Experimental Search for QCD Critical Point at RHIC

Bappaditya Mondal for the STAR Collaboration

National Institute of Science Education and Research, Bhubaneswar, India

9th Dec, 2023

Outline :

1) Introduction : QCD Phase Diagram

2) Results : Critical Point & Crossover Phase Transition

3) Future Prospects : Beam Energy Scan Phase – II

4) Conclusions

Introduction- QCD Phase Diagram

Goal: To study QCD phase diagram (here we focus of critical point & crossover phase transition).
Varying collision energy varies Temperature (T) and Baryon Chemical Potential (μ_B).
Fluctuation of conserved quatities are sensitive observables to study QCD phase structure.

Observables (Net-proton Cumulants)

Higher order cumulants of net proton (proxy for net-baryon) distribution.

 $\begin{array}{ll} C_{1} = \langle N \rangle & here , N = number of \ net \ proton \\ C_{2} = \langle (\delta N)^{2} \rangle & here , \delta N = N - \langle N \rangle \\ C_{3} = \langle (\delta N)^{3} \rangle \\ C_{4} = \langle (\delta N)^{4} \rangle - 3 \langle (\delta N)^{2} \rangle^{2} \\ C_{5} = \langle (\delta N)^{5} \rangle - 5 \langle (\delta N)^{3} \rangle \langle (\delta N)^{2} \rangle \\ C_{6} = \langle (\delta N)^{6} \rangle - 15 \langle (\delta N)^{4} \rangle \langle (\delta N)^{2} \rangle - 10 \langle (\delta N)^{3} \rangle^{2} + 30 \langle (\delta N)^{2} \rangle^{3} \end{array}$

- ✓ Higher order cumulants are sensitive probes for the CP and nature of phase transition.
- Direct comparison with lattice QCD, HRG, QCD-based model calculations.

 $\frac{C_3}{C_2} = S \sigma$ $\frac{C_4}{C_2} = \kappa \sigma^2$ $S = Skewness, \kappa = Kurtosis$

M. A. Stephanov, Phys.Rev.Lett. 107 (2011) 052301 Y. Hatta ,M. A. Stephanov, Phys.Rev.Lett. 91 (2003) 102003

Experimental Search for QCD Critical Point at RHIC - Bappaditya Mondal

Result: Experimental Evidence of Crossover Transition

Theory prediction

- Signal for crossover search: Negative sign of C_5 , C_6 that increase in magnitude with decreasing collision energy.
- Results from Lattice QCD and Funtional renormalization Group (FRG) are shown here.

Result: Search for Critical Point (CP)

Theory prediction

\square Related to correlation length: $C_2 \sim \xi^2 \quad C_4 \sim \xi^2$.

- ✓ Correlation length diverges near critical point.
- \blacksquare Finite size/time effects reduces ξ .
- \blacksquare Higher order cumulants more sensitive to CP.
- In presence of critical point: non-monotonic collision energy dependence of C_4 / C_2 .

Future Prospects: Beam Energy Scan Phase - II

BES-I result interesting but large statistical uncertainties -> BES-II needed.

✓ 10 – 20 times increase in statistics for Au + Au collision (7.7 – 27 GeV). ✓ Two new collider energy: 9.2 & 17.3 GeV, important for CP search. ✓ FXT program can reach $\sqrt{s_{NN}} = 3 GeV$ ($\mu_B = 750$ MeV).

Detector Upgrades (iTPC, eTOF, EPD) :

- Enlarged kinematic coverage ($|\eta| < 1.6$).
- Improve centrality definition.
- \succ Crucial for acceptance dependence study.

Rapidity scan for CP search: Rapidity scan is a finer probe of critical regime than energy scan.

J. Brewer et. al., Phys.Rev.C 98 (2018) 6, 061901

STAR BES-II White paper 2014 [STAR] https://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

STAR: PRL 126, 092301 (2021) A. Pandav et. al. Prog.Part.Nucl.Phys. 125 (2022) 103960

Experimental Search for QCD Critical Point at RHIC

Bappaditya Mondal

Current Status and Conclusions

Consistent with crossover prediction at $\sqrt{s_{_{NN}}} \ge 39$ GeV or $\mu_{_{B}} \le 110$ MeV -Lattice QCD.

- Hint of non-monotonic trend (3.1 σ level) between $\sqrt{s_{NN}} = 7.7 - 27$ GeV around $\mu_{B} = 140 - 420$ MeV, (BES-II will confirm).
- ✓ Low energy region $\sqrt{s_{_{NN}}} = 3.0 39$ GeV ($\mu_{_{B}} = 110 - 750$ MeV) would be interesting for CP search.

Analysis for BES-II is ogoing.

Stay tuned for new exciting result.

Thank You

 We thank the STAR focus group and STAR collaboration for opportunity and support.

Experimental Search for QCD Critical Point at RHIC