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The crucial issue for the dependence of a fluctuation
signal on the width ∆y of rapidity acceptance window
is the range of the correlations ∆ycorr. The argument
below generalizes the discussion in Ref.[1] from quadratic
to higher-order cumulants.

If ∆y � ∆ycorr, the critical point contribution to
the n-th order cumulant κn of the fluctuations grows as
(∆y)n. This is because the n-th cumulant measures the
strength of an n-particle correlation and, therefore, if all
particles in the acceptance are correlated, the signal is
proportional to the number of possible n-plets, which is
roughly Mn ∼ (∆y)n, where M is the multiplicity.

When ∆y � ∆ycorr, all cumulants grow linearly with
∆y, as uncorrelated contributions are additive in a cu-
mulant. It is convenient to remove this trivial volume
dependence by normalizing cumulants to their uncorre-
lated, Poisson value (M , for cumulants of M), defining

ωn ≡ κn/M . The critical contribution (ω
(∆y)
n − 1) grows

as (∆y)n−1 for ∆y � ∆ycorr and then saturates at a
constant value.

FIG. 1. Spatial (Bjorken’s) vs kinematic rapidity.

What determines ∆ycorr? Consider the boost-invariant
scenario with correlation length in comoving coordi-
nates at freezeout given by ξ (Fig. 1). This translates
into Bjorken rapidity correlation length ∆ηcorr = ξ/τf .
With ξ ranging from 1 fm typically to about 2 − 3 fm
near the critical point [2] and with freezeout Bjorken time
τf ∼ 10 fm one estimates ∆ηcorr ∼ 0.1− 0.3.

Detectors do not measure the spatial (Bjorken) ra-
pidity η, but the kinematic rapidity y of the particles.
Within the spatial correlation volume ∆ηcorr thermal dis-
tribution of particle rapidities yp in the comoving frame
ranges roughly from −1 to 1. The observed rapidity
y = η + yp of the particles from the correlated volume is

then spread over an interval of order ∆ycorr ∼ 2 (Fig. 1).
Because ∆ycorr � ∆ηcorr, the value of ∆ycorr is not sensi-
tive to ξ (in contrast to the magnitude of κn [3] — larger ξ
means more correlated particles in the same ∆ycorr).

To make this argument more quantitative, consider
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FIG. 2. Thermal proton rapidity distribution.
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FIG. 3. Critical contributions to normalized 2nd and 4th
order cumulants vs acceptance.

thermal distribution of proton rapidities at freezeout con-
ditions (T, µB)f ≈ (140, 400) MeV shown in Fig.2. Using
the expression for the critical contribution to the correla-
tor in momentum space from Ref.[3], boosting it by η and
integrating over η and particle momenta within the ac-

ceptance, one then finds the dependence of proton ω
(∆y)
4

on ∆y plotted in Fig.3 alongside ω
(∆y)
2 obtained similarly

(see also Ref.[4]) for comparison. For example, the value

of (ω
(∆y)
4 − 1) changes from 0.33 to 0.60 of its ∆y → ∞

limit between ∆y = 1 and 1.6.
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