Search for QCD Critical Point: Recent Results from STAR BES-I Program and Status of BES-II

Bappaditya Mondal (for the STAR collaboration)*

National Institute of Science Education and Research, Jatni 752050, India, and Homi Bhabha National Institute, Training School Complex,

Anushaktinagar, Mumbai 400094, India

Introduction

The QCD phase diagram, commonly characterized by temperature (T) and baryon chemical potential (μ_B) , displays two key phases: quark-gluon plasma and hadronic phase [1]. Lattice QCD (LQCD) calculations show that quark-hadron transition at low μ_B is a crossover [2]; while at large μ_B , QCD based models predict a first order phase transition [3] that ends with a critical point (CP). Cumulants (C_n) of event-by-event net-proton distribution (as a proxy of conserved quantity net-baryon) are proposed as sensitive observables to the QCD phase structure [4]. They are related to the correlation length (ξ) of the system and thermodynamic susceptibilities of conserved charges [4]. A non-monotonic collision energy $(\sqrt{s_{NN}})$ dependence of C_4/C_2 serves as an experimental signature of CP [4]. Furthermore, LQCD and functional renormalization group (FRG) model predict negative C_6/C_2 during crossover transition [9].

Analysis details

Measurements are done for Au+Au collisions at collision energies from 200 - 7.7 GeV in the first phase of the beam energy scan (BES-I) program and at 3.0 GeV in the fixed target (FXT) program at RHIC, covering a wide range of μ_B from 20 - 750 MeV. (Anti-) protons are selected within transverse momentum (p_T) coverage of 0.4 < p_T < 2.0 GeV/c and rapidity (y) coverage of |y| <0.5. At 3.0 GeV, protons are selected within -0.5 < y < 0. Collision centrality is de-

FIG. 1: Collision energy dependence of C_4/C_2 from top 0-5% Au+Au collisions at RHIC [10]. Vertical black and gray bars are the statistical and systematic uncertainties, respectively. Results from HRG [7] and UrQMD are also shown.

termined by the charge particle multiplicity distribution within pseudorapidity (η) range $|\eta| < 1$ (for 3 GeV, $0 < \eta < 2$) excluding protons and anti protons to avoid autocorrelation. Cumulants and cumulant ratios are centrality bin width corrected [5] and detector efficiency corrected [6]. Bootstrap method is used to estimate statistical uncertainty, while systematic uncertainties for C_n is obtained by varying criteria for track reconstruction, particle identification (PID) and reconstruction efficiencies.

Results and Discussion

Figure 1 shows collision energy dependence of C_4/C_2 for 0-5% central Au+Au collisions. The observed non-monotonic trend for netproton C_4/C_2 in the range 7.7 - 27 GeV [11, 12] can not be described by the non-CP models UrQMD and HRG. However, C_4/C_2 at 3.0 GeV can be described by UrQMD model [13]. Figure 2 depicts the collision en-

^{*}Electronic address: bappaditya.mondal@niser.ac. in

FIG. 2: Collision energy dependence of C_6/C_2 for net-proton from 0-40% (squares) and 50-60% (diamonds) Au+Au collisions at RHIC [15]. The bars and bands on the data points represent statistical and systematic uncertainties, respectively. Results are also shown for LQCD [8], FRG [9], HRG and UrQMD models.

ergy dependence of net-proton C_6/C_2 . For 0-40% centrality collisions C_6/C_2 is progressively negative from higher to lower collision energy up to 7.7 GeV, followed by a large positive value at 3 GeV [14, 15]. LQCD and FRG models, which include quark-hadron crossover transition, also show progressively decreasing negative values for C_6/C_2 in the range 200 -7.7 GeV. The peripheral 50-60% C_6/C_2 data and UrQMD remains always non-negative.

Beam Energy Scan Phase II

The phase II of the BES program (BES-II) at RHIC has collected 10 - 20 times larger statistics than BES-I within the collision energy $\sqrt{s_{NN}} = 7.7$ - 19.6 GeV in collider mode [16]. Figure 3 compares event statistics for BES-II with BES-I. It now includes two more energies $\sqrt{s_{NN}} = 9.2$ and 17.3 GeV in collider mode for their strategic relevance to CP search. Furthermore, STAR fixed-target program explores the QCD phase diagram up to $\mu_B = 750$ MeV. Upgrades to the STAR detector, including installation of the inner chambers of the TPC (iTPC), addition of the eTOF and the event plane detector, have expanded pseudo-rapidity coverage from $|\eta| < 1.0$ to 1.5, have improved PID and centrality definition for fluctuation measurements [16]. Acceptance dependence study of C_4/C_2 with extended rapidity coverage offered by iTPC is important for CP search. For this regard, results from BES-II are highly anticipated, and the analysis process is ongoing.

FIG. 3: Event statistics of Au+Au collisions for all collision energies from BES-I and BES-II are shown.

Acknowledgments

B Mondal acknowledges financial support from DAE-DST projects.

References

- K. Fukushima et al, Rep. Prog. Phys. 74, 014001 (2011).
- [2] Y. Aoki et al, Nature 443 (2006) 675.
- [3] S. Ejiri, PRD 78, 074507 (2008).
- [4] M. A. Stephanov, PRL 102, 032301 (2009)
- [5] X. Luo et al, J. Phys. G 40, 105104 (2013)
- [6] T. Nonaka et al, PRC 95.064912(2017).
- [7] P. Braun-Munzinger et al, Nucl. Phys. A 1008 (2021), 122141.
- [8] A. Bazavov et al, PRD 101, 074502 (2020).
- [9] W. j. Fu et al, PRD 104, 094047 (2021).
- [10] M. S. Abdallah et al, [STAR], PRL 128, 202303 (2022).
- [11] J. Adam et al, [STAR] PRL 126, 092301 (2021).
- [12] M. S. Abdallah et al. [STAR] PRC 104, 024902 (2021).
- [13] M. S. Abdallah et al, [STAR] PRC 107, 024908 (2023).
- [14] M. S. Abdallah et al, [STAR] PRL 127, 262301 (2021).
- [15] B. E. Aboona et al, [STAR], PRL 130, 082301 (2023).
- [16] STAR BES-II White paper 2014 [STAR].