CHARGED PARTICLE PSEUDORAPIDITY DISTRIBUTIONS MEASURED WITH THE STAR EPD

15th Workshop on Particle Correlations and Femtoscopy 18-22 June 2022, East Lansing, Michigan, USA Máté Csanád (Eötvös U) for the STAR Collaboration

STAR

STAR upgrades for BES-II

- STAR upgrades:
 - Fixed target program: down to $\sqrt{s_{NN}} \approx 3$ GeV, up to $\mu_B \approx 700$ MeV
 - innerTPC: better dE/dx (PID) and momentum resolution
 - Endcap TOF: extended forward PID
 - Event Plane Detector: better triggering, Event Plane resolution and centrality
 - LEReC: electron cooling for low energy RHIC running
- EPD motivations:
 - Independent centrality determination for fluctuation measurements
 - Improved Event Plane resolution for flow measurements
 - Trigger in high luminosity environment (BES-II)

The STAR Event Plane Detector

- Much finer granularity compared to BBC
 - BBC: 36 tiles (only 18 inner ones used) \Rightarrow EPD: 372 tiles
 - Also larger acceptance: $[3.3, 5.0] \Rightarrow [2.1, 5.1]$
 - 16 radial segments (rings)
 - 24 azimuthal segments (sectors)
- Radial segmentation need driven by flow, vertex, trigger
- Azimuthal segmentation driven by higher-order flow harmonics
- Each tile registering hits, mostly MIPs
 - Landau distribution of a single hit
 - Convolution for multiple hits
 - Poisson distribution of MIP weights

WPCF 2022, M. Csanád

How (not) to measure $dN_{ch}/d\eta$ with the EPD

- We can calculate $dN_{ch}/d\eta$ with raw EPD hit numbers, based on η corresponding to a ring $= -0.5 \ln \tan \theta$
- This does not take into account scattering and decays
 - Charged particles scatter in detector material, creating secondaries
 - Secondaries have large contribution to $dN_{ch}/d\eta$
 - Neutral particles contribute through decays (e.g. $\Lambda \rightarrow p + \pi$) and secondaries

charged hadron Hits by primary [a.u.] neutral hadron charged lepton photon EPD rings, backward to forward

HIJING SIMULATION

Measuring $dN/d\eta$ with the EPD

- EPD measures signal (ADC) → Convolution of several Landau distributions
- With "multiple Landau" fits, one can extract $dN/dn_{
 m MIP}$ for each ring
- Number of hits in a given ring: $N(i_{\text{Ring}})$
- Given the underlying $dN/d\eta$, $N(i_{\rm Ring})$ can be calculated as

$$N(i_{\text{Ring}}) = \int R(\eta, i_{\text{Ring}}) \frac{dN}{d\eta} d\eta$$

- Here R is the response matrix: no. of hits in given ring originating from primary particle at η
- Calculate *R* via simulations, then determine $dN/d\eta$ via **unfolding**
 - Bayesian iterative unfolding, G. D'Agostini, Nucl. Instr. Meth. A362 (1995) 487
- Three methods for extracting $dN_{ch}/d\eta$
 - 1. Correcting the unfolded $dN/d\eta$ using the charged particle fraction $N_{ch}(\eta)/N_{tot}(\eta)$ from HIJING
 - 2. Correcting raw EPD data via $N_{ch}(i_{ring})/N_{tot}(i_{ring})$; unfolding "corrected" EPD distribution
 - 3. Utilizing RooUnfold's Fakes() method " (neutrals ⇔ "fake" hits)

The EPD response matrix

- Use iterative unfolding, based on G. D'Agostini, Nucl. Instr. Meth. A362 (1995) 487
- Implemented in RooUnfold, response matrix to be calculated as:

WPCF 2022, M. Csanád

response matrix

Does the unfolding work?

- If unfolding on training sample: returns input perfectly
- Adding some noise: imperfect but still good
- Why the peaks near $\eta = 2$ and 5?
 - One unfolded track for each individual EPD hit
 - One track can cause multiple hits
 - Need to correct for this
 - Correction calculated via simulation
- How can it work near $\eta = 0$?
 - It reconstructs $dN/d\eta$ of input!

Dependence on input distribution

How about broader $dN/d\eta$ than in MC?

- Previous modifications only make $dN/d\eta$ narrower
- How to broaden it?
- Reject tracks via factor of exp $\left[\frac{\eta^2 - \eta_{max}}{2\sigma_{broad}}\right]$
 - Zero suppression for $|\eta| > \eta_{\max}$
 - Set $\eta_{\max} = 6$
 - Works up to $\sigma_{\rm broad}\approx 3$
- Unfold data with these
- Will decrease midrapidity value

Measuring $dN_{ch}/d\eta$

- From simulations: charged particle fraction
 - For primary tracks and for EPD hits (based on primary cause)
- Applied 3 different methods
 - 1. Unfolding $dN/d\eta$; correcting via $N_{\rm ch}(\eta)/N_{\rm tot}(\eta)$
 - 2. Correcting via $N_{ch}(i_{ring})/N_{tot}(i_{ring})$, ~ unfolding "corrected" EPD distribution
 - 3. Use RooUnfold's "Fakes" (neutrals \Leftrightarrow "fake" hits)
- "Fakes" slightly different from the others
 - Also least reliable in terms of dependence on input $dN/d\eta$
 - Reason of this unclear yet
- Closure test works for all: MC input recovered when unfolding simulated EPD data
- Difference of methods: incorporated in systematics

Closure test for the three methods

- Tested the three methods on an MC sample: which reproduces the "true" $dN_{ch}/d\eta$? All!
- 1% deviation at the edges for the 1st method, <0.1% deviation for the others

EPD related uncertainties

- EPD nMIP determined based on a convoluted Landau-fit
 - Amplitude of n-th component: A_n
 - The fit needs a cutoff, both in ADC and in \boldsymbol{n}
- Total nMIP: $\sum n \cdot A_n$, sum on fitted Landau curves ($n = 1 \dots 5$)
- How about fitting A_n versus n with a Poissonian?
 - Difference compared to simple sum is small
 - Unfolding is a linear operation
 - Can only have small effect on $dN/d\eta$
- Note furthermore: EPD+SiPM+QT chain fully efficient
 - Except "dead areas" from glue and gaps, which are correctly handled in the simulation

Systematic investigations

- Systematic checks in the unfolding
 - Determination of the longitudinal vertex position (±5 cm shift) & centrality (±5% change)
 - Comparison of several vertex intervals (+40 cm and -40 cm from geometric center)
 - Unfolding method (difference of the three methods of obtaining $dN_{ch}/d\eta$)
 - Charged/neutral ratio change in the training sample (±15%)
 - Change of transverse momentum slope in training sample
 - Change in $dN/d\eta$ of training sample
 - Broadening to $\Delta \eta = 10$, tightening to $\Delta \eta = 2$
 - Shifting by ±3 units of rapidity
- EPD: number of MIPs ≤ 5, more systematic checks to be done
- Discrepancy with PHOBOS: several differences, multiple reasons possible
 - Unfolding vs correction, segmentation, simulation imperfection, neglections in raw signal

Systematics summary		
 charged fraction 	6%	
 <i>dN/dη</i> broadened 	4%	_
• $dN/d\eta$ tightened, shifted	6%	
• p _T slope	1%	-
 centrality selection 	2%	-
 unfolding method choice 	8%	
 z-vertex choice 	1%	
 z-vertex selection 	negligible	
 EPD electronics, efficiency 	negligible	

Results at 19.6 GeV

- Measurement done in eight centrality bins, in EPD η range
- Vertex within ±5 cm
- Based on EPD ring-by-ring hit distributions
 - Fit up to #MIP≤5
- Detailed systematic investigations
 - Vertex, centrality calibration
 - Vertex range choice
 - Unfolding method
 - Simulation input

Results at 27 GeV

- Measurement done in eight centrality bins, in EPD η range
- Vertex within ±5 cm
- Based on EPD ring-by-ring hit distributions
 - Fit up to #MIP≤5
- Detailed systematic investigations
 - Vertex, centrality calibration
 - Vertex range choice
 - Unfolding method
 - Simulation input

Comparision to PHOBOS 19.6 GeV data

- PHOBOS $dN/d\eta$ paper
 - PRC83(2011)024913
 - Results at 19.6, 62.4, 130, 200 GeV
 - Slightly different centrality binning: 5-10% vs 6-10%
- Sizeable differences between measurements
 - Depending on η , around factor 2
- Ratio increases towards fwd/bwd rapidities
- What about light fragments?
 - They appear in form of separate neutrons and protons in the simulation
 - PHOBOS, PRC94 (2016) 024903: Not a significant source of charged particles
- What about central rapidities?

What about comparing at midrapidity?

- STAR measured identified hadron spectra $\left(\frac{d^2N}{2\pi p_T dp_T dy}\right)$ at 19.6 GeV
 - Phys.Rev.C 96 (2017) 044904, 2017 [arXiv:1701.07065]
- We can roughly estimate $\frac{dN}{dn}(\eta = 0)$ based on these published data
 - Take the 5-10% 19.6 GeV Au+Au data tables
 - Take Jacobian $\frac{dy}{dn} = \frac{p}{E'}$ integrate resulting $\frac{d^2N}{2\pi p_T dp_T d\eta}$ spectra over p_T (multiplying by $2\pi p_T$ and Δp_T)
 - Results: π^- : 108, π^+ : 105, K^- : 13.0, K^+ : 20.6, \bar{p} : 2.05, p: 20.5
- Final estimate: $\frac{dN}{d\eta}(0) \approx 201$ (without other species, without p_T extrapolation)
- PHOBOS result (averaged over $|\eta| < 1$) is $\frac{dN}{dn}(0) \approx 262$
- Better agreement at midrapidity, more complete calculation would be interesting

Summary and conclusions

- $\frac{dN_{ch}}{d\eta}$ measured with the STAR EPD
 - Detailed systematic uncertainty investigations
 - Expected rapidity, centrality, $\sqrt{s_{NN}}$ dependence
 - Method to be extended to other $\sqrt{s_{NN}}$ values (BES-II & FXT)
 - Important for the Beam Energy Scan (e.g., tuning of models)
- $\sqrt{s_{NN}} = 19.6 \text{ GeV}$: PHOBOS also measured $\frac{dN_{ch}}{d\eta}$
 - Significant difference compared to PHOBOS PRC82(2011)024913
 - Four components in this comparison:
 - STAR GEANT simulation
 - STAR EPD spectrum measurement
 - STAR unfolding procedure
 - PHOBOS data

BACKUP

Multiple counting correction

- Need to correct for multiple counting (multiple hits from one primary track)
 - Check "inverse efficiency": how many hits on average from primary particles at given η
- For charged and all primaries separately
- Largest maximum at around $|\eta| \approx 5$
- Edge of EPD, support structures
- One primary can cause on average up to ~5 hits

