Collisions at RHIC

Dingwei Zhang (for the STAR Collaboration**)** Central China Normal University

In part supported by

Outline

> Motivation

The STAR Experiment

Dataset and Particle Identification

Results and Discussions

- Particle Yields
- Particle Yield Ratios

Summary and Outlook

Motivation – QCD Phase Diagram and HIC

[1] http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Production Mechanisms of Light Nuclei in HIC

- Our understanding of the production mechanisms of light nuclei in relativistic heavy-ion collisions are currently incomplete
 - Thermal emission $N_A \approx g_A V (2\pi m_A T)^{3/2} e^{(A\mu_B - m_A)/T}$
 - Nucleon coalescence $N_A = g_c \int d\Gamma \rho_s(\{x_i, p_i\}) \times W_A(\{x_i, p_i\})$
 - Hadronic re-scattering $\pi NN \leftrightarrow \pi d, NNN \leftrightarrow Nd, NN \leftrightarrow \pi d \dots$

L. P. Csernai and J. I. Kapusta, Phys. Rept. 131, 223 (1986); R. Scheibl and U. W. Heinz, Phys. Rev. C 59, 1585 (1999); Y. Oh, Z.-W. Lin, and C. M. Ko, Phys. Rev. C 80, 064902 (2009); A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nature 561, 321 (2018); J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys Rept. 760, 1 (2018); D. Oliinychenko, L.-G. Pang, H. Elfner, and V. Koch, Phys. Rev. C 99, 044907 (2019); K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), arXiv:2207.12532

Dingwei Zhang

Light Nuclei Production – Neutron Density Fluctuations

- In the vicinity of the critical point or the first order phase transition, density fluctuations become larger
- In the nucleon coalescence picture, nuclear compound yield ratio is sensitive to the baryon density fluctuations and can be used to probe 1st order phase transition and/or critical point in heavy-ion collisions

K.-J. Sun, L.-W. Chen, C. M. Ko, J. Pu, and Z. Xu, Phys. Lett. B 781, 499 (2018); E. Shuryak and J. M. Torres-Rincon, Phys. Rev. C 101, 034914 (2020); K.-J. Sun, C. M. Ko, F. Li, J. Xu, and L.-W. Chen, Eur. Phys. J. A 57, 313 (2021); W. Zhao, K.-j. Sun, C. M. Ko, and X. Luo, Phys. Lett. B 820, 136571 (2021); K.-J. Sun, W.-H. Zhou, L.-W. Chen, C. M. Ko, F. Li, R. Wang, and J. Xu, (2022), arXiv:2205.11010

The Solenoidal Tracker At RHIC (STAR)

Time Projection Chamber (TPC)

- ✓ Charged particle tracking
- ✓ Momentum reconstruction
- ✓ Particle identification from
 - ionization energy loss (dE/dx)
- ✓ Pseudorapidity coverage $|\eta| < 1.0$

Time-of-Flight (TOF)

- \checkmark Particle identification from m^2
- ✓ Pseudorapidity coverage $|\eta| < 0.9$

Excellent Particle Identification Capabilities
 Large, Uniform Acceptance at Midrapidity

Particle Identification & Signal Extraction

Mid-rapidity (|y| < 0.5) transverse momentum distributions for tritons

*Dashed lines: Blast-wave function fits

STAR: arXiv:2209.08058 Blast-Wave Fit: E. Schnedermann, J. Sollfrank, and U. Heinz, PRC 48,2462 (1993)

Transverse Momentum Spectra for Deuterons

★Mid-rapidity (|y| < 0.3) transverse momentum distributions for deuterons
★Dashed lines: Blast-wave function fits

Proton Weak Decay Feed-down Correction

*Data driven method: Use STAR published strange particle yields

★From 7.7 – 200 GeV, proton feed-down fraction increases from 25% to 45%

STAR: Phys. Rev. Lett. 97, 152301 (2006); Phys Rev. C 102, 034909 (2020); arXiv:2209.08058

Transverse Momentum Spectra for Primordial Protons

*Mid-rapidity transverse momentum spectra for primordial protons

STAR: Phys. Rev. Lett. 97, 152301 (2006); arXiv:2209.08058

Centrality Dependence of Triton dN/dy & $< p_T >$

 $\frac{1}{2} dN/dy$ for tritons increases with decreasing collision energy: yields driven by baryon density

 $\star < p_T >$ decreases from central to peripheral collisions and with decreasing collision energy

STAR: arXiv:2209.08058

Mass Dependence of Particle dN/dy & $< p_T >$

★Mass dependence of light nuclei yields (divided by the spin degeneracy factor) well described by exponential functions

★ Average transverse momentum increase with increasing collisions energy and increasing particle mass: influence of radial flow

STAR: Phys. Rev. C 96, 044904 (2017); Phys. Rev. Lett. 97, 152301 (2006); Phys. Lett. B, 655: 104–113, 2007; Phys. Rev. C 101, 024905 (2020); arXiv:2209.08058

STAR

Particle Yield Ratios

★The triton results follow the trend of the world

data, and thermal model overestimates the N_t/N_p

ratios

V. Vovchenko, B. Dönigus, B. Kardan, M. Lorenz, and H. Stoecker, Phys. Lett. B , 135746 (2020);

★The effects of hadronic re-scatterings during

hadronic expansion may play an important role in

light nuclei production

K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), arXiv:2207.12532

STAR: arXiv:2209.08058

W. Reisdorf et al. (FOPI), Nucl. Phys. A 781, 459 (2007);
T. A. Armstrong et al. (E864), Phys. Rev. C 61, 064908 (2000);
S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 94 , 122302 (2005);
S. S. Adler et al. (PHENIX), Phys. Rev. C 69, 034909 (2004);
J. Adam et al. (ALICE), Phys. Rev. C 93, 024917 (2016)

Multiplicity Dependence of Light Nuclei Yield Ratio

 \bigstar The ratio monotonically decreases with increasing $dN_{ch}/d\eta$ and exhibits a scaling behavior: trend driven by interplay between the size of light nuclei and the size of fireball created in HIC \bigstar The ratio can be described by the coalescence model, but thermal model overestimates the data The ratios at 19.6 and 27 GeV from 0%-10%centrality show enhancements to the coalescence baseline with a combined significance of 4.1 σ

STAR: arXiv:2209.08058

STAR

Collision Energy Dependence of Light Nuclei Yield Ratio

★Non-monotonic behavior observed in the energy dependence of the yield ratio from 0%-10% central Au+Au collisions around 19.6 and 27 GeV
★The yield ratio in peripheral (40%-80%) collisions exhibits a monotonic trend and the data can be well described by coalescence models within uncertainties

Collision Energy Dependence of Light Nuclei Yield Ratio

★Non-monotonic behavior observed in the energy dependence of the yield ratio from 0%-10% central Au+Au collisions around 19.6 and 27 GeV

 \star The yield ratio in peripheral (40%-80%) collisions exhibits a monotonic trend and the data can be well described by coalescence models within uncertainties

*The significance of the enhancements decreases with decreasing p_T acceptance in the region of interest

Summary and Outlook

*We report triton and the primordial proton yields in Au+Au collisions from BES-I

The light nuclei yield ratio $(N_t \times N_p / N_d^2)$ decreases monotonically with increasing $dN_{ch}/d\eta$ and exhibits a scaling behavior, which can be well described by the coalescence model

*Relative to the coalescence baseline, enhancements of the yield ratios are observed in the 0%-10% most central collisions at 19.6 and 27 GeV with a combined significance of 4.1 σ . The measured significance of these enhancements decreases with smaller p_T acceptance. The enhancements are not observed in peripheral collisions and in model calculations without critical fluctuations.

Outlook:

> High statistics data collected during BES-II for $\sqrt{s_{NN}} = 3 - 27$ GeV Au+Au collisions

Thank you for your attention!

The primordial proton yield obtained from the UrQMD+GEANT method [Phys. Rev. Lett. 121, 03230 (2018)] is significantly larger than that from the data driven method