

A Multiplicity Selection Effect on the Longrange Dihadron Correlation Measurement in d+Au Collisions at RHIC

Li Yi Purdue University

Outline

- Motivation
- Multiplicity selection effect on near-side jetlike yield
- Long-range near-side ridge
- Fourier coefficients
- Summary

Motivation

- Near-side ridge in pPb
- Double-ridge in high-mult. low-multiplicity (for jets)
- Near-side jetlike yield multiplicity dependence?

Dihadron $\Delta\eta$ – $\Delta\phi$ Correlations

d+Au@200 GeV Run3

Trigger-Associate

p_T: [1,3]x[1,3] GeV/c

Background estimated by $\Delta\eta$ -dependent ZYAM (Zero-Yield-At- Minimum)

Larger & Wider Near-side Jetlike Correlation in High-mult.

d+Au@200 GeV

p_⊤: [1,3]x[1,3] GeV/*c* FTPC Multiplicity

• Different jet shapes and yields between high-mult. and low-mult.

Li Yi, IS2014

Near-side Jetlike Yield Multiplicity Dependence

d+Au@200 GeV

p+Pb @ 5.02 TeV

Near-side jetlike yield increases as multiplicity

Near-side Jetlike Correlation Subtraction

d+Au@200 GeV

p_τ: [1,3]x[1,3] GeV/*c* FTPC Multiplicity

- High-mult. (before ZYAM) jet in low-mult. → Double Ridge
- High-mult. (before ZYAM) scaled jet in low-mult. \rightarrow Away-side diminished

Near-side Long-range Correlations

d+Au@200 GeV

p_T: [1,3]x[1,3] GeV/c

• Near-side long-range correlation extends to Au-going side

Near-side Yield $\Delta\eta$ Dependence

d+Au@200 GeV

p_T: [1,3]x[1,3] GeV/c

- Away-side yield: dominated by jets in d+Au
- ZYAM: underlying event, related to medium

Near-side Yield $\Delta\eta$ Dependence

d+Au@200 GeV p_{_}: [1,3]x[1,3] GeV/c

Fit with first order Polynomial:

Near-side / Away-side Yields

Near-side Yield / ZYAM

- Ridge proportional to away-side (ratio independent of $\Delta\eta$)
- Ridge doesn't scale with ZYAM underlying event

Fourier Coefficient V₂

d+Au@200 GeV p_{_}: [1,3]x[1,3] GeV/*c*

- Near-side ridge observed in Au-side high-mult. collisions
- Same V_2 for: high-mult. and low-mult., Au- and d-going side

Fourier Coefficients vs. Multiplicity

- Larger negative V_1 in low-mult. hides the V_2 shape
- V_2 are same in high-mult. and low-mult. collisions

Conclusion

- Event with high-multiplicity selects larger nearside jetlike yield
- Near-side long-range ridge is observed to extend to Au-going side in d+Au @200GeV
- Same V₂ in high-multi. and low-multi., Au-going and d-going side; Large negative V₁ in low-multi., d-going side.

