Constraining the small system collectivity using d+Au and O+O collisions at $\sqrt{s_{_{\rm NN}}} = 200$ GeV from STAR

Zhengxi Yan, Shengli Huang, Jiangyong Jia (for the STAR Collaboration) Stony Brook University

The understanding of collectivity in small collision systems must address 1 $_{2}$ three key issues related to the initial conditions: (1) the role of nucleon and ³ sub-nucleon fluctuations, (2) nucleon forces and emergent correlations in light 4 ions, such as alpha clustering, and (3) the influence of longitudinal fluctuations 5 and their impact on flow decorrelations. We present two- and four-particle cu-₆ mulants of v_2 and v_3 based on new d+Au and O+O datasets collected in the 7 year 2021 with extended forward and midrapidity acceptance of STAR. No- $_{\circ}$ tably, we observe a significant enhancement in both $v_{2}\{2\}$ and $v_{2}\{4\}$ in d+Au ⁹ collisions compared to O+O collisions, in the highest-multiplicity events, sug-¹⁰ gesting markedly different ellipticities in these two systems. Comparisons with ¹¹ model calculations reveal a clear influence of sub-nucleon fluctuations and nu-¹² clear structure effects. The v_n measurements are performed using two-particle ¹³ correlations in rapidity ranges $|\eta| < 1.5$ and $2.1 < |\eta| < 5.1$. The role of flow decor-14 relations with rapidity is investigated and the findings are compared to previous ¹⁵ RHIC measurements and model predictions. These new findings greatly expand ¹⁶ our understanding of small system collectivity.