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Abstract

Longitudinally polarized proton-proton scattering experiments provide access to the gluon

polarization contribution to the overall proton spin via a measurement of the longitudinal

double-spin asymmetry, ALL. During RHIC data-taking periods in 2012 and 2013, a sig-

nificant sample of π0s scattered in the forward direction was acquired from proton-proton

collisions with a center-of-mass energy of 510 GeV and beam polarizations of ∼ 55%. The

π0 kinematics were measured by the STAR Forward Meson Spectrometer, an electromag-

netic calorimeter spanning a forward pseudorapidity range of 2.5 < η < 4 and a transverse

momentum range of 2 < pT < 10 GeV/c. This forward region is primarily sensitive to π0s

originating from a hard quark, carrying a significant fraction x of the proton momentum,

scattering with a soft, low-x gluon. The polarized gluon distribution function, ∆g(x), which

represents the gluon spin contribution to the proton spin, is positive at high x but is rather

unconstrained at low x. There are many more gluons than quarks at lower x, and their

contribution to the proton spin remains unknown. This new measurement of ALL presented

in this dissertation will help place constraints on ∆g(x) in this important region, down to

x ∼ 10−3.
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Chapter 1

Introduction

1.1 Overview

The spin of the proton and its relation to the spin and orbital angular momenta of its partons,

quarks and gluons, are still not fully understood. Modern models decompose the proton

spin as a sum of the quark and gluon spins and orbital angular momenta. Historical models,

however, assumed that since the proton is stable it is in its lowest energy configuration, which

is a spherically symmetric state with orbital angular momentum quantum number l = 0.

This assumption implies that the net contribution of partonic orbital angular momentum

to the proton spin is zero [1]. Since the proton is in a spherically symmetric state, its

potential, mediated by the gluons, is also likely spherically symmetric and the gluon angular

momentum was therefore assumed to not contribute to the proton spin. The quark spin was

the only contribution to the proton spin that was thought to be nonzero [2].

Since the proton and the quarks are all spin-1/2 particles and the proton is composed

of three constituent quarks, two up quarks and one down quark, it was assumed that the

projection of the proton spin along any axis, say the z axis, is the sum of the quark spins

projected along z: two of the quarks have spin aligned with the proton spin and the other

anti-aligned. Typically the two up quarks’ spins were thought to be aligned with the proton

spin and the down quark’s anti-aligned, however this configuration is not the only possibility.

No matter which quark has which spin, the assumption was that if the proton spin projection

is +1/2, then that is equal to the sum of two +1/2 quark spins and one −1/2 quark spin

from the third.

The EMC experiment [3, 4] shattered this simple model in 1987, by performing a mea-

surement that revealed the quark spins only contribute a fraction (∼ 4− 24%) to the overall

proton spin. This measurement led to the so-called proton spin crisis, giving rise to the

question of the true origin of the proton spin. Modern measurements have constrained the
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quark spin contribution to ∼ 0.24, at a scale given by the momentum transfer squared

Q2 = 10 GeV2/c2 [5, 6, 7, 8, 9]. To solve the crisis, the gluon angular momentum and

partonic orbital angular momentum must also contribute substantially to the proton spin

[10, 11, 12].

We now know the gluon angular momentum, i.e., helicity, also contributes a non-negligible

fraction to the proton spin. The contribution from gluons which carry a fraction x of the

proton longitudinal momentum in the range 0.05 < x < 1.0 is around 0.23 ± 0.06 [13] or

0.20+0.06
−0.07 [14]. On the other hand, the partonic orbital angular momentum has not yet been

measured, however it likely accounts for the remainder of the proton spin.

The naive picture of a proton as being composed of three quarks with mediating gluons

is a mere cartoon; one must instead attempt to consider all of the partons within the proton,

including the sea quark and antiquark pairs, along with the soft gluons. The number density

of partons within a proton is modelled as a probability density distribution dependent on

x. For x > 0.03, the up and down quarks dominate the partonic densities, however as x

decreases toward lower values, the gluons begin to vastly dominate. Furthermore, models

which describe the contribution to the spin of the proton from gluon helicity are rather

unconstrained for x < 0.05, which leaves one to question how much this myriad of soft,

low-x gluons is contributing to the proton spin.

This dissertation presents a measurement of the longitudinal double-spin asymmetry,

ALL, for forward-scattered neutral pions [15], which is directly sensitive to the gluon helicity

contribution down to x ∼ 10−3, a region abundant with soft gluons. This is the first time this

important region of gluonic x has been sampled with this level of sensitivity. The measure-

ment agrees with extrapolations of theoretical models that predict the low-x gluon helicity

contribution is nearly zero; however, given the large uncertainties on these predictions at low

x, this measurement ultimately places constraints on the models. Analyses of all available

ALL data, including measurements from inclusive jets and dijets at lower rapidities, i.e., at

more-central scattering angles, along with our new measurement for forward neutral pions,

will bring the gluon helicity contribution into clearer focus, especially for this important

low-x region.

This chapter begins with an introduction of quantum chromodynamics, which provides

sufficient background to begin discussing the partonic model of proton-proton scattering.

Building on this foundation, the definition of ALL will be presented and its direct sensitivity

to the gluon helicity will be emphasized. Finally, a survey of recent ALL measurements that

are pertinent to this analysis will be presented.

Chapter 2 then follows with details of the experiment itself, which took place at the Rel-

ativistic Heavy Ion Collider (RHIC) in the STAR experimental hall. Chapter 3 details the
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event selection, which is used to select for neutral pions, chapter 4 details a measurement of

the relative luminosity, which is needed in order to measure ALL, and chapter 5 discusses var-

ious contributions to the systematic uncertainty on ALL and on pion transverse momentum.

Chapter 6 then brings everything together, illustrating how ALL was measured from the

pion sample and relative luminosity, along with proton beam polarizations. Lastly, the ALL

measurement result is presented in chapter 7, along with a discussion thereof. Derivations,

along with other topics that are relevant but a bit digressive, are found in the appendices.

1.2 Quantum Chromodynamics in the Proton

Most of the matter we humans interact with is composed of atoms. The atom, the so-

called building block of matter, derives its name from the Greek word atomos, meaning

“indivisible.” This is a bit of a misnomer, however, as the atom is composed of a hard, dense

nucleus, surrounded by electrons. The nucleus itself is composed of nucleons: positively

charged protons and neutral neutrons. The divisibility of matter does not stop here, however.

The nucleons are further composed of quarks and gluons, the fundamental particles which

interact under the strong interaction. The associated strong force is what holds the nucleus

together, and without it, the electrical repulsion between the protons would cause the nucleus

to fall apart. The topic of this dissertation focuses on the proton as a probe into the world

of quantum chromodynamics (QCD), the quantum mechanical understanding of the strong

interaction. For introductory-level material on this topic and on particle physics in general,

see textbooks such as [16, 17, 18].

1.2.1 Protons and Neutrons

The proton is the primary object of study in this thesis. Given the electron charge of

−e ≈ −1.6 × 10−19 Coulombs, the proton has a positive charge of +e. Furthermore, its

spin quantum number is s = 1/2, the same as the electron; the spin angular momentum

of a spin-1/2 particle measured along a particular axis will only be sz = +~/2, called spin-

up, or sz = −~/2, called spin-down, where ~ = h/2π is the reduced Planck’s constant.

This quantization of the electron spin was observed in the Stern-Gerlach experiment, where

electrons were sent through a magnetic field, perpendicular to their momentum, and the

spin-up electrons deflected one way while the spin-down electrons deflected the other [19, 20].

Since the proton has a half-integer spin, it is classified as a fermion, as opposed to bosons,

which have an integer values of s. Finally, the mass of the proton is 1.67 × 10−27 kg, or

in units more useful in high energy physics, 938.3 MeV/c2 [21], which makes use of the
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mass-energy equivalence in special relativity, E = mc2.

As an aside, it is common in high energy physics literature to use a set of units where

the speed of light in a vacuum, c ≈ 3.00× 108 m/s, is set simply to 1, with no units, that is,

dimensionless 1. The energy-momentum relation in special relativity, E2 = (mc2)
2

+ (pc)2,

simplifies to E2 = m2 + p2, which causes both mass m and momentum p to each have units

of energy. Many other such conveniences also occur and this c = 1 convention, along with

~ = 1, will be assumed throughout this dissertation.

The neutron is very similar to the proton, enough so that the neutron and proton are in

general referred to as nucleons, since they are the constituents of the atomic nucleus. The

neutron is electrically neutral, also has a spin quantum number of s = 1/2, and has a mass

of 939.6 MeV/c2 (or MeV, with c = 1 units) [21]. As will be discussed later, the quantum

chromodynamic properties of the constituents of the proton can be studied by accelerating

protons in an accelerator, and colliding them with other protons or nuclei in a collider. The

neutron cannot be directly accelerated, however, since it is not charged (although it can be

studied via the deuteron, which is a nucleus with one neutron and one proton). Therefore,

the proton is the most appropriate “lab” in which we can study QCD.

1.2.2 Quarks and Gluons

The internal structure of an atom was first explained by Ernest Rutherford in 1911 [22],

during experiments performed in 1908–1913 by Hans Geiger and Ernest Marsden in collab-

oration with Rutherford, viz., [23]. In the cited experiment, α particles, which are nuclei

composed of two protons and two neutrons, were directed at a thin sheet of metal; if an α

particle scattered back on the same side of the metal, it was observed as a scintillation in a

zinc sulfide screen. Of the metals tested, gold produced the highest rate of observed scintil-

lations; moreover, a small rate of scintillations was even observed when no metal sheet was

in place, due to scattering off atoms in the air. These “back-scatterings” of α particles can

only be explained by hard-scatterings of α particles on some dense concentration of electric

field within the atoms: this dense object is the atomic nucleus.

If atoms were just diffuse distributions of charge, most of the α particles would deflect

at small angles, but since large scattering angles are observed, the atom has some internal

hard structure. The same sort of question can be asked about the nucleons, for example by

directing electrons at protons in an experiment called Deep Inelastic Scattering (DIS). Such

experiments were first performed at the Stanford Linear Accelerator Center (SLAC), where

an electron beam was directed at a liquid hydrogen target, composed of mostly protons,

from the perspective of the incoming electrons. The deflection of electrons to high scattering
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angles was observed [24] [25], and similar to the Rutherford experiment, the observation of

high scattering angles in DIS was indicative of internal, hard structure within the proton.

It is now known that protons are composed of quarks (q), antiquarks (q̄), and gluons (g),

particles which are collectively called partons. There are six types of quarks, called flavors:

up (u), down (d), charm (c), strange (s), top (t), and bottom (b). The u, c, and t quarks

have a charge of +2e/3 whereas the d, s, and b quarks have a charge of −e/3. All quarks

have have spin quantum number 1/2 and are therefore fermions. The u and d quarks each

have a mass of a few MeV, but defining bare quark mass is difficult to do, for reasons which

will be revisited after some discussion of quantum chromodynamic phenomena.

The gluons, on the other hand, have some properties identical to the photon: no mass

(and therefore also propagate at the speed of light), spin s = 1 (bosonic), and electrical

neutrality. Whereas the photons are the mediators of the electromagnetic interaction, the

gluons mediate the strong interaction. When one charged particle moves, the change in the

electric field around that particle propagates at the speed of light; this “ripple of change”

in the field can be thought of as a photon, and another charged particle nearby does not

feel the effect of the change in the electromagnetic field until the ripple (photon) reaches

it. This model is a cartoon picture of quantum electrodynamics (QED), simply stating that

the photon mediates or “carries” the electromagnetic force. An analogous picture can be

thought of for the strong force, where the gluons mediate the strong interaction between

quarks in QCD.

The proton is composed of two u quarks and a d quark; that is not completely true, as

will be discussed later, but for now the notion is sufficient. Let us assess how the quark

properties combine to give the proton properties. Adding the quark charges together, one

obtains 2(2e/3) − e/3 = e, the correct proton charge. Regarding the spin, if one imagines

that the u quarks’ spin projections are aligned with the proton spin projection, while the

d quark spin is anti-aligned, then the full spin adds as 2(1/2) − 1/2 = +1/2, which is

indeed the spin of the proton. This composition of the proton spin is not what is observed

experimentally however, and we will return to this important point after discussing more on

parton properties in general. Finally, adding the quark masses together of a few MeV each

does not nearly account for the full ∼ 1 GeV mass of the proton, leading one to question

where the rest of the proton mass comes from. It turns out that the binding energy of the

quarks, provided by the mediating gluons, actually accounts for the vast majority of the

mass. Consequently, the mass of most observed matter in the universe actually comes from

the energy holding the nuclei together.
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1.2.3 Color

The prefix chromo- in “chromodynamics” derives from the Greek word khroma, meaning

“color.” The color in QCD is not the same color which corresponds to wavelengths of visible

light; instead QCD color refers to a type of charge associated with the strong force: color

charge. While objects with electric charge participate in the electromagnetic interaction,

objects with color participate in the strong interaction, and quarks and gluons are the only

known particles with color.

In the electromagnetic interaction, there is only one type of charge, the electric charge,

which can either be positive or negative. On the other hand, in the strong interaction there

are three color charges: red, green, and blue. There is a notion of positivity and negativity

for each color: quarks can be red (r), green (g), or blue (b), whereas antiquarks can be antired

(r̄), antigreen (ḡ), or antiblue (b̄). The quarks and antiquarks not only have electromagnetic

charge, which allows them to participate in the much weaker electromagnetic interaction,

but they also have color charge, which allows them to also participate in the dominant strong

interaction.

1.2.3.1 Hadrons and Confinement

In the electromagnetic interaction, a charge-neutral system has an equal number of positive

and negative charges (or the trivial case of no charges). Similarly in the strong interaction, a

quark-antiquark pair with the same color charges but opposite in sign has a net color charge

of zero; this gives us three possible color-neutral systems: rr̄, bb̄, and gḡ. Furthermore, the

combination of three quarks, each colored differently, forms the color-neutral system rgb,

as does the antiquarks in r̄ḡb̄; these combinations of three colors explain the inspiration for

using the word “color,” since shining red, green, and blue spotlights toward the same area

on a screen reveals the combination of the three colors is the colorless white.

One of the most striking properties of QCD is color confinement: the observation of a

single color-charged object so far seems to be impossible, and all particles directly observable

in nature are color-neutral. A quark prefers to be either paired with an antiquark or with

two other quarks, such that the final system is color-neutral. These color-neutral systems

which are composed of quarks and gluons are composite particles called hadrons, and those

which are composed of a quark and an antiquark are called mesons, with the color part of

the wave function

ψqq̄c =
1√
3

(
rr̄ + gḡ + bb̄

)
, (1.1)

while hadrons with a color-neutral system of three quarks (or three antiquarks) are called
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baryons, with the color wave function

ψqqqc =
1√
6

(rgb+ gbr + brg − bgr − rbg − grb) . (1.2)

The meson color wave function is symmetric, that is, if two colors are exchanged then the

sign of ψqq̄c does not change; on the other hand, exchanging two colors does change the sign

of the baryon color wave function, which is antisymmetric. Thus mesons are bosons with

integer spin, whereas baryons are fermions with half-integer spin.

We now mention some example hadrons, focusing on those pertinent to this thesis. An

important example meson is the pion, composed of up and down quarks and antiquarks.

Since the u and d quarks are the least massive flavors, the pions are the least massive of all the

hadrons. The charged pions, the π+ and π−, are composed of ud̄ and dū, respectively, while

the neutral pion, denoted π0, is composed of a quantum superposition of uū and dd̄ and is the

primary observable discussed in this thesis. Regarding baryons, the proton is one composed

of uud quarks, as is the neutron, being composed of ddu quarks. Any other combination of

the 6 quark flavors into qq̄ mesons or qqq baryons (or q̄q̄q̄ antibaryons) is possible, and names

are given to each observed or predicted hadron; higher order color-neutral combinations are

also theoretically possible, such as penta-quarks, which are composed of 5 quarks (typically

rgb plus a color+anticolor pair), as well as glue balls, which are color-neutral bundles of

gluons, since gluons also carry color (and anticolor) and can even self-interact.

1.2.3.2 A Note on Feynman Diagrams

Before discussing gluon color, we pause here to briefly introduce Feynman diagrams. The

interactions in QCD, or in any quantum field theory in general, are described by scattering

amplitudes, the square of which gives the associated scattering differential cross sections.

Feynman diagrams are used to calculate these amplitudes, but this use of them is outside

the scope of this dissertation (see instead standard textbooks such as [26, 27]); instead,

diagrams will be used here only in order to help classify the types of possible interactions as

needed.

In quantum field theory, one defines an interaction as the transformation from a set of

initial states, e.g., incoming particles with specific 4-momenta, to a set of final states, outgo-

ing particles with 4-momenta, such that energy and momentum are conserved overall. The

scattering amplitude for any interaction can be expressed as a sum of terms in a perturbative

expansion, with each one of these terms represented by a Feynman diagram. Each diagram

is a graph, as in a graph from the mathematical field of graph theory, built with lines and

vertices. Lines on a Feynman diagram represent propagators, which describe the transit of

7



a particle with a certain 4-momentum from one moment in time to another. The endpoints

of a propagator represent these moments, which can be either at a vertex or a source. A

vertex represents a fundamental interaction in the quantum field theory, where 3 or more

propagators can meet at a point such that sum of all incoming particles’ 4-momenta balances

the sum of all outgoing particles’. A source, on the other hand, represents a particle in either

the initial or final state of the overall interaction, defined at times sufficiently far in the past

or the future from the interaction time.

In order to interpret a single diagram, one mandates a time-ordering in order to distin-

guish the final states from the initial states. For internal propagators, which are those with

each endpoint at a vertex, the time-ordering is often ambiguous; for those propagators, the

perturbative summation basically sums over the two possibilities, thus their time-ordering

does not really matter. These internal propagators are called virtual particles and while not

observed in the interaction, they are still considered in the scattering amplitude calculation.

Regarding notation, a line with an arrow represents a fermion or antifermion propaga-

tor: it is a fermion (antifermion) if the arrow is pointing along (opposite) the time-ordering

direction. Again, since time-ordering for virtual particles is ambiguous, an internal, arrowed

propagator represents both a fermion and an antifermion. Wavy lines denote photon propa-

gators and looped lines denote gluon propagators; neither of these have arrows because each

is its own antiparticle.

Any quantum field theory, such as QCD or QED, has a set of fundamental vertices which

describes all allowed fundamental interactions within that theory. All possible Feynman

diagrams for any interaction, no matter how complicated, can be constructed as graphs using

only the fundamental vertices and propagators. The only fundamental vertex in QED is a

fermion-antifermion-photon vertex, as shown in figure 1.1. In order to interpret this vertex,

let f represent a fermion, f̄ an antifermion, and γ a photon. The six possible time-orderings

are:

• f → γf : a fermion emits a photon, continuing on with less momentum

(time direction ↘)

• fγ → f : a fermion absorbs a photon, continuing on with more momentum

(time direction ↗)

• f̄ → γf̄ : an antifermion emits a photon, continuing on with less momentum

(time direction ↙)

• f̄γ → f̄ : an antifermion absorbs a photon, continuing on with more momentum

(time direction ↖)
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Figure 1.1: QED fundamental vertex.

• ff̄ → γ: a fermion and an antifermion annihilate, becoming a photon

(time direction ↓)

• γ → ff̄ : a photon with sufficient energy pair-produces a fermion-antifermion pair

(time direction ↑)

QCD is somewhat analogous to QED, with a similar fundamental vertex: quark-antiquark-

gluon. The presence of color charge, however, allows for additional fundamental vertices per-

taining to gluon self-interactions. This self-interaction ultimately introduces two additional

fundamental vertices to QCD.

1.2.3.3 Gluon Color

While the photon mediates the electromagnetic force in QED, it does not carry electric

charge. The gluon of QCD does, however, carry color charge; in fact, gluons carry both color

and anticolor. For example, if a red quark and a green quark scatter by exchanging a gluon,

then the red quark could become green and the green quark will become red; in this case

the gluon carried red+antigreen or green+antired (technically, the sum of the two in terms

of QCD scattering amplitudes via Feynman diagrams). Because the gluons carry color, they

can also interact with one another. One gluon can become two, or two can become one,

and both of these are enumerated in the 3-point gluon vertex. There is also a 4-point gluon

vertex, which represents any of the processes G → GGG, GG → GG, or GGG → G; we

temporarily use a capital G to denote gluon, to distinguish it from the green color charge g.

When drawing Feynman diagrams in QCD, arrowed lines are used for quark and antiquark

propagators, as they are used for fermions in QED and in general. Looped lines are drawn for

gluon propagators. One can also draw the “flow” of color in these diagrams, as shown in figure

1.2, which illustrates the possible QCD vertices in the left column and example color flows

in the right column. The first vertex is the qq̄G vertex, which represents gluon absorption

or emission by a quark, gluon absorption or emission by an antiquark, quark-antiquark

annihilation into a gluon, and pair-production of a quark-antiquark pair. The middle vertex

and bottom vertex represent the gluon 3-point and 4-point vertices, respectively.
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Figure 1.2: QCD vertices (left column) and associated sample color flow diagrams (right
column). The top vertex represents a qq̄G interaction, the middle a gluon 3-point vertex,
and the bottom a gluon 4-point vertex.

The right column of figure 1.2 illustrates an example of color charges that the interacting

partons could have. In the qq̄G vertex, time-ordered left-to-right, a quark comes in with color

r, emits or absorbs a gluon carrying a color of (rḡ + gr̄) /
√

2, and then emerges from the

interaction as a g quark. For the gluon 3-point and 4-point vertices, the color flow diagrams

are examples involving all three colors, but other combinations of colors are possible. The

main point of these color flow diagrams is to keep track of the conservation of color: analogous

to the conservation of electrical charge in the electromagnetic interaction, the color charge is

a conserved quantity in the strong interaction. Therefore, each QCD vertex must have the

same amount of color charge going in as it does going out.

1.2.3.4 Color Antiscreening

Antiscreening, or charge screening in general, is a quantum mechanical effect which emerges

from asking the following question: how close can one really get to a point charge? In

QED, an example electrical point charge is an electron, since the electron has no observed

internal substructure (it is thus called a fundamental particle). Just like in DIS, one can

imagine an attempt to probe the structure of an electron by colliding other charged particles

with it. In the particle-wave duality picture, a particle with momentum p has a de Broglie

wavelength of λ = 2π/p (with h = 2π since ~ = 1). In order to probe the very small,

short-distance structure of the electron, one must use a particle probe with a comparably
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short wavelength; in other words, exploring smaller substructure requires the use of higher

energy probe particles.

Imagine the probe as another charged particle, say, another electron. As the energy of the

probe electron increases, the mediating virtual photon will eventually have enough energy to

sustain the production of a virtual electron+positron pair, where the positron has identical

properties to the electron, but with a charge of +e. The number of electron-positron pairs

increases as the energy of the probe increases, so the closer one gets to the target electron,

the more electron-positron pairs appear “in the way.” The virtual positrons tend to be closer

to the target electron than the virtual electrons are, which causes a net polarization (of the

vacuum) and effectively screens the apparent charge of the target electron. The closer one

gets to an electron, the higher its effective charge becomes, and this phenomenon is called

charge screening (also called running coupling in QED).

A similar effect appears in the strong interaction, but in a different manner. The strength

of the electromagnetic force decreases as a function of distance, in agreement with the de-

crease of the effective electrical charge as a function of distance from the charge. The strong

force behaves differently: its strength does not decrease as a function of distance.1 If one

could pull two quarks apart, the energy of the mediating gluons between them increases as a

function of distance, which means quark+antiquark pairs can appear, as well as gluon pairs,

triplets, etc. due to the gluon self-interactions. Consequently, antiscreening of the apparent

color charge of the quarks is observed.

The apparent color charge of a quark increases as a function of distance from that charge.

When one is extremely close to a quark, the strong interaction is very weak and the quark

becomes apparently free as one asymptotically approaches the infinitesimal distance scale

of the quark; this is called asymptotic freedom. On the other hand, at larger distances the

confinement barrier is reached, where the strong interaction is very strong and therefore keeps

the proton held together when probed with a low energy particle. Some models indicate that

color antiscreening fully accounts for confinement, effectively making any color source appear

color-neutral to an outsider from a sufficient distance away [29], however the true mechanism

of confinement is still an open question (see, for example, [30]). Exploring the QCD dynamics

of the proton requires probes with high enough energy to break the confinement barrier.

1 There is a subtlety here: it is assumed that attempting to separate a quark and antiquark causes the
mediating gluons (and additional quark-antiquark pairs between) to be concentrated in a color flux tube
between them (see figure 1.3). This color flux tube model implies the strong potential is linear, hence the
strong force between them is constant no matter the distance [28]; however, as the distance between the
quark and antiquark increases, the color flux tube will contain more and more quark-antiquark pairs, leading
to hadronization, discussed below.
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1.2.3.5 Hadronization

Given that one needs high-energy probes to see the internal structure of the proton, an

interesting question to consider is what happens if one pulls a single quark out of a proton,

or any hadron in general. To achieve this, one would need to scatter a high energy particle off

of that quark, which can be done with a high-energy particle collider, such as the Relativistic

Heavy Ion Collider (RHIC).

It is simpler to explain what happens to that struck quark in the following thought

experiment: imagine simply pulling a quark away from another quark, as illustrated in figure

1.3, where the two quarks are represented by black dots. In step (1), the quarks are bound

to each other by a single gluon. As the distance between that quark and the other quarks

in the hadron increases in step (2), the strong interaction resists. There is more binding

energy between the quarks, allowing for the formation of quark+antiquark pairs as well as

more gluons. The resistance of quark separation can be thought of as a color flux tube,

which contains gluons, quarks, and antiquarks that are trying to hold the original quarks

together, and step (3) shows an even more extreme case with several quark+antiquark loops

and gluon self-interactions.

The color flux tube behaves analogously to a rubber band, in that the more the rubber

band is stretched, the harder the rubber band tries to relax. At some point, however, the

rubber band snaps, and a similar behavior occurs in the color flux tube. At some point, the

available energy between the quark and the rest of the hadron is so high that the formation

of additional hadrons from the colored partons in the color flux tube can occur: the color flux

tube “snaps” and all of the available color charges reassemble themselves into color-neutral

hadrons, such that color charge is completely conserved. This process, called hadronization,

is illustrated in step (4), where the dashed lines indicate momentum vectors. These color-

neutral hadrons that have similar momenta toward the left or toward the right form two

jets of hadrons. These outgoing hadrons (and/or their decay products) are subsequently

observable in particle detectors and provide insight into the behavior of partons within the

proton.

1.2.4 Proton Spin Composition

In the early days of understanding the constituent structure of the proton, the total proton

spin of Sp = 1/2 was assumed to be entirely from the quark spins: the two up quarks have

spins Su aligned with the proton spin while the down quark has spin Sd aligned opposite the

proton spin. In this model, if Sp = 1/2, then Su = 1/2 and Sd = −1/2, which add sensibly

as Sp = 2Su + Sd. In 1987, an experiment by the European Muon Collaboration (EMC)
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Figure 1.3: Illustration of hadronization. See text for an explanation of the steps.

disproved this idea [3, 4] and characterized the quark spin contribution to be a rather small

fraction (∼ 4 − 24%) of the overall proton spin. This result was rather unexpected at the

time and given the title “proton spin crisis,” or the less foreboding “proton spin puzzle.”

For a summary of the history of the proton spin puzzle, see [31].

In this EMC experiment, longitudinally polarized muons were scattered off of a polarized

proton target, and the difference in cross sections between the case where the muon and

proton spins are parallel and the case where they are antiparallel was measured. The ratio

of this difference in cross sections to the total cross section is called a spin asymmetry, and

the asymmetry measured in this experiment was directly sensitive to the difference between

quark spins aligned and anti-aligned with the parent proton spin. Since they measured a

spin asymmetry consistent with a quark spin contributing only a small fraction to the proton

spin, they speculated the remainder of the proton spin comes from the gluon spin as well as

the orbital angular momenta of the partons.

The model of a proton as just consisting of three quarks and the binding gluons is not

quite complete. If one boosts the proton such that it is moving very fast, then quark+antiquark

pairs as well as additional gluons can appear inside the proton, such that color-neutrality is

maintained. These additional quarks+antiquarks are called sea quarks, while the three uud

quarks are called valence quarks. It turns out that the proton spin also involves contribu-

tions from the spins of the sea quarks and antiquarks, as well as the spins of the gluons.

Furthermore, the orbital angular momenta are also thought to contribute to the proton spin,

since the partons can be pictured as swirling around each other. Figure 1.4 shows an illus-

tration of these spin contributions (right-hand diagram) compared to the naive quark spin

picture (left). How these contributions add up to the proton spin will be expounded on

below, however the current understanding can be stated now: the total quark spin accounts
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Proton Spin Composition

Figure 1.4: Illustration of proton spin structure. The arrows indicate the spins and orbital
angular momenta. The left diagram is the naive model, which assumed the proton spin only
comes from the quark spins: two of the quarks have spins aligned with the proton and the
third has spin anti-aligned. The right diagram shows the more appropriate model, which
also includes sea quark spins, gluon helicities, and orbital angular momenta. Adapted from
[32].

for ∼ 20 − 30% of the proton spin [5, 6, 7, 8, 9], while the gluon helicity contribution, al-

though still somewhat unconstrained, may account for another ∼ 20 − 30% [13, 14]. The

orbital angular momentum contribution has not yet been measured, and ideas for how the

experimentalist would attempt to do so are still being discussed.

This dissertation focuses on a measurement that will help constrain the gluon spin con-

tribution to the proton spin. This measurement is of another type of spin asymmetry, the

longitudinal double-spin asymmetry for forward-going neutral pions, and like the spin asym-

metry measured in the EMC experiment, is a difference of cross sections for given initial

spin states divided by the total cross section. As will be detailed in the following sections,

every part of the theoretical calculation of this asymmetry is well-constrained, except for the

gluon polarization component. Thus by measuring this asymmetry, constraints on the gluon

spin contribution can be improved.
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1.3 Proton-Proton Scattering

The introduction of QCD discussed above sets the foundation for the experiment: the col-

lision of partons from within two colliding protons. At RHIC, the proton spins can be

controlled, that is, ensembles of protons circulating around the accelerator synchrotrons can

be polarized. This section begins with a discussion of the kinematics of proton-proton scat-

tering, building up to a full description of the asymmetry measurement presented in this

thesis. It then explains why this particular measurement is sensitive to the gluon spin con-

tribution. For details on proton-proton scattering, see standard textbooks such as [16], and

for details on the double-spin asymmetry regarding its sensitivity to gluon helicity, see for

example [33] and references therein.

1.3.1 Parton Kinematics

In order to introduce the variables that are used to describe parton dynamics and proton

structure, consider DIS, as illustrated in figure 1.5. This figure shows the process e−p→ e−X,

where e− denotes an electron, p denotes the proton, and X denotes the remnants of the

struck proton. The target proton is represented by three quark propagators and has a total

momentum P , while the incoming electron has momentum k. Before the interaction with the

electron, one of the quarks is selected from the proton, as represented by the blob labelled

f which denotes a parton distribution function and is discussed in the next section. This

quark carries a fraction ξ of the proton momentum. The electron interacts with this quark

via the exchange of a virtual photon with momentum q. The scattered electron leaves with

momentum k′ and the scattered quark leaves with momentum p′. The subsequent blob,

labelled H, represents hadronization of the scattered quark (and any surrounding partons

which dress this quark) into hadrons, which are collectively labelled as X; note that the

remnant partons from the incoming proton also hadronize, and are part of X.

In inelastic scattering, it is conventional to define the variable Q2 = −q2 = −(k′− k)2 as

the negative square of the 4-momentum transfer (for the sake of keeping signs of momenta

consistent, we assume without loss of generality that the photon is emitted by the electron

and absorbed by the quark). Assuming the respective energies E and E ′ of the incoming

and outgoing electrons are much higher than the electron mass, then

Q2 ≈ 4EE ′ sin2 θ

2
, (1.3)

where θ is the scattering angle of the outgoing electron. This equation justifies the sign

convention, since Q2 > 0.
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Figure 1.5: Diagram of Deep Inelastic Scattering (DIS), the process e−p → e−X; see text
for details.

Another variable typically used in inelastic scattering is called Bjorken-x, typically de-

noted simply as x, and is named after QCD pioneer James Bjorken. It is defined as

x :=
Q2

2Pq
(1.4)

and it is dimensionless and Lorentz-invariant. To gain intuition of what this variable rep-

resents, let us boost the proton to a frame in which it is moving extremely fast (i.e., with

energy Ep >> mp), where we may neglect any transverse motion of the partons; this is called

the infinite momentum frame (IMF). Consequently, the invariant mass mq of the quark is

negligible when compared to the momenta: we may assume m2
q = ξ2P 2 ≈ 0 in the IMF.

The invariant mass of the struck quark is m2
q = (ξP + q)2 ≈ −Q2 + 2ξPq, which is also

approximately zero in this frame. Solving for ξ reveals that ξ = x, therefore Bjorken-x for

a given parton can be interpreted as the fraction of the proton momentum carried by that

parton, in the IMF.

One can, of course, choose not to neglect the transverse momenta of the partons within

the proton. This is the study of the transverse structure of the proton and is another focus of

polarized proton scattering at RHIC. For the analysis presented in this thesis, we can safely

ignore the transverse structure, since this analysis is based on the collision of longitudinally

polarized protons. In the following sections, the additional complexity that arises from

considering transverse parton motion will be mentioned, but not emphasized, as it is outside

the scope of this dissertation.
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Figure 1.6: Diagram of proton-proton scattering, emphasizing the process pp → π0X; see
text for details.

1.3.2 Parton Distribution Functions

The kinematic variables Q2 and x are also defined in pp scattering in the same way. Figure

1.6 illustrates the collision of two protons p1 and p2 and the production of a π0 from the

hadronization is emphasized. The protons have momenta P1 and P2, and a gluon from p1

with x = x1 scatters with a quark from p2 with x = x2. The momentum transfer, carried by

a quark with momentum q, is Q2 = −q2. A π0 is produced in the hadronization initialized

by the scattered quark; that quark momentum is p′, while the π0, which is said to have

fragmented from the quark, carries a momentum fraction z of p′.

Figure 1.6 represents only one interaction that could occur in a pp collision: it exemplifies

a qg → qg QCD subprocess. In DIS the interaction is typically via photon exchange, and of

the partons, only the quarks can interact with the photon; the DIS experiment is therefore

sensitive to the quarks more than the gluons. Note that it is also possible for the virtual

photon to have enough energy to fluctuate into a quark+antiquark pair and then interact

with the proton; a weak interaction can also occur, in particular the exchange of a Z boson.

In pp scattering, however, the subprocess is dominantly a QCD interaction, which probes

quarks and gluons, and there are many more types of QCD subprocesses which will be

discussed in a following section.

The selection of the gluon in p1 is modelled by a probability density distribution, g(x1, Q
2),

and the selection of the quark in p2 is given by q(x2, Q
2). These probability density distribu-

tions are called Parton Distribution Functions (PDFs) and are defined as a function of x for

each type of parton, for fixed values of Q2. PDFs represent probability density distributions
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for partons with a given x for an interaction scale (momentum transfer) of Q2; a PDF can be

interpreted as a number density, where the integral of a PDF over the range a ≤ x ≤ b at a

fixed Q2 gives the number of partons in that x range at that Q2. Note that it is common to

denote PDFs by the notation used for the parton, for example, the up quark PDF is written

u(x,Q2) and the down antiquark PDF is d̄(x,Q2).

With the definition of PDFs in hand, we may now define how the proton consists of 2 u

quarks and 1 d quark via the following sum rules:

∫ 1

0

dx
[
u
(
x,Q2

)
− ū

(
x,Q2

)]
= 2, (1.5)

∫ 1

0

dx
[
d
(
x,Q2

)
− d̄

(
x,Q2

)]
= 1, (1.6)

∫ 1

0

dx
[
s
(
x,Q2

)
− s̄

(
x,Q2

)]
= 0. (1.7)

Clearly if the proton consisted of only valence quarks, there would be no ū or d̄ quarks

and equations 1.6 and 1.7 count how many valence quarks there are. Now suppose a

quark+antiquark pair is produced within the proton: the quark and antiquark will have

the same flavor, so that their contributions to the integrands in the above sum rules would

cancel. Thus these integrands, which are called valence distributions, are basically the PDFs

of the valence quarks. Regarding the strange quarks, they are entirely sea quarks, therefore

the number of s quarks exactly equals the number of s̄ antiquarks.

The PDFs are drawn as blobs in figure 1.6 and illustrate the choice of a particular parton

with a momentum xP (in the IMF). Conserving momentum in this blob means that the sum

of all of the parton momenta must equal the proton momentum. Since f(x)dx represents the

probability of finding a parton f with momentum between xP and (x+dx)P , the momentum

conservation is expressed as

∑

f∈{q,q̄,g}

∫ 1

0

dx xPf(x) = P, (1.8)

which gives us the momentum sum rule:

∑

f∈{q,q̄,g}

∫ 1

0

dx xf(x) = 1. (1.9)

Summing over the quarks and antiquarks gives ∼ 0.5, which means the other half of the

proton momentum is carried by the gluons.
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FIG. 5: The CT14 parton distribution functions at Q = 2 GeV and Q = 100 GeV for u, u, d, d, s = s, and g.

normalized to the respective best-fit CT14 NNLO PDF. The blue solid and red dashed error bands are obtained for

CT14 and CT10 NNLO PDFs at Q = 100 GeV, respectively.

Focusing first on the u and d flavors in the upper four subfigures, we observe that the u and ū PDFs have mildly

increased in CT14 at x < 10−2, while the d and d̄ PDFs have become slightly smaller. These changes can be

attributed to a more flexible parametrization form adopted in CT14, which modifies the SU(2) flavor composition of

the first-generation PDFs at the smallest x values in the fit.

The CT14 d-quark PDF has increased by 5% at x ≈ 0.05, after the ATLAS and CMS W/Z production data sets at

7 TeV were included. At x & 0.1, the update of the DØ charge asymmetry data set in the electron channel, reviewed

in Sec. II B 2, has reduced the magnitude of the d quark PDFs by a large amount, and has moderately increased the

u(x,Q) distribution.

The ū(x,Q) and d̄(x,Q) distributions are both slightly larger at x = 0.01 − 0.1 because of several factors. At

x = 0.2 − 0.5, where there are only very weak constraints on the sea-quark PDFs, the new parametrization form of

CT14 results in smaller values of ū(x,Q) and larger values d̄(x,Q), as compared to CT10, although for the most part

within the combined PDF uncertainties of the two ensembles.

The central strangeness PDF s(x,Q) in the third row of Fig. 6 has decreased for 0.01 < x < 0.15, but within

the limits of the CT10 uncertainty, as a consequence of the more flexible parametrization, the corrected calculation

for massive quarks in charged-current DIS, and the inclusion of the LHC data. The extrapolation of s(x,Q) below

x = 0.01, where no data directly constrain it, also lies somewhat lower than before; its uncertainty remains large and

compatible with that in CT10. At large x, above about 0.2, the strange quark PDF is essentially unconstrained in

CT14, just as in CT10.

The central gluon PDF (last frame of Fig. 6) has increased in CT14 by 1-2% at x ≈ 0.05 and has been somewhat

modified at x > 0.1 by the inclusion of the LHC jet production, by the multiplicative treatment of correlated errors,

Figure 1.7: Parton distribution functions from the CTEQ-TEA global analysis [34]. The left
panel shows xf(x) vs. x at Q = 2 GeV and the right panel shows that at Q = 100 GeV.
Note that the gluon distribution xg(x) is scaled down by a factor of 1/5.

The shape of the PDFs as a function of x and Q2 can be determined from an analysis

of data provided from various scattering experiments, including DIS and pp scattering, by

combining them together in a global analysis. Figure 1.7 shows the PDFs determined from

the CTEQ-TEA global analysis [34]; the plots are of xf(x) vs. x for a fixed Q = 2 GeV (left)

and Q = 100 GeV (right). Note that, given the momentum sum rule, xf(x)dx represents

the fraction of P carried by partons f , each having momenta between xP and (x+ dx)P .

The high-x region is dominated by the valence u and d quarks. The valence quark

distributions, u(x)− ū(x) and d(x)− d̄(x), are large relative to the sea quark distributions at

low Q2. At high Q2 however, the valence quark distributions are reduced relative to the sea

quark distributions, which are enhanced; this is because as Q2 increases, the appearances of

sea quark+antiquark pairs also increase.

At low x, the sea quarks and antiquarks and especially the gluons dominate (note that

xg(x) is scaled by a factor of 1/5 in figure 1.7). It is not known how these distributions

behave as x→ 0; surely at some point there ought be so many gluons in the proton that the

gluon self-interactions would cause g(x) to stop increasing so fast. This predicted levelling-

off of the gluon distribution at low x is called saturation, and has not been observed in

experiment. The fact that there are so many gluons at low x begs one to question how

much these low-x gluons contribute to the proton spin. This is exactly the question that the
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measurement presented in this dissertation is aiming to help answer.

1.3.3 Polarized Parton Distribution Functions

We may now introduce how the spin of the proton is modelled, beginning with a discussion

of the polarized parton distribution functions. For recent, introductory reviews of this topic

and on proton spin in general, see [35] and [36].

The PDFs we have been discussing so far are unpolarized, in the sense that they do not

take into account the spin of the parton or the proton. The polarized PDF for a parton f is

defined as

∆f(x,Q2) :=
[
f←⇐ (x,Q2) + f→⇒ (x,Q2)

]
−
[
f←⇒ (x,Q2) + f→⇐ (x,Q2)

]
, (1.10)

where the unpolarized PDFs, f(x,Q2), are decomposed into the four terms dependent on

proton spin, given by the double arrow (⇐,⇒), and on parton f spin, given by the single

arrow (←,→). In words, the polarized PDF is the PDF with the parton and proton spins

aligned, minus the PDF with the parton and proton spins anti-aligned. If the value of ∆f is

positive (negative), the parton f spin tends to be aligned (anti-aligned) with the proton spin.

In order to measure polarized PDFs, one needs to perform an experiment where polarized

protons are involved, such as the scattering of polarized electrons on a polarized hydrogen

target, in a process called polarized DIS, or in the scattering of two polarized protons, as is

done at RHIC.

The up and down quark and antiquark polarized PDFs are shown in figure 1.8, where

two global analyses are compared: DSSV08 [5] and NNPDFpol1.1 [13]. The up quarks are

aligned with the proton spin at high x, while the down quarks are anti-aligned. The low-x up

and down quarks contribute very little to the proton spin. Figure 1.9 shows the strange quark

and gluon polarized PDFs. For the strange quark, the global analyses disagree, especially on

the sign of ∆s at high x. Finally, regarding the gluons, both analyses agree on positive ∆g at

high x, but as x decreases, ∆g becomes rather unconstrained, especially in the NNPDFpol1.1

analysis.

The polarized gluon distribution is better constrained by the DSSV08 analysis, however

there exists an updated version of this global analysis, called DSSV14 [14] and presented in

figure 1.10. In this figure, the solid red line is the new DSSV14 fit, and the black dashed line

is the DSSV08 fit (the blue dashed line is the DSSV* fit, another fit prior to DSSV14). Note

that the uncertainties shown in the DSSV14 fit differ from those shown in DSSV08 in figure

1.9; in DSSV14 the dashed lines surrounding the best fit are alternative fit results that are

within the 90% confidence level limit. At high x, these alternative fits agree that the gluon
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Fig. 13. The NNPDFpol1.1 parton set compared to DSSV08 [6] at Q2 = 10 GeV2.

Figure 1.8: Polarized parton distribution functions from DSSV08 [5] and NNPDFpol1.1 [13]
(the latter being from where this image was cropped). Values of x∆f(x) vs. x are plotted
for up and down quarks and antiquarks.
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Fig. 13. The NNPDFpol1.1 parton set compared to DSSV08 [6] at Q2 = 10 GeV2.

Figure 1.9: Polarized parton distribution functions from DSSV08 [5] and NNPDFpol1.1 [13]
(the latter being from where this image was cropped). Values of x∆f(x) vs. x are plotted
for strange quarks and for gluons.

2

Global analysis and new and updated data sets.— As
just described, the key ingredients to our new QCD anal-
ysis are the 2009 Star [6] and Phenix [7] data on the
double-spin asymmetries for inclusive jet and π0 produc-
tion. At the same time, we also update some of the
earlier RHIC results used in [3] and add some new DIS
data sets by the Compass experiment. More specifically,
we now utilize the final Phenix π0 data from run-6 at√
s = 200 GeV [8] and 62.4 GeV [9], the final Star jet

results from run-5 and run-6 [10], and the recent inclu-
sive [11] and semi-inclusive [12] DIS data sets from Com-
pass. As far as the impact on ∆g is concerned, the data
sets [6, 7] clearly dominate. The Compass data sets will
primarily affect the quark and antiquark helicity distri-
butions as reported in [13].
The method for our global analysis has been described

in detail in [3] and will not be presented here again. It
is based on an efficient Mellin-moment technique that al-
lows one to tabulate and store the computationally most
demanding parts of a NLO calculation prior to the actual
analysis. In this way, the evaluation of the relevant spin-
dependent pp cross sections [14] becomes so fast that it
can be easily performed inside a standard χ2 minimiza-
tion analysis. As a small technical point, we note that
Star has moved to the “anti-kt” jet algorithm [15] for
their analysis of the data from the 2009 run. In order
to match this feature, we use the NLO expressions de-
rived in [16] for the polarized case. As in our previous
DSSV analysis [3], standard Lagrange multiplier (L.M.)
and Hessian techniques are employed in order to assess
the uncertainties of the polarized parton distributions de-
termined in the fit.
We adopt the same flexible functional form as in [3]

to parametrize the NLO helicity parton densities at the
initial scale Q0 = 1 GeV, for instance,

x∆g(x,Q2
0) = Ngx

αg (1− x)βg (1 + ηgx
κg ) , (2)

with free parameters Ng, αg, βg, ηg, and κg. Note that
this parameterization allows for a node in the distri-
bution, as realized by the central gluon density of the
DSSV analysis [3]. We enforce positivity |∆f |/f ≤ 1 of
the parton densities, using the unpolarized distributions
f(x,Q2) of [17], from where we also adopt the running of
the strong coupling. We use the same set for computing
the spin-averaged cross sections in the denominators of
the spin asymmetries.
Results of global analysis.— Figure 1 shows our new

result for the gluon helicity distribution ∆g(x,Q2) at
Q2 = 10 GeV2. The solid line presents the updated
central fit result, with the dotted lines corresponding to
additional fits that are within the 90% confidence level
(C.L.) interval. In defining this interval, we follow the
strategy adopted in Ref. [17]. These alternative fits may
be thought of as spanning an uncertainty band around
∆g within this tolerance and for the adopted functional
form (2). The dot-dashed curve represents the result of
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FIG. 1: Gluon helicity distribution at Q2 = 10GeV2 for the
new fit, the original DSSV analysis of [3], and for an updated
analysis without using the new 2009 RHIC data sets (DSSV*,
see text). The dotted lines present the gluon densities for
alternative fits that are within the 90% C.L. limit. The x-
range primarily probed by the RHIC data is indicated by the
two vertical dashed lines.

a fit – henceforth labelled as “DSSV*” – for which we
only include the updates to the various RHIC data sets
already used for the original DSSV analysis [3] (dashed
line), i.e., we exclude all the new 2009 data [6, 7]. The
new Compass inclusive [11] and semi-inclusive [12] DIS
data sets have little impact on ∆g and are included in
the DSSV* fit.

The striking feature of our new polarized gluon distri-
bution is its much larger size as compared to the one of
the DSSV analysis [3]. For Q2 = 10 GeV2, it is posi-
tive throughout and clearly away from zero in the regime
0.05 ≤ x ≤ 0.2 predominantly probed by the RHIC data,
as is demonstrated by the alternative fits spanning the
90% C.L. interval. In contrast to the original DSSV gluon
distribution, the new ∆g does not show any indication of
a node in the RHIC x-range [21]. It is interesting to no-
tice that the DSSV* fit, without the new 2009 but with
updated earlier RHIC data sets, already tends to have a
positive ∆g. This trend is then very much strengthened,
in particular, by the 2009 Star data [6].

Figure 2 shows the comparison to the new Star jet
data [6] obtained with our new set of spin-dependent dis-
tributions. As in the analysis itself, we have chosen both
the factorization and renormalization scales as pT . Star
presents results for two rapidity ranges, |η| < 0.5 and
0.5 < |η| < 1. It is evident that the new fit describes the
data very well in both ranges. We also illustrate the un-
certainties corresponding to our analysis, using the L.M.
method with a tolerance ∆χ2 = 1 (inner bands) and 90 %
C.L. (outer bands). Also shown is the result for our pre-
vious DSSV analysis [3]. As one can see, it falls consid-
erably short of the data in the region 10 . pT . 20GeV,

Figure 1.10: Polarized gluon distribution function, x∆g(x) at Q2 = 10 GeV2 from the
DSSV14 global analysis [14]. The solid red line is the DSSV14 updated fit, with dotted lines
indicating a sense of the uncertainty. The black dashed line is the DSSV08 fit (shown in
figure 1.9) and the blue dashed line is an update of that fit, prior to DSSV14. Vertical dashed
lines indicate the x sensitivity probed by RHIC data which was included in this global fit.
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tends to have its spin aligned along with the proton. For x . 0.05, the fit becomes rather

unconstrained. The measurement presented in this thesis aims to push sensitivity to ∆g(x)

down to values of x ∼ 0.001, helping constrain the contribution of the numerous soft gluons

to the overall proton spin.

The integral over x of a parton’s polarized PDF (with Q2 fixed) measures the contribution

of that parton’s spin to the proton spin. The quark contribution is

∆Σ(Q2) =
∑

f∈{q,q̄}

∫ 1

0

dx∆f(x,Q2). (1.11)

According to NNPDF, the quark contribution is ∆Σ(10 GeV2) = 0.23±0.15, determined by

integrating over x ∈ [10−3, 1] [13].

The gluon spin contribution to the proton spin is

∆G(Q2) =

∫ 1

0

dx∆g(x,Q2). (1.12)

Figure 1.11 shows the current understanding of ∆G. The horizontal axis is the integral of

∆g(x) over the range x ∈ [0.05, 1], while the vertical axis is the integral over [0.001, 0.05]. The

points represent ∆G values, where the red circle is for the DSSV14 fit. The corresponding

90% confidence level fit result is given by the blue hatched region. The DSSV08 fit is given

by the black triangle, with its 90% confidence level region given by the green solid region.

The DSSV14 is a clear improvement over DSSV08, since for the first time at high x, the

gluon spin contribution is definitively positive: ∆G ∼ 0.2. The low-x region, however, is still

unconstrained, and even the sign of ∆G is not yet known.

1.3.4 Spin Sum Rules

Before continuing with the description of the pp scattering model, it useful to pause here and

consider the meaning of these polarized PDFs in the context of the proton spin. Polarized

PDFs are used in the spin sum rules, which aim to explain how the contributions from the

quark and gluon orbital and spin angular momenta sum together to form the total spin 1/2

of the proton. ∆Σ and ∆G represent the quark and gluon spins’ contribution to the proton

spin, while their orbital angular momenta are denoted by lq and lg.

Summing all contributions together gives the proton spin Sp = 1/2 as

Sp = ∆Σ/2 + ∆G+ lq + lg, (1.13)
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FIG. 5: 90% C.L. areas in the plane spanned by the truncated
moments of ∆g computed for 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤
0.05 at Q2 = 10GeV2. Results for DSSV, DSSV*, and our
new analysis, with the symbols corresponding the respective
values of each central fit, are shown.

very limited information on ∆g is also available from
scaling violations of the DIS structure function g1 which
is, of course, fully included in our global QCD analy-
sis. Overall, the constraints on ∆g(x) in, say, the regime
0.001 ≤ x ≤ 0.05 are much weaker than those in the
RHIC region, as can be inferred from Fig. 1. Very little
contribution to ∆G is expected to come from x > 0.2.

Figure 5 shows our estimates for the 90% C.L. area
in the plane spanned by the truncated moments of ∆g
calculated in 0.05 ≤ x ≤ 1 and 0.001 ≤ x ≤ 0.05
for Q2 = 10GeV2. Results are presented both for the
DSSV* and our new fit. The symbols in Fig. 5 denote
the actual values for the best fits in the DSSV, DSSV*,
and the present analyses. We note that for our new cen-

tral fit the combined integral
∫ 1

0.001
dx∆g(x,Q2) accounts

for over 90% of the full ∆G at Q2 = 10GeV2. Not sur-
prisingly, the main improvement in our new analysis is to
shrink the allowed area in the horizontal direction, corre-
sponding to the much better determination of ∆g(x) in
range 0.05 ≤ x ≤ 0.2 by the 2009 RHIC data. Evidently,
the uncertainty in the smaller-x range is still very signif-
icant, and better small-x probes are badly needed. Data
from the 2013 RHIC run at

√
s = 510GeV may help

here a bit. In the future, an Electron Ion Collider would
provide the missing information, thanks to its large kine-
matic reach in x and Q2 [19].

Conclusions and outlook.— We have presented a new
global analysis of helicity parton distributions, taking
into account new and updated experimental results. In
particular, we have investigated the impact of the new
data on ALL in jet and π0 production from RHIC’s 2009
run. For the first time, we find that the jet data clearly

imply a polarization of gluons in the proton at interme-
diate momentum scales, in the region of momentum frac-
tions accessible at RHIC. This constitutes a new ingre-
dient to our picture of the nucleon. While it is too early
to draw any reliable conclusions on the full gluon spin
contribution to the proton spin, our analysis clearly sug-
gests that gluons could contribute significantly after all.
This in turn also sheds a new light on the possible size of
orbital angular momenta of quarks and gluons. We hope
that future experimental studies, as well as lattice-QCD
computations that now appear feasible [20], will provide
further information on ∆g(x) and eventually clarify its
role for the proton spin. We plan to present a full new
global analysis with details on all polarized parton dis-
tributions once the 2009 RHIC data have become final
and additional information on the quark and antiquark
helicity distributions, in particular from final data on W
boson production at RHIC, has become available. Also,
on the theoretical side, a new study of pion and kaon
fragmentation functions should precede the next global
analysis of polarized parton distributions.
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which is the Jaffe-Manohar spin sum rule [11]. The quark contribution, measured over a

wide range of x, is constrained near ∆Σ ∼ 0.24, at Q2 = 10 GeV2 [5, 6, 7, 8, 9]. On the

other hand, ∆G is coming into focus, as was discussed in the previous section. The orbital

angular momenta terms have yet to be measured, and there is ongoing discussion on how to

do so; see, for example, [37].

The Jaffe-Manohar spin sum rule is valid only in the IMF, with a particular gauge [38].

The decomposition of the gluon angular momentum into spin and orbital components cannot

be done in a gauge invariant manner, despite claims of this decomposition being possible for

photons in laser optics experiments [39]. An alternative formulation is the Ji spin sum rule

[40],

Sp = ∆Σ/2 + Lq + Jg, (1.14)

where Jg = ∆G+lg+Jpot combines the gluon spin and orbital angular momentum, along with

a potential angular momentum term Jpot, and Lq = lq − Jpot. Although these two spin sum

rules basically say the same thing, Ji’s rule has the advantage that each of the three terms

is frame-independent and gauge invariant. For a review of proton spin and decompositions
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of angular momentum in general, see [1].

To understand the frame-independence issue regarding the gluons, consider the two pri-

mary types of gluons: Coulomb gluons and radiation gluons. A quark at rest is surrounded

by a color field, a gluon Coulomb field, analogous to the electric field around a stationary

charge. A moving quark will radiate gluons, but in the IMF of the proton, the QCD ana-

logues of electric and magnetic fields are contracted onto the plane transverse to the quark

momentum. The longitudinal components of the quark’s color field, the so-called longitu-

dinal gluons, are suppressed in the IMF, and only the radiative gluons are present; this

assumption is called the Weizsacker-Williams approximation.

In this approximation, ∆G is a physical observable representing the contribution of the

gluon helicity to the proton helicity; however, to make a frame-independent (and gauge

invariant) spin sum rule, one must also consider the Coulomb gluons, which contribute to

the orbital angular momentum. This idea motivated Ji to combine ∆G and lg into one

frame-independent term, Jg, which in the IMF decomposes as ∆G + lg + Jpot. It may be

possible to probe Jg and Lq, or the parton orbital angular momenta in general, via a process

called Deeply Virtual Compton Scattering (DVCS), which could be realized at the Electron

Ion Collider (EIC), a proposed polarized synchrotron collider [32].

1.3.5 Parton Scattering: the QCD Subprocess

In pp scattering, a strong interaction subprocess occurs when one parton within one proton

scatters off another parton within the other. There are many ways this can proceed, as illus-

trated in figure 1.12, which shows some of the tree-level Feynman diagrams for various QCD

2 → 2 processes. They are organized into groups of processes, with each row representing

one group. Note that when the quark lines are colored, flavor is to be taken into account: if

two quark lines have the same (different) colors, then they must have the same (different)

flavors. Interaction qq → qq in row B can be uu → uu or dd → dd, for example, but not

ud→ ud (which would be categorized in row C, since q 6= q′).

For studying the parton spin dependence of the scattering cross section, it is useful to

define the parton level spin asymmetry. For a particular parton scattering process, labelled r,

the differential cross section is written dσ̂r/dK, where K denotes a set of kinematic variables.

This cross section for two partons with helcities h1 and h2 is the sum over the four possible

initial parton helicity states (h1, h2) ∈ {(+,+), (+,−), (−,+), (−,−)}, where the ± signs

denote positive and negative helicity. Letting dσ̂rh1h2/dK denote the differential cross section
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Figure 1.12: Tree-level QCD 2 → 2 Diagrams. Note that most u-channel diagrams are not
drawn. If a quark line is colored, then the flavor of the quark matters, in the sense that
different (same) colors means different (same) flavors. The letters A through E correspond
to the processes indicated by the legend in figure 1.13.

26



for the process r with the specified helicities, the polarized cross section is

d∆σ̂r

dK
=

1

4

[(
dσ̂r++

dK
+
dσ̂r−−
dK

)
−
(
dσ̂r+−
dK

+
dσ̂r−+

dK

)]
. (1.15)

The parton spin asymmetry for r is the ratio of the polarized cross section to the total cross

section:

ârLL =
d∆σ̂r

dσ̂r
=

(
dσ̂r++ + dσ̂r−−

)
−
(
dσ̂r+− + dσ̂r−+

)

(dσ̂r++ + dσ̂r−−) + (dσ̂r+− + dσ̂r−+)
. (1.16)

To interpret this quantity, consider the following three cases: (1) when ârLL = 0 the process

r does not at all depend on the helicities of the incoming partons, (2) when ârLL = 1 the

process only occurs if the incoming parton helicities are the same, and (3) when ârLL = −1

the incoming parton helicities must be opposite. As a technical note, since the quarks

have mass one could always boost to a frame moving faster than the quark, causing the

helicity to change sign; technically we are referring to quark chiralities in âLL, however in

the approximation of quark mass being much smaller than the energies involved, this detail

does not matter much.

Plots of âLL as a function of the cosine of the center-of-mass frame scattering angle are

shown in figure 1.13. This is a lowest-order perturbative QCD calculation [41, 42]. The

QCD subprocesses in this figure are labelled by letters A through E and correspond to the

Feynman diagram groups drawn in figure 1.12. Regarding the scattering angle, cos θ = −1

corresponds to a center-of-mass scattering angle of π, that is, the momenta of the outgoing

partons are opposite the momenta of the incoming partons in this frame. At cos θ = 0, the

outgoing partons scatter at 90◦ and at cos θ = 1 the partons “pass through” each other and

do not deflect.

All of these parton-level asymmetries are positive, except for the processes in group E,

where âLL = −1. For all of the E processes, the incoming parton helicities must be opposite.

To understand why this is so, consider the quark-quark-gluon vertex. If a left-handed quark

emits or absorbs a gluon, the quark will remain left-handed; by changing the time-ordering

of this vertex such that we now have quark-antiquark annihilation into a gluon, the left-

handed outgoing quark becomes a right-handed incoming antiquark, and annihilates with

the left-handed quark. As a consequence, all of the qq̄ → X processes in E can only occur

if the helicities (chiralities) of the q and q̄ are opposite; furthermore, since gg → qq̄ is the

time-reversal of qq̄ → gg, it also has the same āLL of −1 for all scattering angles.

The process gg → gg (group A) has maximal âLL at θ = π/2, as does qq → qq (B),

which has a lower asymmetry than gg → gg; both of these processes have their asymmetries

go to zero as θ approaches 0 or π. Group C has a maximum âLL of 1 at θ = π and decreases
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tion 1, the resulting spin asymmetry will possess the generic structure

ALL =

∑
f1,f2,f ∆f1 ×∆f2 ×

[
dσ̂f1f2→fX′

âf1f2→fX′
LL

]
×Df

∑
f1,f2,f f1 × f2 ×

[
dσ̂f1f2→fX′

]
×Df

, (6)

where âf1f2→fX′
LL = d∆σ̂f1f2→fX′

/dσ̂f1f2→fX′
is the spin asymmetry for the sub-

process f1f2 → fX ′, often also referred to as the analyzing power of the reaction
considered. The lowest-order analyzing powers for many reactions interesting at
RHIC are depicted in Figure 3.
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Figure 3: Lowest-order analyzing powers for various reactions relevant for RHIC, as
functions of the partonic center-of-mass system (cms) scattering angle [14, 20]. Left:
longitudinal polarization, right: transverse polarization (a factor cos(2φ) has been taken
out, where φ is the azimuthal angle of one produced particle).

2.2 Detection

2.2.1 Asymmetries and Errors

Asymmetries in a collider experiment can be defined (and measured!) for a single
polarized beam or for both beams polarized, with longitudinally polarized beams,
transversely polarized beams, or with a combination of these. Additionally, one
can study a combination of beam spin state and final-state angular dependence.
For longitudinal polarization for both beams, the asymmetry ALL is defined as

ALL =
(σ++ + σ−−)− (σ+− + σ−+)

(σ++ + σ−−) + (σ+− + σ−+)
. (7)

Figure 1.13: Parton-level double spin asymmetry âLL vs. cosine of the center-of-mass scat-
tering angle, for various subprocesses. From [43].

toward 0 as θ decreases toward 0. The analysis presented in this dissertation is primarily

sensitive to high-x quarks scattering off low-x gluons, as will be described below, thus group

C is the most relevant for this analysis. Regarding process D, the s-channel diagram clearly

has âLL = −1, following the discussion of group E processes; however, the t and u-channels

also contribute, which have asymmetries similar to group C. The result is therefore similar

to group C, but is relatively diminished by the s-channel contribution.

The analysis presented in this dissertation uses data from the Forward Meson Spectrom-

eter (FMS), which is positioned to detect forward2 π0s, which scattered from pp collisions at

relatively small angles. For the FMS, π0s with lab frame scattering angles between approx-

imately 1.5◦ and 9.5◦ will be observed; more precisely, the π0s’ decay products, which are

most-likely pairs of photons, will deposit energy in the FMS.

2 Other regions of interest include the central (midrapidity) region, for scattering angles around 90◦, and
the intermediate (rapidity) region, which lies between the central and forward regions. At smaller scattering
angles than the forward region is the region where diffractive effects may appear, such as the observation of
one or both of the protons after they have collided; this is the region of ultra-peripheral collisions.

28



)3 c⋅
-2

G
eV

⋅
 (

m
b

3
/d

p
σ3

E
*d

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1
a)

PHENIX Data

KKP FF

Kretzer FF

 (
%

)
σ/σ∆ -40

-20
0

20
40 b)

0

2

4 c)

 (GeV/c)Tp
0 5 10 15

0

2

4
d)

(D
at

a-
Q

C
D

)/
Q

C
D

10
-3

10
-2

10
-1

1

10

25 30 35 40 45 50 55 60 65
Eπ (GeV)

E
 d

3 σ/
d

p
3  (

µb
 c

3 /G
eV

2 )

〈pT〉 = 1.5 1.7 1.9 2.1 2.2 GeV/c  --
〈pT〉 = 2.3 2.8 3.0 3.4 GeV/c  --

〈η〉=3.8 - PRL 92 (2004) 171801

〈η〉=3.8

〈η〉=3.3 - hep-ex/0403012

〈η〉=3.3

√s = 200 GeV     p + p → π0 + X

NLO pQCD calc.
KKP F.F.

Kretzer F.F.

Normalization
Uncertainty = 17%

Figure 6:Data from PHENIX (left, [59]) and STAR (right, [60]) for the cross section for inclusive
π0 productionpp → π0X at

√
s = 200 GeV. The lines show the results of the next-to-leading

order calculation [61, 62, 63] for the set of proton parton distributions of [64], and for two
different sets of pion fragmentation functions [58].
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Figure 7:Decomposition of the NLO cross sections forpp→ π0X collisions shown in Fig. 6 into
the contributions from initialgg, qg, andqq states [65].
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Figure 1.14: Fractional contributions of QCD subprocesses to forward π0 production, as a
function of π0 energy. Quark-gluon scattering is dominant, followed by gluon-gluon scatter-
ing, et al. From [44]; see also [45].

In the forward region, the longitudinal component of the π0 momentum will be a sig-

nificant fraction xF of the proton momentum; this fraction is called Feynman-x, and xF is

typically greater than 0.1 in the forward region. A π0 with such an xF likely originated from

the scattering of a mid-to-high-x quark in the proton that was heading toward the FMS. For

this quark to scatter at such forward angles, it likely struck a soft, low-x parton within the

other proton. Since at low x the gluons vastly dominate the parton density, the most likely

observed parton scattering subprocess for the π0s seen in the FMS is the asymmetric hard q

+ soft g collision.

Figure 1.14 shows the fractional contributions to the π0 production cross section for

center-of-mass energy
√
s = 200 GeV; this is for the same aforementioned forward region

(pseudorapidity η = 3.3, see section 2.2 for definition of η). The fractions are plotted as

a function of pion energy, which is within the FMS acceptance. Although the analysis

presented in this thesis is of pp scattering at a higher center-of-mass energy of
√
s = 510

GeV, the same general idea holds: the dominant subprocess we are sensitive to is quark-gluon

scattering.

Figure 1.15 shows results of a PYTHIA simulation of the values of x1 and x2 reached

for π0s produced within the FMS kinematic acceptance. Parton 1 is the forward-going (i.e.,

toward the FMS) parton, thus x2 is likely that of the soft gluon. Details of the simulation

may be found in [15].
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Figure 1.15: Monte Carlo (PYTHIA) simulations of x1 and x2 from
√
s = 510 GeV proton-

proton collisions, constrained to π0s produced within the acceptance applicable to this Aπ
0

LL

analysis. The forward direction (i.e., toward the FMS) is given by parton 1.

1.3.6 Fragmentation Functions

The final piece to discuss in the pp scattering model, drawn back in figure 1.6, is the frag-

mentation function. It is generally denoted Dh
q (z)dz, which represents the probability that a

scattered quark q with momentum p′ will hadronize to a hadron h with momentum between

zp′ and (z + dz)p′. The fragmentation functions are symmetric with respect to charge con-

jugation and isospin symmetry (which is the replacement u↔ d); for example, the charged

pions’ fragmentation functions have the following equivalences:

Dπ+

u (z) = Dπ−
ū (z) = Dπ−

d (z) = Dπ+

d̄ (z). (1.17)

The neutral pion fragmentation function is the same for up and down quarks and antiquarks,

Dπ0

u (z) = Dπ0

ū (z) = Dπ0

d (z) = Dπ0

d̄ (z), (1.18)

but is different for strange quarks, with Dπ0

s (z) = Dπ0

s̄ (z).

The fragmentation function for π0s, as a function of z, are plotted in figure 1.16; various

models are shown and their descriptions can be found in [46] and references therein. In all

cases, the pion will typically carry ∼ 10% of the fragmenting quark’s momentum, where the

rest of the quark momentum is likely distributed among other hadrons into which it frag-

mented. A spray of hadrons within a cone, which likely originated from a single fragmenting

parton, is called a jet and is itself a valid object worthy of study, but is beyond the scope of

this dissertation.
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Figure 1. The fragmentation functions zDπ0

u (z) (upper panel, right) and zDπ+

u (z) (upper panel, left), zDK+

u (z)
(bottom panel, right) and zDK−

s (z) (bottom panel, left). The uncertainty bands are according to HKNS parameter-
izations.

The other ones are called indirect fragmentation functions listed as follows:

Dπ−

u (z) = Dπ+

d (z) = Dπ+

ū (z) = Dπ−

d̄ (z),DK−
u (z) = DK0

d (z) = DK+

ū (z) = DK0

d̄ (z),

DK0

u (z) = DK+

d (z) = DK0

ū (z) = DK−

d̄ (z),DK0

u (z) = DK−
d (z) = DK0

ū (z) = DK+

d̄ (z),

DK+

s (z) = DK0

s (z) = DK−
s̄ (z) = DK0

s̄ (z),Dπ+

s (z) = Dπ−

s (z) = Dπ−

s̄ (z) = DK+

s̄ (z),Dπ0

s (z) = Dπ0

s̄ (z).

3 Results

We present our results at Q2 = 4 GeV2 and compare them with the empirical parametrizations and
the NJL-jet model results. We employ QCDNUM17 [7] to evolve our results from Q2 = 0.36 GeV2

to Q2 = 4 GeV2. Since Dπ+

u (z) is the most pronounced process, therefore, the initial momentum for
evolution is determined by a reasonable agreement between our evolution result of Dπ+

u (z) with two
empirical parameterizations, namely the HKNS parametrization [8] and the DSS parametrization [9].
These two empirical parameterizations are used for comparison of other fragmentation functions as
well. Our result shows a good agreement with those parametrizations [10].
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1.3.7 Factorization in pp Scattering

We have now discussed all the components of pp scattering in figure 1.6. The two (polarized)

parton distribution functions represent the initial partons which will scatter, followed by the

hard QCD scattering subprocess; finally one of the outgoing partons will hadronize and a

resulting π0 will be observed. These four components of pp scattering are all assumed to

occur separately enough in spacetime such that none of them interferes with any of the others.

Furthermore, none of them depends on transverse parton dynamics, which is the collinear

approximation and assumes that all parton momenta are parallel to the proton momentum

(by not assuming the collinear approximation, one studies the transverse structure of the

proton, which an interesting topic on its own).

Since the PDFs, QCD subprocess, and fragmentation occur separately enough in space-

time, the overall amplitude for the pp → π0X scattering process is factorized into the con-

volution of two PDFs, a QCD subprocess amplitude, and a fragmentation function (see, for

example, [47]). The hard scattering is separable from the PDFs, since the partons within a

proton are assumed to be spacelike-separated from each other, up until the point of collision

[48]. For an appropriate set K of kinematic variables, the factorized differential pp scattering

cross section for π0 production is (following [43]):

dσpp→π
0X

dK
=
∑

f1,f2,f3

∫ 1

0

dx1dx2dz f1(x1) f2(x2)×

× dσ̂f1f2→f3X
′

dK
(x1p1, x2p2, pπ0/z) Dπ0

f3
(z).

(1.19)
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This, of course, is defined at a particular scale Q2. The analogous polarized cross section is

d∆σpp→π
0X

dK
=
∑

f1,f2,f3

∫ 1

0

dx1dx2dz ∆f1(x1) ∆f2(x2)×

× d∆σ̂f1f2→f3X
′

dK
(x1p1, x2p2, pπ0/z) Dπ0

f3
(z),

(1.20)

which convolves the polarized PDFs with the polarized QCD subprocess cross section, along

with the usual fragmentation function.

This dissertation presents a measurement of the longitudinal double-spin asymmetry for

π0 production, denoted Aπ
0

LL, which may now be defined in terms of the factorized cross

sections:

Aπ
0

LL =
d∆σpp→π

0X/dK

dσpp→π0X/dK
=

∑
f1,f2,f3

∆f1 ⊗∆f2 ⊗
[
dσ̂f1f2→f3X

′
âf1f2→f3X

′
LL

]
⊗Dπ0

f3∑
f1,f2,f3

f1 ⊗ f2 ⊗ dσ̂f1f2→f3X′ ⊗Dπ0

f3

, (1.21)

where the ⊗ symbol denotes convolution. As discussed, the shapes of all of the probability

density distributions and hard scattering cross sections (and asymmetries) are fairly well-

known, except for the polarized gluon PDF, especially at low x. Therefore, a measurement

of ALL is sensitive to ∆g(x), and ∆G, given the current knowledge of everything else.

Of course, the π0 is not the only observable we could use to measure ALL; one can measure

it with any particle or jet, or combination thereof. One important property of the PDFs, hard

scattering, and fragmentation functions, is that they are thought to be universal, meaning

that they are valid for all scattering processes. This is not completely true, however, and

still remains to be fully tested; there is some evidence of universality violation in a class of

spin asymmetries called transverse single spin asymmetries [49], however for a global analysis

aimed at extracting ∆g(x), universality is accepted as true.

1.4 Spin Asymmetries

Having illustrated the spin asymmetry ALL from the perspective of pp scattering and fac-

torization, we will now discuss its measurement, along with some other asymmetries. Some

references for proton spin and asymmetries in general are [35, 36, 50, 51, 52].

1.4.1 How to Measure a Spin Asymmetry: ALL

In order to measure a spin asymmetry, in particular Aπ
0

LL, it is easier to measure the π0 yields

for each of the initial proton spin states, that is, the number of detected π0s. Define the
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luminosity L as the detected event rate dN/dt divided by the interaction cross section σ:

L(t) =
dN/dt

σ
. (1.22)

Luminosity is dependent on the parameters of the colliding beams, and measures the ob-

served event rate with respect to the probability of interaction (cross section); the higher

the luminosity, the more events one will see, for a particular cross section.

After a period of data-taking between times t1 and t2, the total integrated luminosity is

Lint =

∫ t2

t1

L(t)dt (1.23)

and it is measured in units of inverse cross section, typically inverse picobarns (denoted

pb−1, where 1 b = 10−28 m2). Integrated luminosity gives one an idea of how much data

was taken, given a particular cross section for the type of events observed: the number of

events is N = σLint. Detectors are not perfect however, and have their own efficiencies, due

to many causes, such as calibration and acceptance subtleties. Letting Ω denote the overall

detector efficiency, the number of events is actually N = ΩσLint.

The Aπ
0

LL measurement takes place in a collider, which sends bunches of ∼ 1010 protons

head-on at each other. Not all of the protons within each bunch will have the desired spin,

motivating one to define the polarization P for each beam:

P =
n+ − n−
n+ + n−

. (1.24)

n+ is the number of protons in the beam which have spins aligned to the desired polarization,

and n− is the number which are anti-aligned (see, for example, chapter 12 of [53]). The value

of P ranges from −1 to +1, but we typically only use the positive values, quoting the number

as a percentage. For example, a beam polarization of 50% means that n+ = 3n−.

Without accounting for polarization, one measures the raw asymmetry, written

εLL =
(σ++ + σ−−)− (σ+− + σ−+)

(σ++ + σ−−) + (σ+− + σ−+)
, (1.25)

where the differential cross sections have been integrated over appropriate kinematic ranges

corresponding to the acceptance of the detector. The measured asymmetry is then ALL =

εLL/PBPY , where PB and PY are the two beams’ polarizations.

We can write the cross sections in terms of particle yields, keeping in mind that those,
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along with the integrated luminosities, are dependent on the proton helicities h1 and h2:

σh1h2 =
Nh1h2

ΩLh1h2
. (1.26)

The double-spin asymmetry becomes

ALL =
1

PBPY

(N++ +N−−) / (L++ + L−−)− (N+− +N−+) / (L+− + L−+)

(N++ +N−−) / (L++ + L−−) + (N+− +N−+) / (L+− + L−+)
, (1.27)

where the efficiency factors have cancelled. To simplify this expression, we define the relative

luminosity R3 as

R3 =
L++ + L−−
L+− + L−+

. (1.28)

The suffix “3” on the relative luminosity is a STAR notation convention, where 8 other

standard relative luminosities can be defined for other spin asymmetries (see appendix B).

Finally, in terms of the measurable particle yields, relative luminosity, and beam polar-

izations, the asymmetry is written

ALL =
1

PBPY

(N++ +N−−)−R3 (N+− +N−+)

(N++ +N−−) +R3 (N+− +N−+)
. (1.29)

A measurement of ALL therefore requires three coincident measurements: yields (e.g., of π0s)

for each incoming proton spin combination, relative luminosities, and beam polarizations.

All three of these quantities are time-dependent, and we determine the maximum likelihood

value of ALL over the entire data set, as will be described later in section 6.3.

1.4.2 Single-Spin Asymmetries

Up until this point we have been focusing on double-spin asymmetries. A single-spin asym-

metry, written AL, is an asymmetry which concerns the spin of only one beam. Letting σh

denote the cross section given proton 1 had the initial spin h, the raw single spin asymmetry

is

εL =
σ+ − σ−
σ+ + σ−

(1.30)

and AL = εL/P , with P the polarization of the corresponding beam.

Unlike the double-spin asymmetry, AL changes sign under a parity transformation, since

helicity also changes sign. A nonzero measurement ofAL is therefore indicative of a preference

of one scenario over its parity-transformed scenario: this is parity violation. Since the strong

and electromagnetic interactions do not violate parity, a nonzero AL could only occur in an
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observable involving a weak interaction subprocess, which can violate parity. Since the W+

and W− bosons couple to the u and d quarks and antiquarks in different ways, observing the

leptonic decay channels W± → e± + ν gives two AL values (positive and negative leptons),

which are sensitive to sea quark polarized PDFs [54, 55].

In the Aπ
0

LL measurement presented in this thesis, we expect AL = 0 because π0 production

is dominantly from a strong interaction subprocess; nonetheless, confirming AL = 0 in this

observable is a useful diagnostic. There are several other asymmetries one could measure

as diagnostics; see appendix B for a comprehensive list. All of them are confirmed to be

consistent with zero in this analysis.

1.4.3 Transverse Spin Asymmetries

Polarizing the protons along the direction of their momenta is of course not the only pos-

sibility; one can collide protons with their spins aligned on an axis perpendicular to their

momenta, typically the vertical axis. The single and double-spin asymmetries are defined

the same, with the replacement of positive and negative helicities with spin up (↑) and spin

down (↓).
The projection of a produced particle’s momentum vector onto the plane transverse to the

beam is called its transverse momentum vector ~pT , and on this transverse plane, ~pT makes

an angle with respect to the horizontal axis, called the azimuth and denoted φ. Because

the transverse spin asymmetry is defined with respect to a particular transverse axis, the

asymmetry is dependent on the azimuth of the observable.

1.4.3.1 Transverse Single-Spin Asymmetries

The transverse single-spin asymmetry, denoted AN and sometimes also called analyzing

power, is defined via
1

P

N↑(φ)−RN↓(φ)

N↑(φ) +RN↓(φ)
= B + AN cosφ, (1.31)

where R is the appropriate relative luminosity (R1 or R2 in STAR notation) and B accounts

for an overall offset caused by the relative luminosity (if R = 1 then B = 0).

One can exploit a symmetry given by rotations around the beam axis: a spin-up proton

scattering to the left is the same as a spin-down proton scattering to the right. Following

[56], the relative luminosity factors cancel, and the asymmetry can be measured via the
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cross-ratio formula:

1

P

√
NL
↑ N

R
↓ −

√
NL
↓ N

R
↑√

NL
↑ N

R
↓ +

√
NL
↓ N

R
↑

=
1

P

√
N↑(φ)N↓(φ+ π)−

√
N↓(φ)N↑(φ+ π)√

N↑(φ)N↓(φ+ π) +
√
N↓(φ)N↑(φ+ π)

= AN cosφ, (1.32)

where one only needs the particle yields and their azimuths.

Measurements of AN have revealed unexpectedly large asymmetries since the late 1970s

[57] (see also [35]); such large asymmetries have also been seen in the FMS, where the

asymmetry is higher for more-isolated π0s [58]. The exact physical origin of such large

asymmetries still remains a debated mystery, however.

1.4.3.2 Transverse Double-Spin Asymmetries

The transverse double-spin asymmetry can also be defined, however it is modulated by

cos(2φ):

1

PBPY

[N↑↑(φ) +N↓↓(φ)]−R3 [N↑↓(φ) +N↓↑(φ)]

[N↑↑(φ) +N↓↓(φ)] +R3 [N↑↓(φ) +N↓↑(φ)]
= AΣ + ATT cos(2φ). (1.33)

Both AΣ and ATT can be measured, but one cannot exploit rotational symmetry, which

necessitates a simultaneous measurement of the relative luminosity. These asymmetries are

not discussed nearly as much in the literature, however they could be sensitive to the analogue

of polarized PDFs in the transverse polarized case, the transversity PDFs [50, 59]. In this

Aπ
0

LL analysis, AΣ and ATT will make an appearance again during the discussion of systematic

uncertainties due to a possible nonzero transverse component of beam polarizations.

1.5 Recent Measurements of Aπ0

LL

This measurement of Aπ
0

LL in the forward direction is not the first time it has been mea-

sured with these π0 kinematics; it is therefore useful to survey recent measurements of this

asymmetry in order to give our measurement appropriate context. A measurement of Aπ
0

LL

corresponding to the same forward region as our new measurement is shown in figure 1.17

[60]. The asymmetry is plotted versus Feynman-x, and since
√
s = 200 GeV, the π0 energy

is given by xF ×100 GeV. These data were taken from predecessors of the FMS: the Forward

Pion Detector (FPD) and the FPD++, which can be thought of as smaller versions of the

FMS. The data agree with the theoretical prediction, the curve labelled by GRSV Std, and

are consistent with zero. The analysis presented in this dissertation extends this analysis
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11Scott Wissink, IUCF October 6-11, 2008

AALLLL for Forward for Forward ππππππππ00’’s in Run 6s in Run 6

Asymmetries consistent among all detectors – but also consistent 

with zero at all xF, in keeping with theoretical expectations.

Steve Heppelmann
and Len Eun

Figure 1.17: ALL for forward π0s versus Feynman-x; the vertical error bars are statistical,
and the GRSV Std model ALL(xF ) curve is also plotted. From [60].

to a higher
√
s of 510 GeV, with much greater π0 statistics using a detector with a larger

kinematic acceptance.

Proceeding toward larger scattering angles into the intermediate rapidity region, figure

1.18 shows ALL for π0s produced between roughly 15◦ and 45◦ (pseudorapidity 0.8 < η < 2)

[61]. It is plotted versus π0 transverse momentum and is also from
√
s = 200 GeV collisions.

The data (and theory models) are consistent with zero in this region as well. Note that while

the qg subprocess still dominates for this kinematic region, followed by the gg subprocess

(see [44]), the more-central regions do not probe as low of x as the forward region does, since

hard, mid-to-high-x parton scattering becomes the dominant subprocess. ALL measured

for production at larger scattering angles, or lower pseudorapidities, is therefore sensitive

to gluon polarization at higher x. For example, for dijets produced at 0.8 < η < 1.8, the

sensitivity of ALL to ∆g(x) extends down to x ∼ 0.01 for
√
s = 200 GeV collisions [62]; for

the typical higher collision energy of 510 GeV at RHIC, the x range can be multiplied by

200/510, since in 2→ 2 dijet kinematics, x of either parton is inversely proportional to
√
s.

In the central (midrapidity) region, where scattering angles are around 90◦, non-zero Aπ
0

LL

is observed, as shown in figure 1.19 [63]. Scattering angles for these π0s are within 90◦± 20◦

(|η| < 0.35). Data from
√
s = 200 and 510 GeV are shown and agree with the theory models
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 [GeV/c]
T

p
5 6 7 8 9 10 11 12

LL
A

-0.1

-0.05

0

0.05

0.1

0.15  g = g∆GRSV  g = std∆GRSV 

 g = -g∆GRSV DSSV
0πSTAR 

 + X0π → p + p
 = 200 GeVs

 < 2.0η0.8 < 

6% Scale Uncertainty

FIG. 7. (Color online) The ALL results (blue markers) are
presented with the DSSV prediction [17] and the GRSV pre-
diction [44] using the best fit to polarized DIS (∆g = std) and
the maximum and minimum allowed values for gluon polar-
ization. Statistical uncertainties are shown by the error bars,
whereas systematic uncertainties are indicated by the error
boxes. The 6% scale uncertainty is due to beam polarization
uncertainty.

and ↓ denotes beam spin polarized vertically downward
in the lab frame. The quantity E(φ) was fit to the equa-
tion C + ε sinφ, the background was subtracted using
Eq. 7 with Araw = ε, and the final result for AN was
obtained by dividing by the luminosity weighted polariza-
tion. The luminosity-weighted average polarizations for
the transversely polarized data have values 〈PB〉 = 0.54
and 〈PY 〉 = 0.55. The uncertainty due to propagation
of the relative polarization uncertainty of each beam is
4% [43]. The background asymmetries were estimated
as the average of the asymmetry in the two sideband re-
gions, and were found for both AN and ALL to be less
than 1σ from zero, again with σ ≈ 0.01.

III. RESULTS

A. Cross Section

Figure 5 presents the measured cross section for neu-
tral pions produced over the transverse momentum range
5 < pT < 16 GeV/c. Contributions to the systematic
uncertainties include those related to the uncertainty on
the signal fraction, the smearing matrix, the effect of
repeating the analysis with an additional 4 < pT < 5
GeV/c bin, the reconstruction and trigger efficiencies, the
EEMC energy resolution, and the overall EEMC energy
scale. The signal fraction uncertainty includes contri-
butions from the uncertainties on the parameters in the
template functions, the uncertainty on the weights of the
templates, the uncertainty on the scale parameter and
its effect on the integrals used to determine the signal
fraction in the peak, and a contribution based on the in-
tegral of the residual in the signal region. Uncertainty

Fx
-0.2 -0.1 0 0.1 0.2

N
A

-0.2

-0.1

0

0.1
 + X0π → + p ↑p

 = 200 GeVs
 < 2η0.8 < 

4% Scale Uncertainty

 [GeV/c]
T

p
5 6 7 8 9 10 11 12

-0.2

-0.1

0

0.1

0πSTAR 
 > 0Fx
 < 0Fx

Twist-3
 > 0Fx
 < 0Fx

FIG. 8. (Color online) The AN results are plotted versus xF

integrated over 5 < pT < 12 GeV/c (left panel) and versus
pT integrated over 0.06 < |xF | < 0.27 (right panel). Statisti-
cal uncertainties are shown by error bars, whereas systematic
uncertainties are indicated by error boxes. Negative xF re-
sults are depicted with open circles and open error boxes,
while positive xF results are exhibited with closed circles and
closed systematic error boxes. The AN results are presented
with model predictions based on the twist-3 mechanism in the
collinear factorization framework [34]. The 4% scale uncer-
tainty is due to beam polarization uncertainty.

on the luminosity results in a 7.7% vertical scale uncer-
tainty. The dominant uncertainty on the cross section is
the overall energy scale uncertainty, which is correlated
over all bins.

The measured cross section results in Fig. 5 are com-
pared to a theory prediction based on NLO pQCD and
global fits of distribution and fragmentation functions
[1]. The CTEQ6.5 set of parton distribution functions
[45] and DSS fragmentation functions [14] are used. The
EEMC π0 cross section data points are observed to lie
between the calculations that set the factorization, renor-
malization, and fragmentation scales to pT and 2pT . This
is qualitatively consistent with central pseudorapidity
measurements from PHENIX, both in published results
at

√
s = 200 GeV [4] and preliminary results at

√
s = 500

GeV [15]. In each of these measurements, the cross sec-
tion is lower than the pT -scale theory curve in the region
of 5 < pT < 16 GeV/c. Within uncertainties, previous
STAR results at

√
s = 200 GeV are in good agreement

with the pT -scale theory predictions [7].

Figure 6 shows the cross section results of this analysis
in comparison with previously published STAR results in
other pseudorapidity and transverse-momentum regions.
While the entire STAR detector has a broad range of
coverage, the results presented here lie in a previously
unmeasured region. The results indicate that the cross
section changes slowly with respect to η at lower η and
has significant η dependence at higher η, with the tran-
sition lying between η = 2 and η = 3.3.

Figure 1.18: ALL for intermediate rapidity π0s versus transverse momentum; from [61].

(and approximately with each other); this measurement is sensitive to gluon polarization

down to x ∼ 0.01. The asymmetry is plotted versus xT , corresponding to pT via xT
√
s/2.

The measurement of a positive ALL for pions in the central region is therefore an indication

of a positive ∆g(x) at high x. Large, positive ALL values have also been observed in central

region inclusive jets and dijets at STAR, for example, at
√
s = 200 GeV, which is sensitive

to ∆g(x) for x > 0.05 [64, 65]; analyses of
√
s = 510 GeV data are ongoing [66].
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possibility of contamination from the neighboring bunch
crossings to a negligible level. As in the cross section
analysis, the π0 candidates were counted within a ±25
MeV/c2 window around the π0 peak in the two-photon
invariant mass distribution. The ALL was then corrected
for the background ALL measured in the side bands on
either side of the π0 peak; this background asymmetry
was found to be consistent with zero in all pT bins.
The relative luminosity R was defined from the number

of MB triggers in each bunch crossing, and cross checked
using the number of collisions firing the ZDCs on both
sides of the IR. The pile-up correction due to the high
collision rate had a negligible effect on R. The result-
ing contribution of the relative luminosity uncertainty to
Aπ0

LL for the 2012 (2013) data was δAπ0

LL|R = 2.0 × 10−4

(3.8× 10−4), affecting all pT bins in the same way.
ALL was measured for each PHENIX data taking seg-

ment (up to 90 minutes long) to minimize the systematic
effects from variation in R, beam polarization (decreasing
during a store by ∆P=0.005–0.010 per hour), and HPP
trigger performance. These asymmetries were averaged
separately for the 2012 and 2013 data. Results from 2012
and 2013 were consistent within statistical uncertainties
and the final result presented in this Letter is the average
of these data sets.
The resulting π0 ALL systematic uncertainties are

(a) a correlated uncertainty from relative luminosity of
3.6×10−4, (b) a correlated uncertainty from polarization
measurements of 6.5% (scale uncertainty), and (c) point-
to-point uncertainty from background fraction determi-
nation under the π0 peak in the two-photon invariant-
mass distribution. The point-to-point uncertainties were
found to be smaller than 10% of the statistical uncer-
tainty in all pT bins. As in the previous PHENIX anal-
ysis [14], the contribution of other potential sources of
systematic uncertainties was negligible.
Figure 3 shows the π0 ALL asymmetries at

√
s = 510

GeV compared with the DSSV14 calculation [16] based
on a global fit of the world helicity asymmetry data.
Comparing the data to the DSSV14 curve we obtain
χ2/NDF=8.0/14, while comparing to the ALL = 0 hy-
pothesis we obtain χ2/NDF = 18.2/14; the data prefer
the DSSV14 curve by a little more than 3 standard de-
viations.
Figure 4 shows π0 ALL data from PHENIX at both√
s = 200 GeV [14] and 510 GeV, along with NLO pQCD

analyses from three groups [5, 6, 16]. All three analyses
predict an increase in π0 ALL at the same xT due to
pQCD evolution, with xT = 2pT /

√
s. Our data is con-

sistent with such an increase.
In summary, we have presented the unpolarized cross

section and double helicity asymmetry for π0 production
at midrapidity for p+p collisions at

√
s = 510 GeV. The

NLO pQCD calculation is in excellent agreement with
the presented cross section results. The calculation uti-
lized the recent DSS14 set of fragmentation functions,

 (GeV/c)
T

p
0 5 10 15

LL
A

0

0.01

0.02

PHENIX

=510 GeVs|<0.35  η+X  |0π →pp 

Rel. lum. uncertainty

6.5% pol. scale uncertainty not shown

DSSV’14 with 90% CL band

FIG. 3. (color online) ALL vs pT for π0 production at midra-
pidity in p+p collisions at

√
s = 510 GeV. Error bars are

combined statistical and point-to-point systematic uncertain-
ties. The ALL = 0 (yellow) line is uncertainty from relative
luminosity. The theoretical curve with 90% C.L. band (green)
is from a DSSV14 calculation [16].

)s/
T

 (=2pTx
0 0.05 0.1

LL
A

0

0.01

0.02

PHENIX

|<0.35η+X  |0π →pp 

510 GeV: Run12-13
510 GeV: rel. lum. uncertainty
200 GeV: Run6-9 (PRD90,012007)
200 GeV: rel. lum. uncertainty

510 GeV / 200 GeV pol. scale uncert. 6.5% / 4.8%

Theory curves: LSS10p (dashed), DSSV14 (solid) and NNPDF1.1 (dotted)

FIG. 4. (color online) ALL vs xT for π0 production at midra-
pidity at

√
s = 200 GeV (blue) from [14] and 510 GeV (red)

from this analysis. Error bars are combined statistical and
point-to-point systematic uncertainties. Note that the rela-
tive luminosity uncertainties from two data samples are about
the same, hence are indistinguishable in the plot in the over-
lapping xT range. Theoretical curves are from recent NLO
global analyses [5, 6, 16], with the lower curves (blue) for√
s = 200 GeV and the higher curves (red) for

√
s = 510 GeV.

Figure 1.19: ALL for central rapidity π0s versus xT ; from [63].
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Chapter 2

Experimental Apparatus

2.1 The Relativistic Heavy Ion Collider

The measurement of ALL presented in this dissertation is from proton-proton collisions pro-

vided by the Relativistic Heavy Ion Collider (RHIC), located at Brookhaven National Labo-

ratory, on Long Island about 60 miles east of New York City. It is currently the world’s only

(and first) polarized synchrotron collider, where the polarized proton beams collide head-on;

all spin particle physics experiments prior to RHIC were fixed target experiments, where the

target and/or the incoming particle beam was/were polarized. RHIC is capable of reaching

center-of-mass energies up to ∼ 510 GeV for pp scattering (i.e., up to 255 GeV per nucleon),

but as its name suggests, RHIC is also capable of colliding heavier nuclei, such as gold or

aluminum. Since the focus of this dissertation is on the proton spin, we will not discuss

heavy ion collisions, which are a probe of some of the collective properties of QCD, such as

the quark gluon plasma. For further information on the design of RHIC, see [67].

RHIC accelerates bunches of polarized protons, where each bunch contains about 1010

protons. Typically there are 102 bunches circulating in each synchrotron ring, where in one

ring they circulate clockwise and in the other counterclockwise. At certain parts of RHIC,

the bunches are allowed to collide, and this collision of proton bunches is called a bunch

crossing. RHIC has a bunch crossing rate of approximately 9.38 MHz, and typically one

proton-proton collision occurs per bunch crossing.

Only the protons can be polarized at RHIC, and since a synchrotron accelerates charged

particles using a vertical magnetic field, the proton polarization prefers to be aligned or

anti-aligned vertically, i.e., the proton bunches are polarized transversely. Thomas preces-

sion, which is a relativistic effect related to boosts and rotations [68], causes the proton

spins to precess about the vertical axis; this effect, along with imperfections in the guiding

magnetic fields, present challenges in maintaining optimal polarization during proton beam
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acceleration and storage.

Let ~B⊥ and ~B‖ denote the transverse and longitudinal components of the synchrotron

guiding magnetic field, ~S denote the proton spin, with charge e and mass mp, moving with

velocity ~v, and define the Lorentz factor γ = (1− v2)
−1/2

. Given the anomalous magnetic

moment G of the proton as G ≈ 1.793, the time-dependence of the proton spin vector is

given by the Thomas-BMT equation [69]:

d~S

dt
=

e

γmp

~S ×
[
(1 +Gγ) ~B⊥ + (1 +G) ~B‖

]
. (2.1)

On the other hand, using the proton momentum ~P = γmp~v and the Lorentz force law, we

have
d~v

dt
=

e

γmp

~v × ~B⊥. (2.2)

Comparing equation 2.1 to equation 2.2, assuming B‖ = 0, reveals that the spin of the proton

precesses Gγ times per full revolution within the synchrotron. This quantity Gγ is called

the spin tune, where if Gγ = 1 for example, then the spin precesses twice as fast as the orbit

around the ring.

Any accelerator will have imperfections or defects in the guiding magnetic fields. Suppose

there is a defect that perturbs a passing proton’s spin so that it slightly rotates in a clockwise

direction about the beam axis. Each time a particular bunch of polarized protons passes

through this perturbation, a larger fraction of these protons becomes depolarized: such a

perturbation is called a depolarizing resonance. These resonances are more likely to occur

when the spin tune is an integer value, where the spin precession traces out the exact same

path during each revolution (assuming no guiding field defects). At RHIC these resonances

occur roughly every 0.5 GeV energy step during the acceleration, and pose a challenge to

maintaining proton beam polarization up to high energies of 255 GeV.

In order to mitigate the effect of depolarization resonances, RHIC employs devices called

Siberian snakes [70], which have the net effect of rotating the spin axis about the vertical

precession axis by 180◦ for each revolution; note that this net effect is for integer spin tunes,

however for non-integer spin tunes, the effect generalizes. Figure 2.1 shows a diagram of a

RHIC ring in grey, with two Siberian snakes S1 and S2 at the bottom and top. A single

Siberian snake is composed of four helical dipole magnets, which effectively rotate the spin

180◦ about a specific axis.

In the figure, snake S1 causes the spin to rotate about an axis in the horizontal plane,

pointing 45◦ to the outside of the RHIC ring, as indicated by the green arrow. Snake S2

causes the spin to rotate about an axis pointing 45◦ to the inside of the ring. The figure

41



1

2

3

4

5

S1

S2

Figure 2.1: Siberian snakes’ effect example. See text for details.

shows an example of how a particular proton’s spin precesses and flips through the ring and

snakes, as the proton travels in the counter-clockwise direction. We begin with a spin-up

proton, where its spin vector is represented by the blue vector at position 1; the precession

cones are drawn, and at position 1, the proton’s spin is pointing forward and toward the

inside of the ring. We now step through this example, which assumes a spin tune of 1:

• Position 1: initial state, proton is spin-up, with spin vector pointing forward and toward

the inside of the ring; this is the state just before entering snake S1 (the diagram is not

to scale, for clarity’s sake)

• Position 2: just after passing through S1, the proton emerges as spin-down, and now

points backward and toward the outside of the ring

• Position 3: the proton has now gone through half of a revolution, which means it

precesses 180◦ about the vertical axis (in its frame); thus the proton is now pointing

forward and toward the inside

• Position 4: after passing through S2, the proton is now spin-up, with spin vector

pointing forward and toward the inside

• Position 5: after another half revolution, the proton is spin-up, with spin vector point-

ing backward and toward the outside, as indicated by the magenta dashed arrow.

Notice that this spin vector is equivalent to the original spin vector, rotated by 180◦

about the vertical axis.
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Therefore the second time the proton passes through any position, it has the spin vector

pointing the opposite direction, but is still in the same spin-up or spin-down state. Con-

sequently, oscillations of the spin direction are induced by depolarization-causing perturba-

tions, rather than total depolarization. Siberian snakes are a key ingredient in being able to

maintain polarized proton beams in a synchrotron collider.

In order to achieve longitudinal polarization of the protons, which is needed to measure

ALL or AL, the proton bunch polarizations must be rotated to the longitudinal axis just

prior to collision, and rotated back again thereafter. In all RHIC experimental halls, that is

where the observed collisions occur, there are spin rotators positioned such that the beams

will pass through them just before entering and after exiting the collision area. The spin

rotators are built similarly to the Siberian snakes, in that they are also composed of four

helical dipole magnets, but configured such that a spin up (down) proton will have its spin

rotated to be aligned (anti-aligned) with its momentum. Polarimetry detectors within each

experimental hall measure the transverse components of the polarizations of the colliding

proton beams; verifying these transverse components of the beam polarizations are close to

zero for supposed longitudinally polarized collisions is an important systematics check for

longitudinal spin asymmetry measurements.

Figure 2.2 shows a schematic of RHIC. Protons are initially accelerated by a linear

accelerator (LINAC) in the bottom left corner, and proceed into a booster, where they are

further accelerated and subsequently injected into the Alternating Gradient Synchrotron

(AGS). The AGS was the former primary synchrotron collider at BNL, and now serves as

another booster for RHIC. After accelerating in the AGS, the protons enter the AGS-to-

RHIC transfer line and are injected into RHIC such that they circulate in a clockwise (blue

curves) or a counterclockwise (yellow curves) direction; scientists at RHIC refer to these two

beams as the “blue beam” and the “yellow beam.”

It is useful to identify components of the RHIC ring by using the numbers on an analog

clock as a sort of coordinate system. Letting 12 o’clock be at the top of the RHIC diagram,

Siberian snakes are located at 3 o’clock and 9 o’clock; the snakes at 3 o’clock (9 o’clock)

rotate the spin about an axis that points 45◦ to the outside (inside) of the RHIC rings,

and together they cancel out depolarizing resonances up to a maximum operating energy

of 255 GeV. Throughout the rings there are 6 possible places where the beams can collide,

located at the even-numbered clock-face hours. The STAR experiment is the experimental

hall situated at the 6 o’clock position and is where this Aπ
0

LL measurement was conducted.

The PHENIX experiment is located at 8 o’clock and provides complementary data to STAR.

Four spin rotators, two for each beam, are shown in the diagram, just outside of STAR and

of PHENIX. Other experiments have been conducted at the other possible intersections,
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Transverse Single Spin Asymmetries in Hadronic Interactio ns

An Experimental Overview and Outlook

L.C. Bland
1Brookhaven National Laboratory, Upton, New York (USA)

Abstract. Transverse single-spin asymmetries (SSA) are expected to be small in perturbative QCD because
of the chiral nature of the theory. Experiment shows there are large transverse SSA for particles produced in
special kinematics. This contribution reviews the experimental situation and provides an outlook for future
measurements.

1 Introduction

We now agree that Quantum Chromodynamics (QCD)
is the theory of the strong interaction. QCD describes
mesons and baryons as being composed of color-charged
quarks (q) and anti-quarks that interact via the exchange
of gluons (g). Two non-trivial aspects of QCD are that
the gluons carry color charge and that color is absolutely
confined into color-neutral objects. These aspects make
it complicated to understand the structure of mesons and
baryons, and lead to emergent phenomena that are not
readily evident from the QCD Lagrangian. The quest
to understand how the proton gets its spin from its con-
stituents is one avenue to tackling the big question regard-
ing color confinement.

Since the up and down quarks are so light and QCD
is a vector gauge theory, we expect that helicity is es-
sentially unchanged at theq → qg vertex [1], with the
probability for helicity flip being proportional to the quark
mass. Transverse single-spin asymmetries (SSA) are an
azimuthal modulation of particles that can be observed ei-
ther from decay or via spin-dependent particle production.
Transverse SSA requires helicity flip, so are expected to
be small. Experiment observes large transverse SSA for
particles produced via the strong interaction in particular
kinematics at collision energies where the hadroproduc-
tion is described by next-to-leading order (NLO) perturba-
tive QCD (pQCD) calculations.

Spin-orbit correlations andqg correlations are two
suggestions by theory why transverse SSA are so large.
Transverse momentum (kT ) can be correlated with the spin
of either the quark or hadron. ThiskT can be either in the
initial state [2] (Sivers effect) or in the fragmentation of
partons into hadrons [3] (Collins effect). An issue for the
Sivers effect is that factorization theorems have not been
proven for the use ofkT -dependent distribution functions
to describe inclusive particle production in hadronic inter-
actions, except in the case of Drell-Yan production. Fac-
torization is used for collinear calculations [4] that useqg

correlators [5]. Theqg correlators can appear in the ini-
tial state or in the fragmentation, but are collinear so do
not involvekT . Explicit relations between initial-stateqg
correlators andkT moments of the Sivers function have
been found [6]. The Sivers function is important to under-
stand because it can provide new insight into the structure
of the proton, regarding the role of orbital motion of the
confined partons [7, 8], although model independent con-
nections have not been found.

BRAHMS (ANDY) 

STAR

PHENIX

AGS

LINAC
BOOSTER

Pol. H
-
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Spin Rotators

(longitudinal polarization)

Siberian Snakes

200 MeV Polarimeter

RHIC pC PolarimetersAbsolute Polarimeter (H jet)

AGS pC Polarimeter
Strong AGS Snake

Helical Partial Siberian Snake

Spin Rotators
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Siberian Snakes

Figure 1. Schematic of RHIC as a polarized proton collider. Po-
larization is produced at the source, and is preserved through the
acceleration sequence using Siberian Snake magnets. Each ring
has two full snakes that each precess the polarization by 180◦.
Beams are transversely polarized in the rings. Spin rotatormag-
nets can precess the polarization to become longitudinal atSTAR
and PHENIX. The 2 o’clock interaction region was originallyfor
the BRAHMS experiment, and later for the ANDY experiment.
Results from both are discussed below.

This contribution reviews recent experimental mea-
surements of transverse SSA in hadroproduction. Oper-
ation of the Relativistic Heavy Ion Collider (RHIC) at
Brookhaven National Laboratory includes polarized pro-
ton collisions, at center-of-mass energies spanning from

Figure 2.2: RHIC schematic. See text for details. From [71].

such as BRAHMS at 2 o’clock. Finally, polarimeters situated at 12 o’clock are used to track

the proton beam polarizations, independently of any experimental hall’s local polarimetry

measurement.

2.2 The STAR Experiment

The name STAR refers to not only the entire experimental hall at the 6 o’clock collision

region, but also to what the acronym stands for, the Solenoidal Tracker at RHIC, which is

drawn in figure 2.3, along with the FMS. In the figure, proton p1 is contained in the blue

beam and proton p2 is in the yellow beam; these protons (bunches) collide at the center of

STAR and produce a π0 which quickly decays into two photons that are observed in the

FMS.

Several other particles are produced in typical pp collisions, which are observable in the

many other detector systems in the STAR experimental hall. Figure 2.4 shows a top view of

the STAR experimental hall, along with some of the detectors and a 1 meter distance scale.

For an overview of the main detectors in STAR, along with those in PHENIX, see [72]. This

section will briefly describe the detectors labelled in the figure.

44



STAR

FMS

Figure 2.3: Diagram of STAR along with the FMS. Longitudinally polarized proton p1

collides with polarized proton p2 in the center of STAR and produces a π0, which quickly
decays to a photon pair (red dotted lines) which is observed in the FMS.

1 m

Figure 2.4: Top view of STAR experimental hall; see text for description of the labelled
detectors.
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In order to describe the detectors’ acceptances, we typically use two parameters: azimuth

and pseudorapidity. Defining cylindrical coordinates where the cylinder axis is along the

proton beam, the polar angle about the beam axis is the azimuthal angle, φ. Most detectors

in STAR cover the full azimuthal range of 0 ≤ φ < 2π. The other parameter, pseudorapidity

η is related to the scattering angle θ, defined as:

η := − ln

(
tan

θ

2

)
. (2.3)

A scattering angle of 90◦ corresponds to η = 0, θ = 45◦ corresponds to η = 0.88, and η →∞
as θ → 0◦. Negative η corresponds to backward scattering angles.

The detectors shown in figure 2.4, along with their η ranges, are:

• TPC – Time Projection Chamber: this is the main tracking detector. It is a cylindrical

chamber filled with a gaseous mix of 90% argon with 10% methane. At the center where

the particles collide is a negatively charged plane, called the cathode. At the outer

endcaps of the chamber are two positively charged anode planes. A charged particle

which is produced from a collision will ionize the gas, leaving behind a path of free

electrons which then drift toward one of the anode planes; the anodes are segmented

such that the electron positions and timings will be measured as they hit the anode.

Each original charged particle track can thus be reconstructed, forming a 3-dimensional

picture of all charged tracks which came out of the collision. Furthermore, the TPC

is surrounded by the STAR magnet, which is a solenoid that generates a relatively

uniform magnetic field along the proton beam direction. The STAR magnet causes

particle tracks to curve, and the radius of curvature is directly related to the particle’s

momentum.

• BEMC – Barrel Electromagnetic Calorimeter: this detector surrounds the cylindrical

TPC and is sensitive to photons, electrons, positrons, and other particles which decay

electromagnetically, such as pions. After a particle passes through the TPC, it passes

through the BEMC; for charged particles observed in both detectors, the TPC provides

tracking and momentum measurement while the BEMC provides complementary en-

ergy measurement (calorimetry). The BEMC covers the central (midrapidity, |η| < 1)

region.

• EEMC – Endcap Electromagnetic Calorimeter: another calorimeter is positioned on

one of the STAR magnet pole tips, where the pole tips are “caps” positioned on the

ends of the STAR solenoidal barrel that help keep the solenoidal magnetic fringe fields
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from straying too far outside the STAR magnet. The EEMC is also sensitive to elec-

tromagnetic decays, covers the intermediate (1 < η < 2) region, and is on the same

side of STAR as the FMS.

• BBC – Beam Beam Counter: there are two BBCs placed on either side of STAR, and

they are composed of hexagonal scintillator tiles. They are connected to the scaler

system, which is used for tracking collision rates and luminosities; the scaler system

is used for measuring the relative luminosity and will be described later. The BBCs

occupy the forward and backward regions (2.2 < |η| < 5) [73].

• VPD – Vertex Position Detector: this is another scintillator based detector, used for

measuring the vertex position; the interaction point of the collision can vary up to ±100

cm, and the VPD helps track this for every event. Like the BBC, there are two VPDs on

either side of STAR, and both are also connected to the scaler system. The VPD detects

particles at even more forward scattering angles than the FMS (4.24 < |η| < 5.1).

Using time differences between the two VPDs, the vertex position can be determined;

for
√
s = 510 GeV pp collisions, the resolution on the vertex position is ∼ 2.4 cm [74].

• ZDC – Zero Degree Calorimeter: as its name suggests, this detector is situated in the

very forward region, primarily sensitive to neutrons scattering at angles of θ < 4 mrad

[75]. This detector is not only also connected to the scaler system, but also serves as a

local polarimeter for STAR, providing a measurement of the local beam polarizations

which complement those from the RHIC polarimeters at 12 o’clock.

• FMS – Forward Meson Spectrometer: Finally we mention the FMS, which is the

primary detector used in the Aπ
0

LL measurement. It covers the forward (2.5 < η < 4)

region and the detector is described in detail in the following section.

2.3 The Forward Meson Spectrometer

The FMS is an electromagnetic calorimeter, composed of 1,264 lead-glass cells, each with

a photomultiplier tube (PMT) optically coupled to the back end. It is situated at a pseu-

dorapidity range of approximately 2.5 < η < 4 and the cells are stacked in a square array

spanning an octagonal region of size 2 m, approximately 7.2 m from the nominal collision

point. Figure 2.5 shows the transverse geometry of the FMS, along with rings of constant

η. The black lines indicate divisions between sections of the FMS which are considered for

the trigger, and the grey lines divide the individual square-shaped cells. Grey-colored cells,

which are along the outer edges of the FMS, are not considered in the trigger system logic,
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Figure 2.5: FMS geometry schematic; see text for legend.

but their data are still read-out. The green square indicates the boundary between the outer

large cells, measuring 5.8 cm × 5.8 cm × 60 cm each [76], and the inner small cells, mea-

suring 3.8 cm × 3.8 cm × 45 cm each [77]. Finally, the cyan square represents a hole in the

center through which the RHIC beam passes.

2.3.1 Electromagnetic Showers in the FMS

The primary observable in the FMS is the decay of the neutral pion into two photons:

π0 → γγ. Cross sections of the neutral pion within the FPD, a smaller, predecessor version

of the FMS, can be found in [78]. The π0 is a pseudoscalar meson with quark composition

|π0〉 =
(
|uū〉 − |dd̄〉

)
/
√

2. Its fundamental properties [21] are:

• Primary decay modes: γγ (98.82%), e+e−γ (1.17%), and others with branching ratios

less than 6× 10−4
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• Mass: 135 MeV

• Spin: S = 0

• Charge: Q = 0

• Parity: P = −1

• Lifetime: τ = 8.5× 10−17 s

Since the primary observables in the FMS are photon pairs from π0 decays, consider

a single photon incident on a Pb-glass cell; at STAR the photon energies are typically

15–30 GeV. As the incident photon passes near a heavy Pb nucleus (or another heavy

nucleus in the glass), it will pair-produce an electron-positron pair. The nucleus will absorb

the necessary momentum in order to properly conserve momentum, since while in the rest

frame of the electron-positron pair the net momentum is zero, there is no rest frame of the

photon where its momentum is zero; instead the photon scatters off the electromagnetic

field of a nucleus, which provides the necessary momentum absorption. This pair production

probability increases as a function of approximately Z2, where Z is the atomic number of

the nucleus (82 for Pb).

Electrons and positrons which have been pair-produced then pass by more heavy nuclei in

the glass and re-radiate photons via the bremsstrahlung process: the electrons and positrons

interact with the electromagnetic field surrounding the heavy nuclei and are deflected, radi-

ating the energy lost as photons. These bremsstrahlung photons can, in turn, pair-produce

as well, thereby repeating the cycle. This cascade of electrons, positrons, and photons is

called an electromagnetic shower, and is shown schematically for a single FMS cell in figure

2.6. See [79] for more details on electromagnetic showers, which is also a good reference for

detectors in general.

When the electron or positron energy is low enough, the dominant energy loss mechanism

switches from bremsstrahlung to ionization, which for a Pb recoil nucleus, happens around

10 MeV. In order for photons to pair produce, the energy must be at least twice the electron

or positron mass, Me+(−) ≈ 0.51 MeV; however, photon energy loss becomes dominated by

Compton scattering by about 10 MeV. Therefore, when the electromagnetic shower particles

have energies near the critical 10 MeV, the shower terminates. In the longitudinal profile

of the shower, this region of shower termination has the largest number of particles, and is

referred to as shower max.

Both the large and small FMS cells are 18–19 radiation lengths long, where a radiation

length is defined as roughly 7/9 of the mean free path of a photon before pair-production,

or the distance an electron or positron travels before losing a fraction 1/e of its energy due
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Figure 2.6: Diagram of an electromagnetic shower in a single FMS cell; note that in reality
there are significantly many more photons, electrons, and positrons, and that the shower
itself spreads into adjacent cells as well.

to bremsstrahlung. The longitudinal length of the Pb-glass cells is sufficient for most of the

electromagnetic shower to develop; some of the energy does, however, leak into neighboring

cells.

While the electromagnetic shower is developing, the electrons and positrons are moving

faster than the speed of light can in the Pb-glass, which has index of refraction n ≈ 1.65.

They therefore radiate Cherenkov radiation in the blue-to-ultraviolet region of the electro-

magnetic spectrum. This Cherenkov radiation (and other photons of similar energy) is within

the spectral sensitivity range of the PMTs.

When a photon of sufficient energy is incident on the front face photo-cathode of a PMT,

the photo-electric effect will cause electrons to be emitted from its surface. These photo-

electrons are attracted to an electrode in the PMT (under vacuum), and upon interacting

with it, cause secondary emission of more electrons, which in turn are attracted to another

electrode. These electrodes, called dynodes, are arranged such that each subsequent dynode

is at a higher electric potential. After ∼ 12 dynodes, the original photo-electric signal is

amplified enough to be measured as an electric current; the time integral of the overall

current signal generated from the part of the electromagnetic shower which is sampled by

the PMT can then be directly related to the incident photon energy.

2.3.2 Pion Event Reconstruction Summary

Neutral pions are identified as two nearby electromagnetic showers, initiated by two decay

photons from the π0. The invariant mass of the two photons is a function of the energies of

the photons and their decay opening angle; these parameters are measurable by analyzing
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the electromagnetic shower relative positions and energy depositions, therefore the original

π0 mass can be reconstructed from energy deposition measurements in clusters of FMS cells.

The invariant mass Mγγ of a two photon decay seen in the FMS is determined by

Mγγ ≈
EγγDxy

2Rz

√
1− Z2

γγ, (2.4)

where, given E1 and E2 as the photon energies, Eγγ = E1 +E2 is the total energy, Dxy is the

transverse distance between the detected photon pair, Rz is the distance between the FMS

and the interaction point, and Zγγ = |E1 − E2| /Eγγ is the energy imbalance. For further

details on π0 decay kinematics and the derivation of equation 2.4, see section 3.2 or appendix

A.

The identification of photon events in the FMS begins with the observation of a distribu-

tion of energy, where typically ∼ 80% of the photon energy is deposited into a single cell and

the remaining ∼ 20% is deposited within the adjacent cells. Note that the cells are optically

isolated from one another by 25 µm of aluminized Mylar. The distribution of energy in the

cells which are considered (along with factoring in a low-energy noise cutoff) is compared to

a shower shape, which models the fraction of energy deposited as a function of transverse

distance from the location where the incident photon initiated the shower. If the energy

distribution is similar to the expectation from the shower shape model, the photon is then

considered valid; its point of entry in the FMS is accurate to within 1/10th of a cell width.

See section 3.4.2 for more details.

Looking more carefully at equation 2.4, one sees that the energy dependence of the

opening angle α of the photons is approximately

α ≈ Mγγ√
E1E2

. (2.5)

Thus higher energy π0s have smaller opening angles. Within the large cells, two-photon

clusters begin to merge for energies above approximately 50 GeV, whereas within small

cells, they merge above approximately 80 GeV. This cluster merging turns out to be one of

the major obstacles of π0 reconstruction, as it is non-trivial to distinguish between a single

photon cluster and a two-photon cluster. More on this will be discussed in sections 3.4.3

and 3.4.5.

2.3.3 FMS Trigger

The RHIC bunch crossing rate is approximately 9.38 MHz, that is, there is a possible collision

at STAR every 107 ns. Since detector data-taking times are typically on the time scale of
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milliseconds, a fast trigger system is implemented to quickly cull collision observations which

appear to be suitable for physics analyses. Multiple trigger levels are in place, such that each

level must “accept” the event before passing it onto the next. Each successive level is capable

of analyzing more information about the event than the previous level, but it is also more

time-consuming to analyze more information. Every level will either reject the event or pass

it on to the next level for further consideration. If the highest trigger level accepts the event,

then the data from the detectors involved in the trigger are saved to disk. This section

will explain the STAR trigger system, published in [80] with updates summarized in [81],

followed by an explanation of the FMS triggers used in this analysis.

2.3.3.1 General Trigger Logic and Data Flow

Raw data from all detectors used in the trigger are first sent into trigger level 0, which is able

to make a decision whether or not to keep the event within 1.5 µs. For all detector subsystems

used as triggering detectors, level 0 contains a tree of Data Storage and Manipulation (DSM)

boards, which are capable of performing fast bitwise operations. The first layer of the DSM

tree takes multiple inputs from the associated detector(s), performs mathematical operations

to compress the amount of information needed, and then latches a set of output bits; this

layer of the DSM tree is capable of passing information in time for the next bunch crossing.

Other operations which occur include pedestal subtraction and gain normalization. Each

DSM layer has less output bits than input bits, such that the final layer of the DSM tree

simply outputs a single bit associated with each trigger. All trigger bits are then passed into

the Trigger Control Unit (TCU).

The TCU is given information as to whether or not the detector is live, i.e., not recovering

from dead-time due to slower digitization (analog-to-digital conversion, as described in the

next section), detector recovery, etc. It also is capable of prescaling a trigger, this is, given

a prescale factor ρ, it will accept only a fraction 1/ρ of the events; this prescale scales with

the desired trigger rate, instantaneous luminosity, and with the overall RHIC clock rate. If

a trigger is accepted, it is issued by the TCU to the rest of the trigger system and the next

level trigger processing occurs.

The next trigger level trigger is actually level 2; a trigger level 1 was designed and tested,

but eventually was abandoned. Level 2 takes ∼10 ms to complete and includes jet, dijet,

J/ψ, upsilon, ultra-peripheral collision triggers, etc. By the time trigger level 2 makes a

decision, the digitized data arrive at the Data Acquisition (DAQ) system; if level 2 decides

to reject the event, the data are simply deleted at the DAQ level.

If level 2 accepts the event, trigger level 3 processing begins, which takes ∼100 ms,

the scale of time needed to “build” each event in the DAQ system. Level 3 includes track
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reconstruction in the central calorimeter, vertex finding, etc. Like level 2, if level 3 decides

to reject the event, it is simply deleted from the DAQ system. By the time level 3 decides to

accept the event, the event will be built and ready to be packaged with all other events in

the data-taking period in order to be sent to the High Performance Storage System (HPSS)

for long-term storage.

The RHIC data-taking period for the presented Aπ
0

LL measurement is RHIC Runs 12 and

13, which occurred in 2012 and 2013, respectively. During these Runs, STAR was able to

acquire data at a rate of about 1 kHz, with 300–400 Hz of the bandwidth dedicated to the

FMS. Improvements to the trigger and DAQ systems are always underway between RHIC

Runs; DAQ rates in the 2017 run were as high as 6 kHz overall.

2.3.3.2 FMS DSM Tree

The FMS triggering information is first handled by four QT crates, where the acronym QT

stands for charge (Q) from time (T) integration of current. The current which is integrated

comes from the PMTs; the resultant charge is digitized to a 12-bit integer ranging from 0 to

4,095, denoted as number of ADC (Analog-to-Digital Conversion) counts. The time interval

over which the integrals of the PMT signals are taken is phase-locked to the RHIC bunch

crossing rate and long enough to contain the typical PMT pulse widths. Each of the four

QT crates is associated with a single quadrant of the FMS; the trigger logic explained below

is replicated for each crate.

Each QT crate contains 11 QT boards, 10 of which are used in the FMS trigger; all

FMS channels are mapped into the QT boards. Each QT board contains 4 cards, called

QT8 cards, with 8 inputs each. PMT signals are directly connected to the QT8 card inputs

through a patch panel, which provides a mapping “dictionary” between the FMS channels

and the trigger system.

Figure 2.7 shows a diagram of the FMS mapping into the QT system. The bold black

lines separate channels which are mapped into QT boards, which are labelled with a letter

from A to J. Within each QT board, the stripes separated by dashed lines denote QT8 cards

and are labeled with a number from 0 to 3 for each QT board. Note that the outermost rows

and columns as well as 3 cells in each corner are not in the trigger and are colored grey in

the diagram; their PMT signals are still sent to the 11th QT board for digitization, however.

The output of the QT boards is sent into the DSM tree, as shown in figure 2.8; each QT

board outputs to the DSM tree 32 bits, composed of 5 bits representing a truncated ADC

sum from each QT8 card, plus 12 bits encoding the ADC and channel number of the cell

with the highest ADC, called the High Tower (HT).

These 32-bits from all 40 QT boards are then sent into layer 0 of the DSM tree, which,
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Figure 2.7: Assignment of FMS channels to QT boards (labelled by letters A-J, divided by
solid black lines) and to QT8 cards within each board (labelled by numbers 0–3, divided
by dotted black lines). Red lines divide quadrants (i.e., QT crates) and green lines divide
regions within each quadrant associated to DSM layer 0. Grey cells along the outer edges
are not in the trigger.

for each quadrant, consists of 3 DSM boards: one associated with QT boards A-D, another

with E-H, and the third with I-J. Layer 0 DSM boards sum together QT8 ADC sums in

various combinations of 4 adjacent QT8 stripes:

• sum over all QT8 cards of each QT board individually:

– sumA, sumB, sumC, sumD, sumE, sumF, sumG, sumH, sumI, sumJ

• sums split between adjacent QT boards (4 adjacent QT8 cards):

– sumBC = B2 + B3 + C0 + C1

– sumCD = C2 + C3 + D0 + D1

– sumEF = E2 + E3 + F0 + F1
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[E-H]
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QT4
[north bottom]

FM004
[A-D]

FM011
[E-H]
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[I-J]

QT1
[south top]

FM001
[A-D]

FM005
[E-H]

FM006
[I-J]

QT2
[south bottom]

FM002
[A-D]

FM007
[E-H]

FM008
[I-J]

FM101
[small cells]

FM103
[north large cells]

FM102
[south large cells]

FP201
[all cells]

16-bit Trigger Word
to TCU

Figure 2.8: FMS DSM tree. Analog data enter the QT boards at the top of the diagram,
where 11 boards are housed per QT crate (QT1-QT4). 10 QT boards in each quadrant output
logic data to DSM layer 0 (FM001-FM012), which output to layer 1 (FM101-FM103), then
finally to layer 2 (FP201), whose output is a 16-bit word sent to the TCU. All connectors
between boards transmit a 32-bit logic signal.

– sumGH = G2 + G3 + H0 + H1

– sumIJ = I2 + I3 + J0 + J1

This board sum technique is essentially a very fast but very crude, low-level cluster finding

algorithm. Layer 0 also compares the HT ADC to two thresholds and ORs the results

together. In total, the 12 layer 0 DSM boards each output 32 bits encoding the QT8 sums

and the HT threshold comparisons.

The 12 × 32-bit trigger data stream from layer 0 is then sent to 3 layer 1 DSM boards:

one for the south large cells, one for the north large cells, and one for all the small cells. The

HT threshold bits are ORed together from all four quadrants and compared to thresholds,
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forming the HT trigger. Sums of QT8 sums within FMS sectors are also taken and compared

to cluster thresholds, forming the large and small board sum triggers and the basis of the

jet patch trigger. The sector sums are then latched for output as well as their comparisons

to cluster thresholds. In total, 32 bits are output from the small cells and 64 bits from the

large cells (32 bits for both north and south).

The layer 2 DSM board is responsible for combining all the data into a final 16-bit

output trigger word. In this layer, quadrant sums are combined in various ways to form 6

overlapping Jet Patch (JP) sums, shown in figure 2.9. Other high-level triggers can also be

defined here, such as the dijet trigger (not used in this analysis). The final 16-bit trigger

word is composed of comparisons of ADC sums to various thresholds: 2 HT bits, 2 small cell

board sum bits, 3 large cell board sum bits, 3 jet patch bits, and the dijet bit. Since layer 2

is the last DSM in the tree, these bits are forwarded to the TCU. These comparisons make

up 11 bits, where the other 5 bits of the 16-bit word were not used in this analysis or were

reserved for coincidences with other detectors.

The FMS data are not manipulated by any higher level triggers. If the event is ultimately

determined to be valid, the digitized data are written out to the trigger files, as well as the

trigger word which was sent to the TCU and the prescaled (and dead-time corrected) trigger

word from trigger level 2, called the L2 sum. These trigger words are then used in data

analysis to filter events of interest.

An additional trigger that comes from the FMS but is not particularly used in overall

trigger decisions is the FMS LED trigger. In front of every channel of the FMS is the output

of a fiber optic cable, which is connected to an LED flasher system, configured to flash at 1

Hz. Looking at FMS LED events helps track time-dependence of the gain of the PMTs as

well as radiation damage in the Pb-glass. The LED trigger is configured on an independent

DSM board, which is used for other miscellaneous triggers in STAR.

2.3.3.3 FMS Trigger Set

In total, 9 FMS triggers were defined in RHIC Runs 12 and 13:

• Jet Patch (JP) Triggers

– JP1

– JP2 (take-all)

• Large Board Sum (LgBS) Triggers

– LgBS0
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Figure 2.9: The 6 regions (colored) of the FMS which are summed together as jet patch
sums; the top and bottom sectors in the right-hand figure are not included as jet patches.

– LgBS1 (take-all)

• Small Board Sum (SmBS) Triggers

– SmBS0

– SmBS1 (take-all)

• High Tower (HT) Trigger (take-all)

• Dijet (DJ) Trigger (take-all)

• LED Trigger (take-all)

The take-all triggers are those which are not prescaled, i.e., ρ = 1. The fact that there are

two JP, SmBS, and LgBS triggers is because two thresholds are used: the take-all triggers

have higher ADC sum thresholds than their associated prescaled triggers.

In the data files, for every event the ADC counts and timing for every channel are

available, as well as the trigger word which was sent into the TCU, denoted lastDSM, and

the trigger word after prescaling, denoted L2sum, since it is determined at trigger level 2.

In order to filter events with specific triggers, naturally the L2sum variable is preferable;

this variable is composed of two 32-bit integers forming a 64-bit trigger mask. There was

a software bug present in 2012 and 2013, however, in which the lower 32 bits of L2sum was

simply copied into the upper 32 bits; only the lower 32 bits are correct. Fortunately, the only

triggers which were defined in the upper 32-bit half were take-all triggers, and hence one

can instead use the lastDSM trigger words for those triggers, since their prescale factors are
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unity. Table 2.1 shows a summary of the triggers and which trigger bits define them. L2sum

is given as a hexadecimal trigger mask, representing a single bit out of the 64 bits (divided

into upper and lower 32 bits), whereas lastDSM is given as which DSM output channel the

trigger bit occupies. The right-most column states which trigger bit mask is ultimately used

in order to filter events in analysis.

Trigger
L2sum

high bitmask
L2sum

low bitmask
lastDSM

bit
Take-all?

Which trigger
bit mask to use

HT 0x0 0x1000000 0 no L2sum

SmBS0 0x0 0x400000 2 no L2sum

SmBS1 0x2000 0x0 3 yes lastDSM

LgBS0 0x0 0x800000 5 no L2sum

LgBS1 0x1000 0x0 6 yes lastDSM

JP1 0x0 0x2000000 9 no L2sum

JP2 0x800 0x0 10 yes lastDSM

Dijet 0x8000 0x0 11 yes lastDSM

Table 2.1: Trigger bit locations in the last DSM (FP201) 16-bit output word and the 32+32-
bit trigger bitmask from trigger level 2. The state of whether or not each trigger is take-all
is also shown, along with which trigger bit mask is ultimatley used in analysis.

For this Aπ
0

LL analysis, we have chosen the following combination of trigger bits: the

overall OR of SmBS0, SmBS1, LgBS0, LgBS1, JP1, and JP2. This was chosen to avoid the

Dijet and HT triggers, which are not as well-understood as the others, while at the same

time maximizing the statistics analyzed. In terms of bit masks, this trigger combination

corresponds to an L2sum bit mask of 0x2c00000 on the lower 32 bits for the prescaled

triggers, ORed with the OR of bits 3, 6, and 10 on the lastDSM output word for the take-all

triggers. In this analysis, this combination of triggers is denoted as “FMSOR.”

Figure 2.10 shows the overlap of the triggers, including FMSOR, for candidate π0 events

(more on π0 event selection later). The overlap is given as a matrix, where each entry is the

number of events satisfying both the trigger on the horizontal axis and that on the vertical

axis. The diagonal then represents the overall distribution of triggers. The overlap between

SmBS and LgBS is quite small, as expected, while the overlap between the BS and JP

triggers is significant. The HT trigger (written in the figure as HT0) has very low statistics,

as does the dijet trigger, and neither of these are used in the Aπ
0

LL analysis.
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Figure 2.10: Trigger overlap matrix for Run 12 (top) and Run 13 (bottom); color scale is
logarithmic and corresponds to the number of times the trigger on one axis is coincident
with the trigger on the other axis.
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2.3.4 Radiation Damage

Having discussed the FMS trigger in detail, we now turn to a pathology in the FMS detector

that is responsible for causing a reduction of the overall trigger rate as a function of time:

radiation damage in Pb-glass. The electromagnetic radiation which passes through the Pb-

glass is ionizing radiation, which can strip electrons from atoms within the glass, ionizing

them. While the stripped electrons may be able to ionize additional atoms, these electrons

will likely find their way back to the valence shell of some other ion within the lattice; the

net result is that some ions become more positively charged, while others become more

negatively charged, which does not affect calorimetry overall. This effect is not all that

happens, however.

Some electrons (as well as holes) will end up elsewhere such as in an anionic vacancy, or

in/associated with some other type of crystallographic defect. These “misplaced” electrons

are called color centers or F-centers (where F stands for farbe, German for color), and for

Pb-glass, they absorb photons mostly in the visible part of the spectrum. The accumulation

of F-centers causes the glass to begin darkening, which reduces detector efficiency [82]. The

overall optical absorption spectrum is rather broad, because it represents a superposition

of all of the F-centers’ absorption bands, which could be at multiple different wavelengths.

This formation of F-centers is typical of irradiated glass in general; for a discussion of this

for lead glass fibers, see [83].

In all RHIC Runs up to Run 13, the FMS accumulated radiation damage, causing an

overall monotonic decrease in the trigger rates within each Run. After Run 13, the Pb-glass

cells were unstacked, and since the F-center accumulation is proportional to the electromag-

netic shower density, a relative darkening or “browning” of the glass, proportional to the

longitudinal shower profile, was observed. More damage was seen in cells closer to the beam

line than in those farther away, because of the higher amount of irradiation there.

The purpose of unstacking the FMS was to photobleach the cells: exposing the glass

to radiation within the ultraviolet (UV) region was found to reverse the radiation damage.

UV radiation likely excites trapped electrons, which subsequently could find their way back

to the valence shell of some ions. Consequently, the number of F-centers decreases and

the glass becomes clear again. The exact mechanism of bleaching depends on the material

being bleached and the types of F-centers which form; see for example [84, 85, 86]. Thermal

bleaching could have also been done, which involves slowly heating the glass to a high

temperature then slowly cooling it, which basically anneals it; however, given the fragility

of Pb-glass in general, we chose photobleaching instead. Both thermal bleaching and UV

photobleaching have proven effective at curing radiation damage in Pb-glass [87]. During

the summer of 2013, all cells of the FMS were exposed to 48 hours of direct sunlight. After
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photobleaching, the cells were much more transparent and cured. The FMS was subsequently

re-stacked in 2014, and refurbished for use in Run 15 in 2015 and beyond.

During Run 15, the higher luminosity was found to cause the Pb-glass to accumulate

radiation damage more rapidly than before. Since unstacking the FMS, exposing all cells to

sunlight, and re-stacking the glass is a very labor-intensive task, we sought an alternative

solution: photobleaching by a UV-emitting light that we could install in front of the FMS.

Several sample radiation-damaged cells were exposed to various sources of UV radiation,

ranging from tanning bed lights, bug lights, UV lasers, to UV-LEDs. It turned out that the

most effective and practical bleaching method came from UV-LEDs, which were shown to

fully cure the glass within approximately 48 hours.

The optimal wavelength was determined to be 375 nm, given our choices of UV-LEDs,

and an array of roughly 1,000 such UV-LEDs was built. Because of design limitations, the

array had to be built in small modules and then be connected together after installation;

furthermore, the UV-LEDs needed to be cooled. All LEDs were mounted on aluminum plates

that were embedded with copper pipes carrying cooling water. The entire array was installed

facing the front face of the Pb-glass, with higher LED densities closer to the higher-radiation

region near the beam pipe. This UV-LED array was built in 2016, installed prior to Run

17, and ultimately turned out to be a very successful method to keep the radiation damage

minimal during the entire Run. More details on the UV-LED system, as well as on the 2013

sunlight photobleaching, can be found in appendix L.

2.4 The Scaler Systems

A scaler system is basically a counting system: if, for example, the ZDC sees enough hits

above a given threshold, the associated scaler counter will increment by one count, called

a scale count. The BBC, VPD, and ZDC are all connected to the scaler boards, which are

able to increment their counters at the same rate as the bunch crossing rate of 9.38 MHz.

The data from these scaler boards are essential in determining the relative luminosity, in

coincidence with particle yields, in order to measure a spin asymmetry.

For each bunch crossing, there is a 24-bit1 readout of the scaler detectors, where each bit

corresponds to a particular counter or number. For some of the bits, if a particular signal,

such as the sum of ADC counts from the cells in the VPD, is above a certain threshold,

the corresponding scaler bit will be set to 1, otherwise it will be set to 0. Other scaler bits

correspond to coincidence signals, which occur when two signals are above their thresholds

and occur within a certain time window. For example, if both of the VPDs on either side of

1In Run 12 it was 24-bit, but for Run 13 and beyond it has been 32 bits
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STAR each see a large enough signal with a small time difference between the two, the VPD

coincidence bit will be set to 1; in fact, the time difference between the two signals can be

used to measure the vertex position of the collision.

The lower 17 bits of the 24-bit readout correspond to such above-threshold and coinci-

dence signals. The upper 7 bits correspond to the bunch crossing number, a number between

0 and 119 that corresponds to one of the 120 bunches in one beam crossing with another

in the other beam. Since the requested spin of each bunch is known, the incoming spins

of the protons are known for every bunch crossing (but with a polarization, of course), and

recording the bunch crossing number provides a way of associating the scale counts with

particular proton collision spin combinations.

The 24-bit readout is the input to the scaler boards, which are composed of 224 address-

able 5 byte memory cells [88]. Every possible combination of the 24 readout bits corresponds

to a particular memory cell on a scaler board: the 24-bit readout is simply an input address

on the scaler board. When this address is called, the 5 byte number stored in the cor-

responding memory cell is incremented by one. This memory is sometimes referred to as

histogramming memory, and in theory, the scaler boards are capable of histogramming the

data at the bunch crossing rate for up to 24 hours.

Most often these scaler boards are used during the data-taking period for monitoring

collision rates and background. The RHIC beams are held in the synchrotron rings for

8 hour periods called fills, after which the beams are dumped and new ones are injected.

During each fill, collisions are occurring which remove protons from the beam, causing the

actual collision rate to decrease with respect to the constant bunch crossing rate. Such time-

dependent rates can be monitored by, for example, coincidence rates of the ZDC, since a

coincidence bit will likely only be true if there was a collision.

In the Aπ
0

LL analysis, the scaler board data are used for measuring the relative luminosity

and will be discussed in chapter 4. Since the bunch crossing number is recorded along each

event’s scaler detector readouts, the number of scale counts for each of the spin combinations

can be recorded. Since these counts are directly proportional to the luminosities for each of

the spin combinations, ratios of these counts directly measure the relative luminosities. The

BBC, ZDC, and VPD can each be used to independently measure the relative luminosity,

and comparisons between them provide an estimate of its uncertainty.

2.5 Polarimetry

To measure any spin asymmetry, the polarization P of the colliding particle(s) must be

known, since a spin asymmetry A is related to the raw, measured asymmetry ε via A = ε/P .
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The 12 o’clock interaction region houses the RHIC polarimeters: the hydrogen gas jet (H-jet)

and the proton-carbon (pC) polarimeters. See [89] for a summary of polarimetry at RHIC,

and the references therein.

The H-jet polarimeter consists of a vertical jet of longitudinally polarized hydrogen gas.

Since the proton beams are transversely polarized while they pass through the polarimetry

region, the spins of the beam protons are aligned or anti-aligned with the spins of the target

jet protons. The H-jet polarization, ptarget, is monitored by its own polarimeter. Elastic

collisions between the beam protons and H-jet protons are observed: arrays of silicon strip

detectors observe the scattered H-jet protons. The measurement of the transverse single spin

asymmetry for this process, App→ppN , is known well enough such that measurements of the

raw asymmetries εtarget and εbeam (between left-scattered and right-scattered protons) can

be used to extract the beam polarization Pbeam via

App→ppN =
εbeam

Pbeam

= − εtarget

Ptarget

. (2.6)

The H-jet polarimeter is a bit slow, taking a couple of days to obtain a statistical uncertainty

of ∼ 5%, but it is useful for providing an absolute polarization measurement which is used

to normalize the pC polarimeter measurement.

The pC polarimeter is a fast polarimeter, taking only 30 seconds to provide a statisti-

cally significant measurement. It is therefore used multiple times a fill to track the time-

dependence of the overall depolarization. The polarimeter target is a thin carbon ribbon,

and recoil carbon nuclei are detected by six silicon strip detectors, arranged hexagonally

around the target. These detectors provide a measurement of the raw asymmetry ε, and

combined with the known App→pCN gives Pbeam = −ε/App→pCN . For the Aπ
0

LL measurement, the

pC polarimeter normalized measurements are used. These measurements, along with their

errors, are provided for every fill by the RHIC polarimetry group.

In addition to the RHIC polarimeters, the STAR and PHENIX experimental halls each

have their own local polarimetry. For STAR, polarimetry is typically measured by the ZDC

(see section 5.2); having a polarimeter near the collision region is useful for confirmation of,

for example, proper configuration of the spin rotators for longitudinally polarized collisions.

During RHIC runs with transversely polarized collisions, local polarimetry measurements

can be compared to those from the H-jet and pC polarimeters.
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Chapter 3

Event Selection

This chapter outlines the data selection procedure, which aims for a clean and well-understood

sample of π0s while maximizing the overall statistics. The data are from the RHIC Runs 12

and 13, taken in 2012 and 2013, from longitudinally polarized pp collisions with a center-of-

mass energy of
√
s = 510 GeV.

3.1 Data Set and Quality Assurance

We begin with a general description of the data set. The data are typically acquired in 30

minute intervals, called runs (or sometimes DAQ runs). These runs allow for the ability

to look at the overall data set for an entire RHIC Run (a RHIC Run will henceforth be

capitalized, to differentiate it from a 30-minute run) as a time series and cull out any runs

which had anomalies, such as abnormally high trigger rates or dead time.

A basic run Quality Assurance (QA) test was first used to filter runs which are reasonably

consistent with each other. For each trigger T in each run, the following quantity is computed:

fT =
NT · ρT

NMB · ρMB

, (3.1)

where N is the number of triggers, ρ is the prescale factor of that trigger, and the subscript

MB is for a minimum bias trigger, given by the BBC, VPD, or ZDC; in this analysis, the

BBC is used as a minimum bias trigger. The numerator of fT is proportional to the T trigger

rate, which decreases steadily within each fill simply due to the decrease in collision rates

during the fill. Dividing the trigger rate by a minimum-bias trigger’s rate takes this fill-

structure out of fT , and under ideal conditions, fT should be relatively constant throughout

a RHIC Run. Issues such as radiation damage, however, can cause fT to decrease over time;

moreover, changes in trigger thresholds can introduce steps up or down in fT . Ultimately
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fT is useful as a means to filter out “outlier” runs, which are those that could have had

abnormally high or low trigger rates, or other related pathologies.

The ratio fT is plotted in figures 3.1 and 3.2 as a function of a run index, in chronological

order. Any time there was a major change in the system, such as a threshold change, beam

condition change, etc., a vertical line was drawn; these vertical lines separate the trigger

data into epochs, defined as contiguous time periods over which the trigger conditions were

the same. Any epoch with red-colored points was marked as bad overall, such as all runs

before run index ∼ 240 in Run 13, and all of the runs in a bad epoch are omitted from the

analysis.

Within each epoch, fT tends to decrease exponentially as a function of time. Since fT

is proportional to trigger rate, the FMS trigger rate as a whole is decaying. The culprit of

this decay is radiation damage within the Pb-glass cells. As the Pb-glass cells darken, the

amount of light which reaches the PMTs decreases, which in turn causes a reduction in the

trigger rates. Within each epoch, an exponential fit was performed, as shown by the red

curves in figures 3.1 and 3.2. In some epochs, the exponential fit was not as good as it could

have been, usually because there were too many outliers; however, all fits are good enough

overall for a reasonable outlier filter.

Figures 3.3 and 3.4 shows the value of fT normalized to the value given by the fit function

for each run. The run QA was then performed by visually selecting boundaries around the

normalized fT values in order to remove any outliers; runs within these boundaries pass the

QA test and are defined as “good.” These boundaries are drawn in the figures as horizontal

lines, and although this is more of a qualitative QA method, it is sufficient to cull a more

reasonable and consistent data set from the whole, serving as a decent starting point for

analysis.
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3.2 π0 Kinematics and FMS Acceptance

In order to specify the constraints on the π0 sample used in this analysis, let us begin with a

discussion of π0 kinematics. Consider a π0 with energy E which decays into two photons of

energies E+ and E−, and with a decay opening angle of α. These energy variables (E+, E−)

of the 2-photon system can be transformed into two variables (E,Z), associated with the

π0: the total energy E = E+ + E− and the energy imbalance

Z :=
E+ − E−

E
. (3.2)

The subscripts “+” and “−” were chosen so that E± = E(1 ± Z)/2, with E+ ≥ E−. The

invariant mass, M , depends on the photon energies and opening angle as

M = 2 ·
√
E+E− · sin

α

2
= E ·

√
1− Z2 · sin α

2
. (3.3)

For further details on π0 decay kinematics, see appendix A.

In addition to the π0 E, Z, and α, two angles are also needed to fully describe the π0

momentum p: the azimuthal angle φ and the scattering angle θ. Referring to figure 3.5,

let the positive z axis be along the proton beam, pointing toward the FMS, and the y axis

point upward, with the origin centered at the nominal proton-proton interaction point. The

azimuth φ is defined as the angle between the positive x axis and transverse momentum vector

pT , which is the projection of the momentum vector p on the xy plane. The scattering angle

θ, defined as the angle between p and the positive z axis, is more commonly given in terms

of the pseudorapidity η, defined in equation 2.3. In practical data analysis, the variables

used to classify π0 kinematics are {E,Z,M, pT , η, φ}.
The FMS is situated about 7.2 m from the nominal interaction point, and occupies

about a 2 m × 2 m transverse size; it spans a pseudorapidity range of 2.5 < η < 4.2 over

full azimuth. Note that the outer boundary of the FMS is octagonal and that the inner

boundary is square; thus the η boundary rings listed here are only approximate bounds of

the FMS geometry boundaries. Given typical values of
√
s of 200 and 510 GeV as well as

trigger thresholds and reconstruction limitations, typical energy and momentum ranges of

π0s are 10 < E < 100 GeV and 2 < pT < 10 GeV. An upper limit on Z is also typically

employed, in order to omit high-energy photons which could have been mis-identified as a

π0; a typical constraint is Z < 0.8. All of these kinematic limits provide an estimate of the

overall FMS acceptance for π0s.
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Figure 3.5: Scattering coordinates notation.

3.3 Inner and Outer Pseudorapidity Regions

Before discussing specific kinematic cuts that define the π0 sample, it is worth mentioning

that the Aπ
0

LL analysis is separated into two η regions which approximately separate the large

cells and the small cells. Figure 3.6 shows the distribution of 2-photon invariant mass plotted

versus their pseudorapidity (of their parent π0, η-meson, etc.). The outer black vertical lines

represent overall η cuts of 2.65 and 3.9. The events selected here have all of the nominal π0

kinematic cuts (omitting the mass cut), which will be discussed later in this chapter.

Although the FMS is composed of large cells and small cells taken together, one must keep

in mind that the large cells and small cells behave differently, due to their PMT differences,

glass cell size and composition differences, and different relative amounts of radiation damage.

They are therefore calibrated a bit differently, and the two corresponding pseudorapidity

regions can be discerned from figure 3.6. Looking at Run 12, η = 3.15 was chosen as an

appropriate boundary, and was also applied to Run 13, since the two Runs need to have

the same η constraints in order to merge them into one Aπ
0

LL analysis. Furthermore, for Run

13, the small cells were too heavily damaged from radiation and were consequently omitted

from the analysis. Therefore, the event selection is broken down in the following manner:

• Outer region: 2.65 < η < 3.15 – mostly large cells – analyzed Runs 12 and 13

• Inner region: 3.15 < η < 3.9 – mostly small cells – analyzed Run 12 only

Figure 3.7 shows a schematic of the FMS with the above pseudorapidity cuts.

Note that the most dominant part of the mass distribution shown in figure 3.6 is higher

than the expected π0 peak at 0.135 GeV; this is because there is an energy-dependent effect
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Figure 3.6: 2-photon invariant mass vs. pseudorapidity for Run 12 (top) and Run 13 (bot-
tom), given reasonable π0 kinematic cuts, without a mass cut. Outer black vertical lines
represent overall η cuts, and the inner magenta vertical line represents the inner/outer re-
gions’ boundary.
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3.9

3.15

η=2.65

Figure 3.7: FMS schematic and pseudorapidity boundaries.

in the π0 reconstruction, which causes the reconstructed mass to rise as a function of energy.

This effect will be discussed in detail later.

3.4 Event Reconstruction

We now turn to how π0 events are reconstructed from photon hits. This section describes

the photon-finding and clustering algorithms, and how π0 candidates are selected from the

results.

3.4.1 Trigger Matching

Events which satisfy an FMS trigger are those which have clusters of cells with nonzero ADC

counts; for example, a single photon that hits the center of one FMS cell will deposit ∼ 80%

of its energy in that cell and the remaining ∼ 20% in the surrounding cells. Essentially, the

trigger will fire if one of these clusters will cause a subsequent ADC sum (in a higher DSM
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layer) to be above threshold, so it does not matter which cluster or set of clusters actually

fired the trigger: the clusters are basically “ORed” together.

A given trigger, either Board Sum (BS) or Jet Patch (JP), is defined in a geometric

segmentation of the FMS, as in figures 2.7 (BS) and 2.9 (JP). The segmentation divides the

FMS into “patches” where, for example, in figure 2.7 each letter corresponds to a single BS

patch; note that patches in general can overlap with each other, so that any cluster is very

likely fully contained in some patch.

Each patch contains some number of cells, and for a given event, each cell will report

an ADC count. The sums of the cells’ ADC counts in a given patch is called the “patch

sum”. Depending on the trigger algorithm, these patches could then be further combined

into “patches of patches”, which then have their sums (of sums). This combination of sums

forms the tree structure of the DSM tree (see figure 2.8). The last layer of the DSM tree

contains the final set of ADC sums which are then compared to thresholds (defined during

data-taking), each of which returns a boolean 1 for sum above threshold or a 0 otherwise.

The key point here is that the OR of all of these booleans is taken: so as long as at least

one of the patches had something trigger-worthy in it, the overall trigger is satisfied. This

OR result then defines the output trigger Level 0 bit (one for each trigger), defined as 1 if

the trigger fired and 0 if not.

These output trigger bits, which are the output of trigger Level 0, go through the TCU

and prescaling etc., resulting with the Level 2 output trigger bits. It is these level 2 output

bits which we use to filter for FMS-triggered events.

Event reconstruction is done on all trigger events, and one can of course impose a re-

striction on FMS triggers only. Kinematic cutoffs (minimum E and pT ) are applied, which

approximately match what was defined in the original trigger thresholds, but since the trig-

ger threshold applies in ADC space and then ADC counts for each cells are converted to

E (and pT ), the actual trigger threshold gets smeared in E (or pT ) space. The E or pT

threshold is smeared by the fact that there is a variation on the cell gains throughout the

whole detector, where a gain is defined as the proportionality between ADC counts and E.

In particular, the FMS is calibrated such that the target gains are a function of η. In the

reconstruction algorithm, we apply a soft energy cutoff as well as a pT > 1.5 GeV cut so

that only clusters which very likely satisfied the trigger DSM algorithm are considered. In

the Aπ
0

LL analysis, tighter constraints on pT and E are made, ensuring that all of the photon

pairs considered for π0s candidates are above trigger thresholds and satisfied the trigger.
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3.4.2 Shower Shapes

In order to reconstruct the transverse (x, y) position of a photon which hit the FMS, we

fit the corresponding cluster of cell energies to a model of the transverse distribution of the

electromagnetic shower: the shower shape. Consider a point source of light at a distance b

from a plane. Let (x, y) represent the coordinates of a point on the plane, where (0, 0) is

the point that is a distance b from the source. If the point source emits photons uniformly,

the probability density distribution f(x, y; b) of photons hitting the plane follows a Cauchy

distribution:

f(x, y; b) =
1

2π

b

(b2 + x2 + y2)3/2
. (3.4)

If the plane were to be segmented into squares, each with side length d, one can determine the

fraction of light seen in each square. Consider a square which is centered about a point (xc, yc)

with boundaries that range from (xc − d/2, yc − d/2) at one corner to (xc + d/2, yc + d/2)

at the opposite. To evaluate the total fraction of photons hitting this square, one uses the

cumulative distribution function of f(x, y; b):

F (x, y; b) =

∫ x

−∞

∫ y

−∞
dx̂dŷf (x̂, ŷ; b) =

=
1

4
+

1

2π

[
arctan

(x
b

)
+ arctan

(y
b

)
+ arctan

(
xy

b
√
b2 + x2 + y2

)]
. (3.5)

The total fraction of light (which would hit the plane) that is detected in this square is then

G(xc, yc) = F

(
xc +

d

2
, yc +

d

2
; b

)
− F

(
xc −

d

2
, yc +

d

2
; b

)
−

− F
(
xc +

d

2
, yc −

d

2
; b

)
+ F

(
xc −

d

2
, yc −

d

2
; b

)
, (3.6)

where the four terms correspond to the four corners of the square.

The shower shape model which is employed in FMS photon reconstruction is a linear

combination of Cauchy distributions,

fΣ(x, y) =
N∑

i=1

aif(x, y; bi), (3.7)

and the aforementioned detector squares correspond to individual FMS cells. To maintain

normalization,
∑

i ai = 1 is enforced. A fit was performed by [90] with N = 3 terms; this

used the equivalent of FMS small cells with d = 4 cm and the resulting fit parameters are
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given in table 3.1. The third term is a bit strange, given a3 < 0, but the fit algorithm did

not impose positivity of the ai parameters; nonetheless the fit was found to be sufficient for

position reconstruction.

i ai bi

1 0.8 0.8 cm
2 0.3 0.2 cm
3 −0.1 7.6 cm

Table 3.1: Fit parameters of the shower shape model described in [90]

The geometrical interpretation of bi as a longitudinal source distance was also never

enforced in the fit. It is suspected that this variable could help correct for asymmetric

shower shapes which occur with high incident angle photons; however, such attempts only

resolve photons which, given the FMS geometry, are up to a conservative maximum of 0.5

cm away from the symmetric shower shape photon reconstructed positions, which use the

parameterization in table 3.1. Furthermore, the reconstructed position is much more sensitive

to the z plane upon which the photon trajectory is projected: for an angle of incidence of

5◦ (large cells region), projecting to the front of the FMS at 720 cm would give a position

that is almost 4 cm different from a position determined by projecting to the maximum of

the longitudinal shower, which is typically at 735 cm.

The effect of incident angle corrections is very small in the context of other uncertainties

which contribute to the Aπ
0

LL measurement and they are therefore not implemented in this

analysis. Instead, the parameterization in table 3.1 is used. For further details on shower

shapes as well as incident angle correction attempts, see appendix E.

Figure 3.8 shows a sample shower shape for small cells, in 1-dimension. At xc = 0, the

photon was deposited in the exact center of the cell: this cell will get roughly 80% of the

energy deposition, according to the vertical axis of the figure. As xc approaches the size of

the small cells, ±3.8 cm, the amount of energy deposited in the cell which the photon hit

decreases. At xc = 5 cm, for example, the photon actually hit the next adjacent cell, and

only a few percent of the photon’s energy was deposited in the cell centered at (xc, yc).

3.4.3 Distinguishing Between 1-photon and 2-photon Clusters

At high energies, it becomes difficult to distinguish 2-photon clusters from 1-photon clusters,

because the opening angle of 2 photons from a 1 → 2 body decay decreases as a function

of energy. In order to distinguish 1-photon clusters from 2-photon clusters, a principal

components analysis is performed. The goal is to establish a sense of the “width” of the

76



cm
-6 -4 -2 0 2 4 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-110

1

10

cm
0 1 2 3 4 5 6

-210

-110

1

-110

1

10

Figure 3.10: Left: Vertical shower shape measured in the blue area. Right: Log-scale zoom

in on the tails

a1 a2 a3 b1 b2 b3

1.06841 0.150087 -0.171292 0.37491 0.860969 0.386676

Table 3.1: parameters of the symmetric shower shape
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Figure 3.11: Left: comparing symmetric shower shape in data (dashed blue line) and

simulation (black points). Right: Log-scale zooming in on the tails

51

Figure 3.8: Sample shower shape in 1 dimension. The vertical axis is G(xc), the fraction of
light a cell C would see, had the photon stuck the FMS at a transverse distance of xc from
the center of cell C; the horizontal axis is xc in units of centimeters. The histogrammed
data are from simulation and the dashed line is the shower shape G(xc) for FMS small cells.
From [91].

cluster, along the direction of maximum width, i.e., along the direction of the first principal

component. For more details, see [92, 56, 91]; the implementation of this method is sketched

here. Also note that the cluster merging complicates the shower shape model a bit, but is

not too difficult to resolve; see the aforementioned references.

Let i represent the ith cell in a given cluster, with energy Ei, centered at transverse

position (xi, yi). Consider the following weighted centroid of the distribution, given a ∈ {x, y}
as indexing x-position or y-position:

〈xa〉 =

∑
iwix

a
i∑

iwi
. (3.8)

The sums run over all cells in the cluster, and the weights wi are defined as wi = log (Ei + Eo),

where E0 = 0.5 GeV. According to [92], this choice of E0 is arbitrary and is designed to

mitigate 1–2 ADC count fluctuations, assuming a typical resolution of 0.2 GeV/count. With

this centroid in hand, we calculate the covariance matrix elements σab:

σab = 〈xai xbi〉 − 〈xa〉〈xb〉. (3.9)

The eigenvalues of the covariance matrix correspond to eigenvectors which point along the
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two principal axes of the cluster. The higher eigenvalue corresponds to the eigenvector which

points along the direction of maximum width (log-E-weighted variance) of the cluster; this

eigenvalue measures this width. The two eigenvalues are

λ± =
1

2

[
σxx + σyy ±

√
(σxx − σyy)2 + 4 (σxy)2

]
(3.10)

and we define the principal variances σ2
max = λ+ and σ2

min = λ−. The eigenvectors are

V± =


 σxx − σyy ±

√
(σxx − σyy)2 + 4 (σxy)2

2σxy
, 1


 (3.11)

and the variance along V+ is equivalent to σ2
max.

The variable σmax, plotted as a function of cluster energy, reveals two bands: one which

is mostly 1-photon clusters and another which is mostly 2-photon clusters. See [92] for more

details on how cuts on σmax are used to separate the 1-photon clusters from the 2-photon

clusters. Basically, if σmax is large enough, it is likely a 2-photon cluster.

3.4.4 Clustering Algorithm

Given a list of photons for an event, the next step is to start to look for photon pairs in

order to begin identifying π0 candidates; the most trivial way to do this for an event with

n photons is to consider all of the
(
n
2

)
possible pairs, however in practice it is more efficient

to bias pair-finding toward proximal photons. The pair-finding is performed by a type of

clustering algorithm, which organizes all photons into groups of photons, called cone-clusters,

limited in size by isolation cones. The isolation cone technique uses a cone of a fixed radius,

defining the maximum size of a cone-cluster. If the isolation cone radius is very high, only

highly isolated π0s will be identified; on the other hand, if the isolation cone radius is too

low, splitting of photon pairs between adjacent cone-clusters becomes an issue. Ideally, for

an inclusive analysis one wants a cone radius which is low enough such that π0s of any level

of isolation are found, but high enough such that π0s are unlikely to have their photons split

between adjacent cone-clusters. An example of a 35 mrad cone with respect to the FMS

size is shown in figure 3.9; this particular cone size turned out to be the most optimal choice

in providing an inclusive-like sample of π0s, when compared to several other isolation cone

radii.

The cone-clustering algorithm begins by sorting all photons in the event in descending

order of energy. An isolation cone is drawn around the first, highest-E photon, centered
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on its trajectory; this photon begins the first cone-cluster. Each subsequent photon on the

sorted list is then compared to the current list of cone-clusters, and if the photon is within

an isolation cone radius of any cone-cluster on that list, then it is added to that cone-cluster;

that cone-cluster’s isolation cone is then re-centered on the cone-cluster energy centroid.

On the other hand, if the photon is not within any defined cone-cluster, a new cone-cluster

is started for that photon. The algorithm proceeds until all of the photons (with energy

greater than a soft energy cutoff) of the event are organized into cone-clusters. Finally, the

cone-clusters themselves are sorted by energy and stored in a data tree for that event, along

with their kinematics.

Given the sorted list of cone-clusters, one can then begin to search for π0s. Only cone-

clusters with at least two photons are candidates for containing a π0; of these cone-clusters,

the highest energy pair in the highest energy cone-cluster of each event was found to give the

cleanest sample of π0 candidates. For an inclusive measurement, one wants the maximum π0

mass signal with the minimum background; furthermore, given the clustering algorithm, one

must be mindful of cases where the photon pairs are split between adjacent cone-clusters,

which cause combinatorial losses of π0s. Various samples of photon pairs were compared

using a variety of isolation cone sizes, minimum photon energy cutoffs, and minimum pair

transverse momentum cutoffs. Looking at the highest energy photon pair in the highest

energy cone-cluster of each event, an isolation cone of 35 mrad (figure 3.9), a minimum

photon energy of 3 GeV, and a minimum photon pair pT of 1.5 GeV provided the best

inclusive-surrogate sample, when compared to all other tested samples. Combinatorial losses

due to pair-splitting between adjacent cone-clusters are limited to 2%. This sample of photon

pairs is the closest we are able to get to a “true” inclusive sample of π0s and is the sample

used for the Aπ
0

LL analysis.

3.4.5 Energy Dependence of the Mass

Once pairs of photons have been selected, one may begin to look at their invariant masses;

the determination of invariant mass depends on the photon energies as well as their opening

angle, as was shown in section 3.2. The fit algorithm for fitting clusters of energy deposits in

the FMS to a shower shape has a tendency to overestimate the decay photon opening angle,

α, at higher pair energies. Figure 3.10 shows an example of this effect, where the monochrome

histogram is of α vs. E. The red lines in this figure indicate constant M contours (π0 mass

contour is solid) for fixed values Z = 0 (left), Z = 0.44 (middle), and Z = 0.8; while the α

vs. E data in these three figures are the same, the position of the M(α,E) contours still has

a dependence on Z, thus M contours for three values of Z are shown. The data histograms
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Figure 3.9: Sample 35 mrad isolation cone projected onto the FMS; the vertex of the cone
is situated at the nominal interaction point.

contain data in the range 0 ≤ Z ≤ 0.8 in all three plots and show that α decreases as a

function of E, however the decrease is not as rapid as the contours indicate it should be.

These data show a clear overestimation of the value of α, which worsens as the E increases.

Figure 3.11 shows the pair invariant mass, M , as a function of E; contours of constant

α are plotted, again for three values of Z. These contours show that for a specific value

of α and Z, the mass increases monotonically with respect to the energy. Since the value

of α is not falling rapidly enough with respect to E, the data tend toward following these

α contours, rather than remaining flat on a line of constant M . In other words, we see a

monotonic increase in the reconstructed M as a function of E, directly associated with the

overestimation of α as E increases.

To compensate for this overestimate of α, one could implement an α-dependent dependent

correction; this correction could be done in such a way that the E-dependence on the mass

would become flat. Instead, however, we decided to simply implement an E-dependent mass

cut scheme, as will be discussed in section 3.7.3.

3.5 Gain Corrections

This section outlines the corrections to the gains of each FMS cell, where gain is defined as the

proportionality between ADC counts and energy. While the voltages of each FMS cell were

adjusted during data-taking so that specific gains are achieved which set the reconstructed

π0 mass peaks to be around the proper π0 mass, additional corrections to the gains can

be made after the data acquisition period. These corrections arise from radiation damage

effects, as well as from a nonlinearity in the response of the FMS PMTs.
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Figure 3.10: Pair opening angle α vs. pair energy E, where Run 12 data are shown in
monochrome. The red lines are contours of constant mass M , given a value of Z = 0 (left),
Z = 0.44 (middle), and Z = 0.8 (right); the ideal π0 mass contour is drawn solidly.
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Figure 3.11: Pair mass M vs. pair energy E, where Run 12 data are shown in monochrome.
The red lines are contours of constant opening angle α, given a value of Z = 0 (left), Z = 0.44
(middle), and Z = 0.8 (right).

3.5.1 Time-Dependent Corrections – The LED Flasher System

The radiation damage caused a time-dependent degradation in the overall PMT response.

Furthermore, the PMT responses had a tendency to vary in time during all Runs before Run

15, due to malfunctioning Zener diodes in the PMT bases. These time-dependent variations

in PMT responses are corrected for by making use of data collected from the FMS LED

flasher system.

The LED flasher system used in Runs 12 and 13 was composed of a set of LEDs pulsing

at 1 Hz, where the LED light outputs were directed into a tree of fiber optic cables such

that each cell had a fiber optic LED light output directed at its transverse center. Although
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there was an independent STAR trigger used for the LED system, it was more practical

to pick the LED events from the overall trigger data by looking for events which had very

high ADC sums (over all cells). Since the LED flasher system pulses light into all channels

simultaneously, the resultant ADC sum from any LED pulse is much higher than the typical

ADC sums seen during usual data taking, and the LED events are therefore very easy to

identify.

The time-dependent variations in gain of all of the PMTs can be tracked by looking at

the time-dependence of the ADC distributions seen from LED events. This tracking gives

one the ability to correct for these effects, by simply introducing a time-dependent gain

correction, which tracks the variations and mostly corrects for them.

3.5.2 Nonlinear Energy-Dependent Response Correction

Another piece of the gain correction comes from a nonlinear dependence on energy of the

PMT response. This effect is mostly due to the dependence of the electromagnetic shower

shape on the depth, z, in the Pb-glass cells; for example, the effective z-position of the

shower maximum depends on incident energy and on incident angle. This dependence is

the source of different effective attenuation lengths, which in turn causes a nonlinearity in

the relationship between the energy measured by the PMT, the “observed energy,” and the

energy of the incident photon, the “true energy.” In order to correct for this behavior, an

additional nonlinear energy-dependent gain correction is applied.

3.5.2.1 Nonlinear Gain Correction Model

To model the nonlinearity, we first take a closer look at the monotonically increasing de-

pendence of the reconstructed pion mass on the energy. The left panel of figure 3.12 shows

reconstructed π0 masses as a function of one of the photon energies in green, in comparison

to η-mesons in black. These data are from Run 15, however, the dependence is similar in

Runs 12 and 13; data from Run 15 is shown here since the η-meson signal was much cleaner

than in Runs 12 and 13. One observes a slow rise in M at low E, relatively flat M at

mid-range E, and a slow rise of M at higher E.

The right panel of figure 3.12 shows a ratio of the reconstructed M to the ideal meson M ,

as a function of the two-photon opening angle, α. The low-E η-mesons, with α ∼ 40 mrad,

barely fit into the FMS acceptance, causing a cutoff at high α due to geometry. The low-E

π0s have a lot of background under the mass peak, however, they are produced with values

of α similar to those in high-E η → γγ decays; this region of event overlap is approximately

α ∈ [20, 30] mrad and shows a mis-match of reconstructed mass to meson masses. Modelling
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Figure 3.12: Left: reconstructed mass versus energy of one photon (E1) for π0s in green and
η-mesons in black; in the bracketed region, the energy of the other photon is ∼ 12 GeV.
Right: ratio of reconstructed mass to true meson mass versus two-photon opening angle.

the nonlinearities observed in the E-dependence of M could help improve this α-dependence

matching.

The high-E π0s show a steep rise in the mass ratio as α decreases; this effect is from

the aforementioned opening angle overestimation as the photon clusters merge closer and

closer. This effect is correctable by dividing the mass by an α-dependent factor, but such

a correction is not implemented in this analysis. Instead, an energy-dependent (and time-

dependent) mass cut compensates for this by tracking the π0 mass peak location and width

in bins of energy.

The E-dependence of the M in figure 3.12 motivates the following nonlinear E-dependent

gain correction. Define this correction as g(Et) = Eo/Et, where Eo is the observed energy

and Et is the “true” energy, defined as the corrected energy. The gain correction g(Et) is

modelled as a piecewise linear function over three energy regions {A,B,C}:

g(Et) =





gA(Et) = 1−
(
N −KA

t

)
εB −

(
KA
t − Et

)
εA ∀ Et ≤ KA

t

gB(Et) = 1− (N − Et) εB ∀ KA
t ≤ Et ≤ KC

t

gC(Et) = 1−
(
N −KC

t

)
εB −

(
KC
t − Et

)
εC ∀ Et ≥ KC

t

. (3.12)

The parameter N is the normalization energy point, since g(N) = 1 and is a fixed value in
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Figure 3.13: Left: reconstructed mass versus energy of one photon (E1) for π0s in green and
η-mesons in black; in the bracketed region, the energy of the other photon is ∼ 12 GeV.
Right: ratio of reconstructed mass to true meson mass versus two-photon opening angle.
This figure is a repeat of figure 3.12, but with the nonlinear E-dependent gain correction
implemented.

region B. It can be thought of as 1/2 the π0 mass calibration anchor energy, that is, the

energy at which the calibration is performed, which is needed so that the E-dependence of

the mass does not impact calibration. The factor 1/2 originates from assuming that most π0s

decay to 2 equal-E photons; this assumption is not exactly true since the energy imbalance,

Z, is not always 0 and does not average out to 0 either, but this assumption is a sufficient

starting anchor point for this g(Et) model. The energies {KA
t , K

C
t } are boundaries between

the energy regions; they are subscripted by t to indicate that these “crossover” energy points

represent region boundaries in Et-space, as opposed to boundaries in Eo-space. Finally, the

parameters {εA, εB, εC} are slopes of g(Et) in each of the three energy regions.

The effect of an example correction of the form of equation 3.12 is plotted in figure 3.13,

which shows the same plots as figure 3.12, but now with the new gain correction implemented.

The E-dependence of the mass has flattened out a bit; furthermore, the matching of low-E

π0s with high-E η-mesons has significantly improved. Figure 3.13 is, again, from Run 15

data, but the effect is the same in Runs 12 and 13.

The parameters of equation 3.12 were refined using a Geant4 simulation of the FMS. By

analyzing the photon yield at the photo-cathodes as a function of thrown incident photon

energy, the fit parameters given in table 3.2 were obtained. This parameterization is plotted
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Figure 3.14: Nonlinear energy-dependent gain correction model for large cells (left) and small
cells (right). Colors red, green, and blue indicate energy regions A,B, and C, respectively.
The solid line is the day-0 model, with baseline radiation damage, and the dashed line is the
day-300 model, the modified form of g(Et) after 300 days worth of radiation damage.

as the solid line in figure 3.14. Region A, the low energy region, has a high slope which

corresponds to the rising mass at low energy as seen in figure 3.12; this is the aforementioned

overlap region, where high-α π0s overlap with low-α η-mesons. On the other hand, regions

B and C have flatter E-dependences.

Cells Type N KA
t KB

t εA εB εC

Large Cells 12.5 GeV 8.6 GeV 20.1 GeV 0.015 0.0082 0.0023
Small Cells 20 GeV 10.2 GeV 34.1 GeV 0.020 0.0048 0.0020

Table 3.2: Values of parameters in g(Et) model, equation 3.12.

3.5.2.2 Including Radiation Damage

We now turn to considering the effect of radiation damage on this gain correction. The

longitudinal dependence of the radiation damage when considered along with the shower

shape is the origin of additional nonlinearity in the gain correction, which cannot be factored

out directly. As a starting point, we attempt to model the radiation damage accumulation

as a function of time. The amount of accumulated radiation damage is proportional to

the number of F-centers which have formed, where F-centers are electrons which occupy

anionic vacancies in the glass. Assuming the rate of F-center formation is proportional to

the number of unfilled anionic vacancies, the rate of radiation damage accumulation decreases

linearly with respect to the amount of accumulated radiation damage. Therefore the time-

dependence of a general variable R, which characterizes the amount of radiation damage,
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evolves with respect to time t as

dR

dt
= λ [R∞ −R(t)] =⇒ R(t) = R∞ − (R∞ −R0) e−λt, (3.13)

where R0 = R(0), R∞ = limt→∞R(t), and λ = 1/τ with τ the time constant.

To evaluate effects of radiation damage, another simulation was performed. The radiation

damage longitudinal profile was assumed to match the typical energy deposition longitudi-

nal profiles, which was obtained from minimum-bias PYTHIA events thrown at a model

FMS with undamaged, clear Pb-glass. Under this assumption, for any specified amount of

radiation damage, the radiation damage in the glass can be simulated by a modification of

the attenuation coefficients. The photon yield as a function of thrown photon energy was

assessed for a range of days’ worth of radiation damage accumulation and it showed that

the relative strength of the nonlinear gain correction increases as a function of accumulated

radiation damage.

The simulation was performed for photons thrown at the large cells in an η range of

3.1±0.05 and at the small cells in an η range of 3.9±0.05; these values of η are approximate

maximum values of η for the large cells and small cells and they represent the regions of

highest radiation damage for each cell type. For each simulated day, the photon yield as a

function of energy was fit with the g(E) model in equation 3.12, with fixed crossover energies

and constrained to unity at the anchor point energies. For all three energy regions, the slopes

of the fits were observed to evolve similarly in time; consequently, a time-dependent model

of the effect of radiation damage on the nonlinear gain correction can be captured simply by

a “slope factor”, which multiplies all slopes in g(E). This slope factor was ultimately chosen

as the variable R(t), with time-dependence given in equation 3.13.

The slope factor, R(t), was evaluated for one (small range around a) value of η for large

cells and another for small cells, but it can be extrapolated to apply to all pseudorapidities.

Cells closer to the beam line will receive more radiation damage than those farther away.

This η-dependence can be folded in to the time constant as follows: first assume that at

pseudorapidity η0 the amount of radiation damage was ∆t days’ worth. The cells with

pseudorapidity η < η0 therefore experienced less than ∆t days’ worth of damage. Now let

the time constant be τ0 at the value of η = η0, and let η0 be where the g(E) fits were

performed. For η < η0, the radiation damage is expected to be less, and consequently the

time constant should be longer. Therefore, we assume

λ→ λ(η) = λ0e
−h0+h1η, (3.14)

where λ0, h0, and h1 are fit parameters and are constrained by λ(η0) = λ0. Their explicit
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values were determined by looking at ratios in flasher LED amplitudes as a function of η.

Finally, the full radiation damage parameterization is given table 3.3. Figure 3.15 shows

the plot of the η-dependence of the factor λ(η)/λ0, which is unity at the chosen fit points

η0, and decreases with decreasing η. Figure 3.16 shows the behavior of R(t) as a function of

days worth of radiation damage (using Run 15 luminosities); it is plotted for various values

of η. The value of R(t) increases with respect to t and also with respect to η.

Cells Type R∞ R0 λ0

[
day−1

]
h0 h1

Large Cells 4.46 1.0 0.0028 7.37 2.38
Small Cells 3.44 1.0 0.0022 7.44 1.91

Table 3.3: Values of parameters used in radiation damage extension of g(E) model.

The radiation damage accumulation rate was assumed to be a 0.5% degradation per day

for the large cells and a 1.5% degradation per day for small cells; these values are specific to

Run 15, but it is straightforward to translate a Run 15 day’s worth of radiation damage to

a Run 12 or 13 day’s worth. Runs 12 and 13 had approximate delivered luminosities of 4.0

pb−1 per day (during the analyzed data period) and Run 15 had about 2.4 pb−1 per day.

Furthermore, the beam energy for Run 15 was 100 GeV, whereas that for Runs 12 and 13 was

255 GeV; the ratio of these beam energies accounts for different amounts of radiation damage

delivered per unit luminosity between Runs 12+13 and Run 15. Therefore, one Run 12 or 13

day corresponds to an estimate of (1 Run 12+13 Day)×(4.0/2.4)×(255 GeV/100 GeV) = 4.2

Run 15 days’ worth of radiation damage.

Ultimately, the effects of two forms of the nonlinear gain correction are evaluated. Let

g0(Et) represent the “day-0” model, that is, the state of the g(Et) before additional radiation

damage accumulated. This g0(Et) was plotted as the solid line in figure 3.14 (and since

t = 0, it does not depend on η). A model after D days’ worth of radiation damage was

also considered, called the “day-D” model and denoted gD(Et). For each run in the Aπ
0

LL

data set, D was set to the number of days of running after the beginning of Run 12, times

the aforementioned 4.2 Run 15 days per Run 12+13 day factor; the maximum value of D

analyzed was 281. In figure 3.14, the g300(Et) model is plotted as the dashed line, given the

pseudorapidities of 2.9 and 3.5 for the large and small cells, respectively.

3.5.2.3 Application of the Correction

In order to make use of g(Et), one must obtain Et(Eo) by solving the quadratic equation

Eo = Et · g(Et). Letting I ∈ {A,B,C} denote a region, the physically relevant solution is

Et(Eo) =
1

2εI

[
−gI(0) +

√
4εIEo + gI(0)2

]
(3.15)
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Figure 3.15: Pseudorapidity factor λ(η)/λ0 in equation 3.14 for large cells (left) and small
cells (right).

Figure 3.16: Slope factor R(t) in equation 3.13 for large cells (left) and small cells (right),
for various values of η.
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Figure 3.17: Corrected energy Et, that is, the supposed thrown energy, plotted as a function
of observed energy Eo for large cells (left) and small cells (right). Colors red, green, and blue
indicate energy regions A,B, and C, respectively. Solid line is day-0 model and dashed line
is day-300.
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and the crossover energy points in Eo-space are KI
o = KI

t · g(KI
t ). Figure 3.17 shows the

true (thrown) energy as a function of the observed energy, as given by equation 3.15. The

fractional difference between the day-0 and day-300 corrected energies can be up to 5%.

In order to assess the impact this gain correction has on π0s for the Aπ
0

LL analysis, the

shift in pT must be measured, since we ultimately measure Aπ
0

LL as a function of pT . The

shifted pT , defined as pTt , is

pTt =

√
E2
t −M2

t

cosh η
, (3.16)

where Et = E1t(E1o)+E2t(E2o) is the corrected total energy and Mt = Mo/
√
g(E1t)g(E2t) is

the corrected mass. The corrected Z is also straightforward to compute. Both the corrected η

and φ are obtained via the sum of the corrected 4-momenta of the photons, but the fractional

changes in these values are small.

Given the day-0 and day-D models’ corrected pT values, figures 3.18 and 3.19 respectively

show the fractional change in pT , defined as ∆pT = (pTt − pTo) /pTo versus the original pTo .

The day-0 model on average reduces pT by about 3–8% whereas the day-D model reduces it

by about 5–10%.
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Outer Region Day-0 ∆pT vs. pTo Inner Region Day-0 ∆pT vs. pTo
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Figure 3.18: Fractional change in pT , denoted ∆pT , vs pTo for outer region (left) and inner
region (right); this is for the day-0 model.
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Figure 3.19: Same as figure 3.18, but for day-D.
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3.6 Hot Tower Masking

After full pion reconstruction was executed, there were some specific, small areas of the FMS

geometry (or of kinematics distributions) that had several more events than other regions.

Occasionally during the data-taking period, a single PMT gain would change such that it

would be dominantly firing the trigger. Such a pathology is called a hot tower and during

data-taking, monitoring tools enabled detector operators to find and suppress hot towers,

but not all could be suppressed in a timely manner.

Hot towers primarily appear as sharp peaks in the photon (or pion) position distributions.

They can also sometimes appear as single isolated spikes in E, pT , or even in M distributions.

Runs which have a spike in any of these three distributions were excluded from the Aπ
0

LL

analysis. The majority of all the data, however, have a few such spikes in the photon

position distributions, which needs a more careful treatment.

The omission of cells or regions around cells which were hot is called hot tower masking,

and must be done before photon reconstruction. The decision to implement hot tower mask-

ing occurred long after the data were reconstructed, however, and given that reconstruction

is a rather long, CPU-intensive process, we decided to simply mask out hot spots in the

photon position distributions instead. Pions that have photons too close to any hot spot are

removed from the analysis.

Figure 3.20 illustrates the hot spot search algorithm, which takes a photon position

distribution and iteratively searches for hot spots; this is done for each runset, which is a set

of 5–10 subsequent runs, all of which are in the same fill. Some of the hot spot peaks are

much higher than others, so the algorithm begins at the highest peak and scans downward.

Starting from the highest peak, it is first checked for certain criteria which define a hot spot;

if the criteria are satisfied, then this peak is added to the list of hot spots. Whether or not

this peak is added to the list of hot spots, it and its small local neighborhood are deleted

from the position distribution so that the next highest distribution bin the algorithm finds

is not some “foothill” of any peak which was already analyzed. Furthermore, subsequent

candidate hot spots must be sufficiently far from any other hot spots already on the list of

hot spots.

For each candidate hot spot, defined as the position distribution’s current highest bin,

the following metrics are computed:

• i is the number of hot spots added to the list

• H is the number of entries in the hot spot’s tallest bin

• P is the number of entries in a 3 bins × 3 bins neighborhood centered around the
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Figure 3.20: Hot spot search algorithm; a sample removal of a hot spot candidate’s peak bin
and its 8 adjacent bins (i.e., the patch) is shown at the bottom of the figure.

tallest bin; this neighborhood is called the patch

• A is the average number of events over all the nonzero bins in the entire position

distribution

• σmax is the maximum eigenvalue of the moment matrix of the patch and is defined

analogously to the σmax used in single and 2-photon cluster separation.

Using these metrics, several criteria are defined. First, i should be limited and be no

higher than some value imax, so that only a few hot spots are considered; removing too many

causes the algorithm to start identifying local maxima of the usual noise in the position

distributions. The sharpness of the peak is roughly given by the ratio of H to P ; if it is too

low, then the hot spot candidate peak is rather wide and likely not from a single isolated

hot tower. Another characterization of the peak width is given by σ2
max and if this value is

too high, then the candidate hot spot is too wide; H/P and σ2
max are approximately anti-

correlated with each other. Finally, the value of H above the overall distribution average A

should be rather high, that is, the peak should be at least [H/A]min times taller than the

distribution average. This last criterion is one which, if satisfied, overrides all the aforemen-

tioned criteria; it is rarely satisfied for i > 5. The full criterion for a hot spot candidate to
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be accepted as a hot spot is the boolean

(
i < imax AND H/P > [H/P ]min AND σ2

max <
[
σ2

max

]
max

)
OR H/A > [H/A]max . (3.17)

The values have been tuned to the data and the effects of the algorithm on the hot spot

candidate’s distributions of σ2
max and H/P versus i are shown in figures 3.21-3.23. For all

three data sets, Run 12 outer region, Run 12 inner region, and Run 13 outer region, the

values used in equation 3.17 are given in table 3.4.

Data Sector imax [H/P ]min [σ2
max]max [H/A]min

Run 12 Outer 6 0.3 0.8 20
Run 12 Inner 5 0.4 0.8 15
Run 13 Outer 7 0.4 0.7 20

Table 3.4: Values of parameters use to set limits on which hot spots are removed.

After a list of hot spots is generated for all runsets in the dataset, a masking algorithm

is applied on all candidate π0s in the Aπ
0

LL analysis. Basically, if either photon which makes

the π0 is too close to a hot tower, its parent π0 is omitted from the analysis; here “too close”

is defined as within a square of side-length 3 × [cell width] centered around any hot spot.

This π0 masking procedure is summarized in figure 3.24.
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Run 12 Outer Region Hot Spot Removal
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Figure 3.21: For Run 12 outer region, distributions of hot spot candidate σ2
max versus i (top)

and H/P versus i (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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Run 12 Inner Region Hot Spot Removal
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Figure 3.22: For Run 12 inner region, distributions of hot spot candidate σ2
max versus i (top)

and H/P versus i (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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Run 13 Outer Region Hot Spot Removal
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Figure 3.23: For Run 13 outer region, distributions of hot spot candidate σ2
max versus i (top)

and H/P versus i (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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Figure 3.24: Hot spot π0-masking algorithm.

3.7 Pion Event Selection

Finally, we specify the set of kinematic cuts used to define the analyzed π0 sample for the

Aπ
0

LL measurement.

3.7.1 General Kinematic Cuts

The set of cuts used to identify π0s are:

• Highest energy pair in the highest energy cone-cluster in the event

• Pseudorapidity:

– Outer Region: η ∈ [2.65, 3.15]

– Inner Region: η ∈ [3.15, 3.9]

• Energy:

– Outer Region: E ∈ [30, 70] GeV

– Inner Region: E ∈ [30, 100] GeV

• Transverse Momentum: pT greater than time-dependent threshold (details below); the

upper limit of pT is restricted by the lower limit on η and the upper limit on E

– Outer Region: pT ∈ [pthresh
T , 9.8] GeV
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– Inner Region: pT ∈ [pthresh
T , 8.6] GeV

• Energy Imbalance: Z ∈ [0, 0.8)

• Energy-and-time-dependent Mass Cut (details below)

3.7.2 pT Threshold Cut

Because of the ever-increasing radiation damage during Runs 12 and 13, several side effects

occurred. One of the most noticeable ones in the π0 kinematics is a slow increase in the

overall pT distribution and threshold. In order to maintain an appropriate lower bound on

the π0 pT , a time-dependent pT threshold cut was implemented. Each DAQ run’s π0 pT

distribution was first fit to a Gaussian in order to approximate the rise and fall in pT just

above the nominal threshold. The pT lower bound was then selected as the pT value at which

the distribution is 2/3 of the Gaussian fit height, on the low side of the pT distribution. This

algorithm provided a consistent pT cut for all runs analyzed.

Figures 3.25-3.27 show pT distributions on the vertical axis versus run on the horizontal

axis, for all runs analyzed in Aπ
0

LL; each run’s distribution is normalized by its integral and

the runs are plotted in chronological order. The black line indicates the pT lower cutoff

as determined by the fits and the magenta dots indicate the distribution means. Both the

distribution means and the pT lower cutoffs increase as a function of time. Sometimes a

step up or down in the distributions is observed, for example in the Run 12 outer region

around run index 100; these steps are indicative of trigger threshold adjustments during the

data-taking period.
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Figure 3.25: π0 pT normalized distribution vs internal run index for Run 12 outer η region.
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Figure 3.26: π0 pT normalized distribution vs internal run index for Run 12 inner η region.
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Figure 3.27: π0 pT normalized distribution vs internal run index for Run 13 outer η region.

3.7.3 Mass Cut

Recall from section 3.4.5 that the source of the energy dependence of the mass is that the

fit algorithm for clusters has a tendency to overestimate the decay photon opening angle,

α. Instead of implementing an α-dependent energy correction, the 2-photon sample, which

satisfies all π0 cuts except for the mass cuts, is divided into bins of energy. The invariant

mass distribution of 2-photon events within each bin is fit with a skewed Gaussian; this is

done on a runset-by-runset basis. The skewed Gaussian is used to determine a value which

approximates the π0 peak maximum, that is, the approximate mode of the mass distribution

had it been smoothed; using the fit to determine the peak maximum provides more of a

stable maximum than the distribution maximum itself would.

Starting from the maximum of the fit, the lower and upper bounds of the mass window

are established by tracing down each side of the skewed Gaussian function until its value

is such that the fit function is a fraction f of the value of the distribution maximum; the

fraction f = 0.2 is used for the lower bound and f = 0.3 for the upper bound, for both inner

and outer regions. Alternate mass cut determination algorithms were attempted, such as

using the fit parameters to determine the skewed Gaussian mean and standard deviation,

however, the implemented algorithm provides more of a stable result than other attempts

did. The choices of how far one slides on either side were determined empirically and provide

a reasonable set of cuts for all E bins, both η regions, for all runsets throughout Runs 12
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and 13.

Figures 3.28 and 3.29 show a sample runset’s mass distributions for each energy bin,

for the outer region and inner region respectively. The energy bins, plotted in order from

left-to-right, top-to-bottom, are: [30, 40), [40, 50), [50, 60), [60, 70), [70, 85), [85, 100) GeV,

where the last two bins are only plotted for the inner region. The overall mass cuts used

in the Aπ
0

LL analysis as a function of a chronological runset index are provided in figures

3.30-3.32. The fit maxima are plotted as the points and their error bars represent the full

mass window of π0s considered for Aπ
0

LL.

A sideband region is also obtained using these mass cuts and fits. This sideband region

is a sample of background events between the π0 and η-meson mass peaks, which is used to

determine a background ALL and later subtracted out of the full Aπ
0

LL. The upper bound of

the π0 mass window is used as the lower bound of this sideband region. The sideband upper

bound is set such that the width of the sideband region is equal to the width of the region

between the fit maximum and the π0 mass window upper bound; this definition is sufficient

to keep the sideband region from crossing into the η-meson mass peak around 0.55 GeV.

Like the π0 mass windows, these sidebands are defined on a runset-by-runset basis for each

E bin.
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   α  0.1± 7 
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Figure 3.28: Sample 2-photon mass distributions for the outer region for various E bins (given
in text); tall green lines indicate π0 mass cuts, in between which is a blue line indicating the
distribution maximum as approximated by the fit (red curve). The short cyan line is the
upper bound of the sideband region.
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   σ  0.001± 0.111 
   α  0.13± 8.18 

N         1.24e+01± 1.88e+03 
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[3.15,3.90] :: E∈η distribution :: γγset100Bb :: M

Figure 3.29: Sample 2-photon mass distributions for the inner region for various E bins
(given in text).
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Figure 3.30: π0 mass windows vs. runset index for Run 12 outer region.
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Figure 3.31: π0 mass windows vs. runset index for Run 13 outer region.
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Figure 3.32: π0 mass windows vs. runset index for Run 12 inner region.
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3.7.4 Kinematics Distributions

Now that all of the π0 cuts have been discussed, the resulting π0 dataset’s kinematic distri-

butions are presented. Figure 3.33 shows the π0 pT vs. E plane. In this plane, bands are

visible, which follow lines of constant pseudorapidity. The data in this plot are bounded by

two diagonal lines given by the pseudorapidity bounds, a lowest time-dependent pT threshold

minimum, and lower and upper E bounds. The data peaks within a pT range of 3.5–6 GeV

for the outer region and 2.5–4.5 GeV for the inner region.

The position-space distributions of reconstructed π0 trajectories are plotted in figure

3.34. There are some relatively “warm” areas of the detector, which are small regions which

have more than average π0 hits. These areas have survived the hot spot masking algorithm,

which served to remove the worst-case hot spots; removing these additional warm areas does

not meaningfully impact the Aπ
0

LL results. In some cases, hot spots persisted for most or all

of the Aπ
0

LL dataset, and appear as holes in these distributions.

In Run 13, there was a problem with the upper-left quadrant of the detector; figure 3.34

shows that there is much less data there. This was because trigger crate QT3 malfunctioned

shortly after the beginning of the data-taking period and was subsequently disabled for the

remainder of the data-taking period. Fortunately, Aπ
0

LL is not dependent on azimuth and is

thus not affected by this issue.

Figure 3.35 shows the Z-distributions, without the Z < 0.8 cut applied. The absolute

upper limit on Z is determined by the energy cuts: Zmax =
[(
Eπ0

max − Eγ
min

)
− Eγ

min

]
/Eπ0

max.

In the photon reconstruction algorithm, there is a soft-energy cutoff demanding that the

photon energy be at least Eγ
min = 6 GeV. The values of Eπ0

max are 70 GeV and 100 GeV for

the outer and inner regions, as discussed. Therefore, Zmax is 0.83 for the outer region and

0.88 for the inner region. The Z < 0.8 cut impacts the inner region more than the outer

region.

Figures 3.36 and 3.37 show the full Aπ
0

LL pion pT distributions as well as the binning used

for the Aπ
0

LL calculation, indicated by the tall vertical black lines. The Aπ
0

LL calculation occurs

for four pT bins over the two η regions, separately, integrating over the other kinematic

variables (see section 6.1 for numerical bin boundary values). The pT binning has been

chosen to roughly equalize the pion yields within each bin, rounded to the nearest sensible

number. Each bin has a red cross-shaped marker: its horizontal position indicates the pT bin

means and its horizontal extent indicates the bin RMS values. The overall lower bounds are

given by the pT threshold cuts and the overall upper bounds are constrained by kinematics:

pmax
T ≈ Eπ0

max/ cosh ηmin. For the outer region, pmax
T = 9.8 GeV and for the inner region, 8.6

GeV. The minimum value of pT allowed by kinematics, pmin
T ≈ Eπ0

min/ cosh ηmax, is below the

pT thresholds over the entire dataset.
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Figure 3.33: π0 pT vs E for Run 12 outer region (top), Run 12 inner region (middle) and
Run 13 outer region (bottom).
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Figure 3.34: π0 y-position vs x-position for Run 12 outer region (top), Run 12 inner region
(middle) and Run 13 outer region (bottom).
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Figure 3.35: π0 Z distribution (Z < 0.8 cut not applied) for Run 12 outer region (top), Run
12 inner region (middle) and Run 13 outer region (bottom).
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pT [GeV]

Figure 3.36: π0 pT distribution for outer region. Tall black lines denote pT bin boundaries.
Horizontal positions of vertical red lines indicate pT bin means. Lengths of horizontal red
lines indicate bin RMS values. Note that this includes both Runs 12 and 13.
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Figure 3.37: π0 pT distribution for inner region. Note that this is for Run 12 only.
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Chapter 4

Relative Luminosity

The relative luminosity is a ratio of luminosities for production from one set of spin states

to another. For the longitudinal double-spin asymmetry, it is the ratio of luminosity from

same-helicity bunch crossings to that from opposite-helicity bunch crossings:

R3 =
L++ + L−−
L+− + L−+

. (4.1)

Other relative luminosity ratios may be formed, which correspond to different kinds of asym-

metries; see appendix B for the other combinations and associated details. This chapter

presents the R3 measurement as well as various diagnostics on its determination and consis-

tency.

4.1 Basic Computation Algorithm

The relative luminosity is typically measured by high-rate scaler detectors, which were de-

scribed in section 2.4. At STAR, the scaler detectors are the Beam-Beam Counter (BBC),

the Vertex Position Detector (VPD), and the Zero Degree Calorimeter (ZDC). Hits in the

scaler detectors, which satisfy certain conditions such as ADC > threshold, are read out for

every bunch crossing via the scaler boards. Since luminosity is proportional to yield, the

number of hits for each initial proton helicity combination hahb can then be taken as the

values of Lhahb in equation 4.1, since proportionality factors such as efficiency and acceptance

cancel in the ratio.

In both Runs 12 and 13, there was a designated luminosity scaler board used for such

analyses. In Run 12, scaler board number 12 read out 24-bit streams for every bunch

crossing, whereas in Run 13, board number 4 read out 32-bit streams. In both Runs, the

last 7 bits represent a bunch crossing number with possible values 0–127, where a value of
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0–119 represents a STAR bunch crossing. The proton beams at RHIC include 360 possible

RF (radio frequency) buckets, each of which can hold a proton bunch with ∼ 1010 protons;

these buckets are timed with the RF cavities of RHIC, which accelerate the protons as they

pass through them. Typically only every third bucket is filled; furthermore, the last 9 of

these 120 buckets are left empty. This empty region in the fill pattern is called the abort gap,

and is very useful for many different purposes such as background studies and systematics,

along with verifying the alignment of spin patterns with the observed collisions.

At PHENIX, the abort gaps from each beam are aligned, so that the abort gap from one

beam “collides” with the abort gap of the other. At STAR, however, the abort gaps are not

aligned, since the relative cogging between the beams depends on position within the RHIC

rings. With the aforementioned crossing numbering, the abort gaps at STAR occupy bunch

crossings 31–39, corresponding to the yellow beam abort gap, and 111–119, corresponding

to the blue beam abort gap. Although the distinction between beam directions does not

matter much for a double-spin asymmetry measurement, it is worth noting that the blue

beam travels in the west direction, toward the FMS, while the yellow beam travels east, away

from the FMS.

Figure 4.1 shows a sample spin pattern (RHIC fill number 16567) for the blue beam on

the left and for the yellow beam on the right. The vertical axis is the bunch crossing number,

starting from the bottom at bunch crossing 0. If a shaded box is drawn on the left (right),

the bunch helicity is negative (positive), so for example, the blue beam pattern starts as

− − + +. If a shaded box is drawn in the center, for example the last 9 bunches in the

blue beam, the bunch is empty. Finally, yellow boxes indicate the helicities were the same,

red indicates they were different, and cyan indicates no collision, i.e., an abort gap.

Besides bunch crossing number, the scaler bits also indicate whether a certain scaler

trigger fired. Most typically, for each scaler detector, there were two singles bits (one for the

east scaler, denoted by e, and one for the west, denoted by w) which fire if the corresponding

ADC counts are above a threshold, as well as one coincidence bit, denoted by x, which fires

if the east and west scaler ADC counts were both above threshold and occurred within a

short time window. These three bits were available for all three detector subsystems in both

Runs 12 and 13, except for the VPD x bit in Run 13.

The three scaler bits can be considered as one 3-bit unit, a triad, written as T = 4x +

2w + e. In the most ideal setting, only one of four combinations of e, w, x should occur

in each bunch crossing for each scaler detector: (1) only e fires, (2) only w fires, (3) all

three e, w, x fire (since by definition, x only fires if both e and w fired), or (4) no bits fire.

The first three of these triads are called logical bit combinations (the fourth is trivially the

zero combination), as opposed to the other four possible triads, called illogical combinations,
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Figure 4.1: Example spin patterns for blue beam (left) and yellow beam (right). The vertical
axis is the STAR bunch crossing number, and the horizontal axis is the helicity (left for −,
right for +, and center for empty bunch).
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Run 12 Scaler Bit Combinations

T x w e
BBC ZDC VPD

E W X E W X E W X

1 0 0 1 • • •
2 0 1 0 • • •
7 1 1 1 • • • • • • • • •
3 0 1 1 • • • • • • • • •
4 1 0 0
5 1 0 1 • • •
6 1 1 0 • • •

Run 13 Scaler Bit Combinations

T x w e
BBC ZDC VPD

E W X E W X E W X

1 0 0 1 • • •
2 0 1 0 • • •
7 1 1 1 • • • • • • n/a n/a n/a

3 0 1 1 • • • • • • • • •
4 1 0 0 n/a n/a n/a
5 1 0 1 • • n/a n/a n/a
6 1 1 0 • • n/a n/a n/a

Table 4.1: Scaler bit recombinations. The left most column “T” is the decimal representation
of the 7 combinations of the three scaler bits, x for coincidence, w and e for west and east
singles. The logical bit combinations, T ∈ {1, 2, 7}, are bits which are expected to fire, i.e.,
if the x bit fires, the e and w bits are also expected to fire; all other bit combinations are
called illogical combinations: T ∈ {3, 4, 5, 6}. The E, W and X scale counts are then defined
by ORing logical and illogical triads marked with •’s in each column. Note that in Run 13,
there was no VPD x-bit, so for example, VPDE is defined as T = 1 OR T = 3.

which should not occur in an ideal setting. An example illogical combination is x firing, but

not e or w.

The possible non-zero triads are given for Runs 12 and 13 in table 4.1. Triads T ∈ {1, 2, 7}
are logical bit combinations, whereas T ∈ {3, 4, 5, 6} are illogical. The seven triads are then

ORed together according to table 4.1 in order to form raw scale counts for each scaler

detector for east singles, west singles, and coincidences; these raw scale counts are denoted

with capital letters: E, W , and X, respectively. These ORs of triads follow from [93].

Figure 4.2 shows the relative number of scaler bit combinations which fired. More logical

triads occurred than illigocal triads, except for the case where w and e fired, but not x,

which is on the same order as the logical triads. From now on, only information on the ZDC

and VPD will be shown for brevity, as the BBC had rather inconsistent relative luminosity
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Run 12 Scaler Bit Counts
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Figure 4.2: Scaler bit counts for ZDC (left) and VPD (right).

measurements with high systematic uncertainties.

4.2 Accidentals and Multiples Corrections

Figure 4.3 shows a schematic of the possible types of interactions which can cause scale

counts. The vertical black lines represent east and west scaler detectors, and the blue cones

represent particle production, which would fire the bits if they hit a detector. The top

row shows a normal single event and a normal coincidence event. The bottom row shows

a sample of an accidental coincidence of two separate interactions within the same bunch

crossing, and of an under-counted multiple interaction in one bunch crossing. Given this

viewpoint, the combined scaler counts E, W, and X need to be corrected for these cases

where there were accidental coincidences and under-countings of multiple interactions in a
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Figure 4.3: Types of events seen in scalers, showing the form of accidental coincidences and
and multiple interactions, to be corrected for in analysis. The vertical black lines represent
scaler detectors (one for east and another for west) and the blue cones represent scaler
count-producing particle trajectories.

single bunch crossing. Two forms of the accidentals and multiples corrections are presented

in this section: the CDF corrections, developed by the Collider Detector at Fermilab (CDF)

collaboration [94], and the rate-safe corrections, developed by PHENIX [95] (also sometimes

called the pile-up correction method).

4.2.1 CDF Accidentals Correction

The CDF corrections are implemented by considering event probabilities. Let PS denote

the physical probability of an event which should fire scaler bit combination S ∈ {E,W,X}.
Let PS be the scale probability of scaler S, i.e., the probability that S actually fires. Note

that PS = NS/Nbx, where NS is the number of times S fired and Nbx is the total number of

bunch crossings; NS is a raw scale count, as opposed to a corrected scale count.

For the following argument, refer to figure 4.4. The scale probability PE has contributions

from physical probabilitiesPE and fromPX , but we do not want to include the contribution

where E and X would physically occur, that is, we omit the contribution of PE ∩PX in

PE. Similarly for PW , we include PW and PX , omitting PW ∩PX . For the coincidences,

PX naturally includes PX as well as the case PE ∩PW , but these two contributions are

not disjoint: the case PE ∩PW ∩PX is therefore omitted. In summary, by looking at the

shaded regions of the Venn diagrams in figure 4.4, the scale probabilities may be written in
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Figure 4.4: Scale probabilities as subsets of the union of physical process probabilities.

terms of the physical process probabilities as:

PE = PE ∪PX r (PE ∩PX) ⇔ PE +PX −PE ·PX , (4.2)

PW = PW ∪PX r (PW ∩PX) ⇔ PW +PX −PW ·PX , (4.3)

PX = PX ∪ (PE ∩PW ) r (PE ∩PW ∩PX) ⇔ (4.4)

⇔ PX +PE ·PW −PE ·PW ·PX .

The physical process probabilities may then be written in terms of the scale probabilities

and subsequently in terms of the scale counts as

PE =
NE −NX

Nbx −NW

, (4.5)

PW =
NW −NX

Nbx −NE

, (4.6)

PX =
NX −NENW/Nbx

Nbx +NX −NE −NW

. (4.7)

These are the accidentals-corrected probabilities; multiplying them byNbx gives the accidentals-

corrected scale counts.
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4.2.2 CDF Multiple Interactions Correction

In order to correct for multiple interactions in a bunch crossing, the distribution of k inter-

actions per bunch crossing, given λ as the “true” number of interactions in a bunch crossing,

is modelled as a Poisson distribution:

P (λ, k) =
e−λλk

k!
. (4.8)

The Poisson distribution is used since the bunch crossings occur at a constant rate and

independently of each other. The probability for no interactions in a bunch crossing is

P (λ, k = 0) = e−λ = 1−P (λ, k 6= 0) . (4.9)

Assuming that P(λ, k 6= 0) represents the accidentals-corrected probabilities in equations

4.5-4.7, which are independent of λ, the probability of no interactions provides access to the

“true” number of interactions per bunch crossing:

λ = − ln [1−P (k 6= 0)] . (4.10)

The final CDF correction equations, which give the accidentals and multiples corrected

counts NS in terms of the raw scale counts NS, are therefore

NE = −Nbx · ln
(

1− NE −NX

Nbx −NW

)
, (4.11)

NW = −Nbx · ln
(

1− NW −NX

Nbx −NE

)
, (4.12)

NX = −Nbx · ln
(

1− NX −NENW/Nbx

Nbx +NX −NE −NW

)
. (4.13)

Figure 4.5 shows the fractional deviation of the CDF corrected counts plotted vs. the cor-

rected scale probability for coincidences. In other words, this is a plot of
(
NCDF
X −N raw

X

)
/NCDF

X

vs. NCDF
X /Nbx, where the superscript CDF indicates CDF-corrected counts and the super-

script raw indicates the uncorrected counts. There is a strong dependence of this fractional

deviation on the scale probability, which can be interpreted as a dependence of the correction

on the rate.
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Figure 4.5: Fractional deviation of the CDF corrected counts vs. corrected scale probability
for the ZDC (left) and VPD (right). Run 13 (bottom plots) shows stronger scale probability
dependence than Run 12 (top plots).
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4.2.3 Rate-Safe Accidentals and Multiples Corrections

PHENIX has developed an alternative method for applying scaler counts corrections for

accidentals and multiples, called rate-safe counting (and sometimes also called the pile-up

correction). Details may be found in section 4.3 of [95]. This section contains a terse

description of the method and the final correction equations used; the full derivation has

been reproduced in appendix G.

Three “event classes” are considered: east single-sided (ESS), west single-sided (WSS),

and double-sided (DS). The average numbers of times these events occur in a bunch crossing

are denoted λE, λW , and λ, respectively. Each event class has a detection probability of k

events, given by a Poisson distribution. These distributions factor in the E and W detector

efficiency × acceptance, denoted by εE and εW .

One then considers the following three probabilities, in terms of event class probabilities

(which are subscripted with the event class acronyms):

• Zero hits in E-scaler:

P (kE = 0) = PDS (kE = 0) · PESS (kE = 0) = e−εE(λ+λE) (4.14)

• Zero hits in W-scaler:

P (kW = 0) = PDS (kW = 0) · PWSS (kW = 0) = e−εW (λ+λW ) (4.15)

• Zero hits in either detector:

P (kE = 0, kW = 0) = PDS (kE = 0, kW = 0) · PESS (kE = 0) · PWSS (kW = 0) =

= eεW εEλ−εWλ−εEλ−εWλW−εEλE

(4.16)

These probabilities are combined into one expression by considering the probability that

both detectors detect zero hits, given the condition that each of the single-sided detectors

each detected zero hits. This probability, denoted P ∗, is expressed as

P ∗ =
P (kE = 0, kW = 0)

P (kE = 0) · P (kW = 0)
= eΩλ where Ω := εW εE. (4.17)

Taking the logarithm of each side and writing each probability of detecting zero hits as unity

minus the probability of detecting nonzero hits yields

Ωλ = lnP ∗ = ln

[
1− PX

(1− PE) (1− PW )

]
. (4.18)
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The probability of detecting a hit can be written as PS = 〈NS〉/Nbx, where S ∈ {E,W,X}.
Finally, the rate-safe corrected counts Nrsc (times efficiency and acceptance Ω, which is

factored out in any relative luminosity computation), is written as

ΩNrsc = Nbx · ln
[

1− 〈NX〉/Nbx

(1− 〈NE〉/Nbx) (1− 〈NW 〉/Nbx)

]
. (4.19)

Figure 4.6 shows the fractional deviation of the rate-safe corrected counts (times effi-

ciency and acceptance) plotted versus the ratio of this corrected number of counts to the

number of bunch crossings. Denoting the efficiency times acceptance as Ω, this is a plot of(
ΩNRSC −N raw

X

)
/ΩNRSC vs. ΩNRSC/Nbx, where the superscript RSC is for the rate-safe

corrected counts and the superscript raw is for the uncorrected number of counts. Compar-

ing this to figure 4.5 and interpreting the horizontal axis as a surrogate for the scale rate,

one sees that this correction method depends much less on rate, hence the nomenclature

“rate-safe correction method” is appropriate.

4.3 R3 Results

Figures 4.7 and 4.8 show the R3 values plotted vs. run index for the VPD for both Runs 12

and 13; measurements for the ZDC are in appendix F, figures F.1 and F.2. In each figure,

four plots are shown. The first three use the CDF corrections equations and are, in order

from top to bottom, R3 for E, for W, and for X. The fourth plot is R3 computed using the

rate-safe corrections method, which makes use of all three E, W , and X raw counts.

The red lines in these figures show a constant fit and the fit results are quoted in the

upper-right corner of each figure. The typical relative luminosity fluctuates between ±4%

and remains approximately constant within each fill. Fluctuations up and down are from

fill-to-fill and are due to the injected spin pattern. In Run 13, the first few fills had bunch

crossings 69–70 empty, which caused the somewhat higher value of |1−R3| up to about run

index 300. Note that the χ2 per degree of freedom for these fits is very high, because R3 is

not constant throughout the run; rather these fits indicate how well “balanced” the relative

luminosity was for the Run as a whole.

Statistical uncertainty bars are also plotted on these figures, although they are too small

to be seen at this scale; the uncertainty is typically . 1 × 10−4. For the CDF corrections

method, the square root of the counts is used for the counts uncertainties; for the rate-safe

method, the counts uncertainties are derived in appendix G.
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Figure 4.6: Fractional deviation of the rate-safe corrected counts vs. the ratio of the rate-safe
counts (times efficiency and acceptance) to the number of bunch crossings for the ZDC (left)
and VPD (right). This is a comparison to figure 4.5.

122



Run 12 VPD R3 vs. Run Index
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Figure 4.7: R3 from VPD for Run 12; from top to bottom: CDF corrected E, CDF corrected
W, CDF corrected X, rate-safe corrected.

123



Run 13 VPD R3 vs. Run Index
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Figure 4.8: R3 from VPD for Run 13.
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4.4 R3 Cross-Checks

The following cross-checks have been employed to test the consistency of the relative lu-

minosity measurement between the ZDC and VPD, and to compare the two corrections

methods:

• Rate-safe and CDF R3 comparison (figures 4.9 and 4.10)

• ZDC and VPD R3 comparison (figures 4.11 and 4.12)

• CDF-corrected E and W R3 comparison (figures F.3 and F.4)

• CDF-corrected E and X R3 comparison (figures F.5 and F.6)

• CDF-corrected W and X R3 comparison (figures F.7 and F.8)

Some figures which are a bit superfluous are in appendix F.

One important observation is that, although the difference between the R3 measurement

via the CDF corrections and the rate-safe corrections is rather small, the difference of the

R3 measurement between the ZDC and VPD is about half as big for the rate-safe method as

for the CDF corrections method (see figures 4.11 and 4.12, bottom plots). This observation

motivates a preference toward the use of the rate-safe corrections method since it provides

better consistency between the ZDC and VPD.

In all of the Run 13 cross-check figures, the fills around run index 800 tend to have

differences which are larger than normal. An effect called afterpulsing is the likely culprit.

The afterpulsing effect will be discussed more quantitatively in section 5.1.5, but can be

thought of as a “ringing” of the signal pulse which may contribute to signals in subsequent

bunch crossings. Consequently, the first few bunch crossings immediately following either

abort gap tend to have lower-than-average counts, since there is no afterpulse ringing spilling

into them; the number of counts in each subsequent bunch crossing quickly converges to the

average as the ringing piles up to a maximum. For these abnormal Run 13 fills, the first

bunch crossing coming out of each abort gap had about half of the average counts, and the

subsequent crossing had about 80% of the average; on the other hand, a typical fill’s first

post-abort-gap bunch crossing would have at least 95% of the average number of counts. We

concluded the afterpulsing in these abnormal fills was significant, and ultimately they have

been pruned from the Aπ
0

LL analysis.

Only runs which have “consistent” R3 measurements are allowed in the full Aπ
0

LL analysis;

the cross-check figures are used to define the cuts for such consistent measurements. Fur-

thermore, the duration of the DAQ run, denoted by t, is compared to the ratio between the
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total number of bunch crossings in the run and the bunch crossing rate; ideally t should be

the same as this ratio, denoted by τ , however sometimes it could be a bit off, so we demand

t/τ not be unreasonably high. The exact requirements for a consistent and good relative

luminosity measurement are shown in table 4.2, which contains maximum allowed values of

each metric given in the first column.

The BBC data have been included in some of these figures. Figures F.3-F.8 reveal that

the consistency between the BBCE, BBCW, and BBCX is very poor compared to that for

the ZDC and VPD. For reasons which will be discussed later, we have ultimately chosen to

use the VPD rate-safe R3 as the relative luminosity for the Aπ
0

LL measurement.

Comparison Run 12 Run 13

|RVPDE
3 −RZDCE

3 | 0.005 0.006
|RVPDW

3 −RZDCW
3 | 0.005 0.004

|RVPDX
3 −RZDCX

3 | 0.005 0.008

|RVPDE
3 −RVPDW

3 | 0.003 0.005
|RVPDE

3 −RVPDX
3 | 0.002 0.006

|RVPDW
3 −RVPDX

3 | 0.003 0.004

|RZDCE
3 −RZDCW

3 | 0.002 0.002
|RZDCE

3 −RZDCX
3 | 0.004 0.008

|RZDCW
3 −RZDCX

3 | 0.004 0.007

t/τ 1.4 1.8

Table 4.2: Upper limits for various metrics for a DAQ run’s R3 measurement to be self-
consistent; DAQ runs which do not satisfy all of these requirements are omitted from analysis.
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Run 12 Rrate-safe
3 −RCDF

3 vs. Run Index

/ ndf2χ 1.675e+07 / 692
p0 0.0000016±0.0002583−

100 200 300 400 500 600
0.02−

0.015−
0.01−

0.005−
0

0.005
0.01

/ ndf2χ 1.675e+07 / 692
p0 0.0000016±0.0002583−

R3(bbc,rsc) - R3(bbcx,mul) vs. i

/ ndf2χ 8.025e+04 / 692
p0 06−5.394e±05−1.985e

100 200 300 400 500 600

0.006−
0.004−
0.002−

0
0.002
0.004
0.006
0.008

/ ndf2χ 8.025e+04 / 692
p0 06−5.394e±05−1.985e

R3(zdc,rsc) - R3(zdcx,mul) vs. i

/ ndf2χ 3.635e+04 / 692
p0 06−2.160e±06−3.575e−

100 200 300 400 500 600
0.004−
0.003−
0.002−
0.001−

0
0.001
0.002
0.003

/ ndf2χ 3.635e+04 / 692
p0 06−2.160e±06−3.575e−

R3(vpd,rsc) - R3(vpdx,mul) vs. i

run index

B
B

C
  
 R

3
R

S
C
-R

3
C

D
F

run index

run index

Z
D

C
  
 R

3
R

S
C
-R

3
C

D
F

V
P
D

  
 R

3
R

S
C
-R

3
C

D
F

Figure 4.9: Run 12 R3 from rate-safe corrections method minus R3 from CDF corrections
method vs. run index for BBC (top), ZDC (middle), and VPD (bottom).
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Run 13 Rrate-safe
3 −RCDF

3 vs. Run Index
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Figure 4.10: Run 13 R3 from rate-safe corrections method minus R3 from CDF corrections
method vs. run index for BBC (top), ZDC (middle), and VPD (bottom).

128



Run 12 RZDC
3 −RVPD

3 vs. Run Index

/ ndf2χ 1.646e+05 / 692
p0 06−3.418e±05−6.825e

100 200 300 400 500 600

0.006−

0.004−

0.002−

0

0.002

0.004 / ndf2χ 1.646e+05 / 692
p0 06−3.418e±05−6.825e

R3(zdce) minus R3(vpde) via multiples corrections vs. i

/ ndf2χ 2.417e+04 / 692
p0 06−3.417e±06−7.345e

100 200 300 400 500 600

0.003−

0.002−

0.001−

0

0.001

0.002 / ndf2χ 2.417e+04 / 692
p0 06−3.417e±06−7.345e

R3(zdcw) minus R3(vpdw) via multiples corrections vs. i

/ ndf2χ 8.236e+04 / 692
p0 06−5.285e±05−1.122e−

100 200 300 400 500 600
0.004−

0.002−

0

0.002

0.004

0.006 / ndf2χ 8.236e+04 / 692
p0 06−5.285e±05−1.122e−

R3(zdcx) minus R3(vpdx) via multiples corrections vs. i

/ ndf2χ 1.096e+04 / 692
p0 06−2.434e±05−1.418e

100 200 300 400 500 600

0.001−

0.0005−

0

0.0005

0.001

0.0015 / ndf2χ 1.096e+04 / 692
p0 06−2.434e±05−1.418e

R3(zdc) minus R3(vpd) via rate-safe corrections vs. i

run index

run index

run index

run index

R
3

Z
D

C
E

-R
3

V
P
D

E
R

3
Z

D
C

W
-R

3
V

P
D

W
R

3
Z

D
C

X
-R

3
V

P
D

X
R

3
Z

D
C

rs
c -

R
3

V
P
D

rs
c

Figure 4.11: Run 12 R3 from ZDC minus R3 from VPD vs. run index; in order from top to
bottom, the plots are for CDF corrected E, W, X, and rate-safe corrected.
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Figure 4.12: Run 13 R3 from ZDC minus R3 from VPD vs. run index; in order from top to
bottom, the plots are for CDF corrected E, W, X, and rate-safe corrected.
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4.5 Miscellaneous

Lastly, we mention a couple of additional details regarding the relative luminosity that do

not fit into any of the above discussions.

4.5.1 Anomalous Bunch Crossings

For every fill, the numbers of corrected (and uncorrected) scaler counts were plotted as

a function of bunch crossing number. Abort gaps were verified and any bunch crossings

that had an anomalously low number of counts were omitted from the relative luminosity

computation. Bunch crossings which had undefined spin were, by default, also omitted; this

includes abort gaps as well as bunch crossings 69 and 70 for the first few fills analyzed in

Run 13.

Furthermore, for Run 13 fills 17512–17520, the first two bunch crossings coming out of

each abort gaps had somewhat lower counts. These bunches were not filled with the normal

number of protons, according to the RHIC wall-current monitors, and were also removed

from analysis. Any other bunch crossings which had abnormally low luminosities were also

removed. Omitting bunch crossings from the relative luminosity analysis in turn omits their

FMS π0s from the Aπ
0

LL analysis, while also greatly improving all of the aforementioned

consistency metrics.

4.5.2 Nbx vs. Bunch Crossing

When plotting the number of bunch crossings Nbx as a function of bunch crossing number,

an unexpected sigmoid-type function is observed. See figure 4.13 for an example, where

for each bunch crossing, we plot the ratio of its Nbx to Nbx in bunch crossing zero. This

effect is negligibly small in the context of a relative luminosity analysis; it is on the order

of 2 × 10−4 and enters the relative luminosity analysis via the corrections equations (both

CDF and rate-safe). It was finally solved near the beginning of Run 15: the issue was in

the bunch counters as an “extra revolution tick reset.” After the fix, a typical plot shows a

spike at bunch crossing 0 coincident with the start up time for the DAQ run, as well as a

step of one count at the bunch crossing where the DAQ run ended. This issue is completely

negligible for Runs 12 and 13, however.

131



N
b
x
 r

e
la

ti
v
e
 t

o
 b

u
n

ch
 c

ro
ss

in
g
 0

bunch crossing number

Figure 4.13: Relative Nbx vs. bunch crossing number for an example run, showing the typical
sigmoid behavior.
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Chapter 5

Systematic Uncertainties

The overall uncertainty on Aπ
0

LL and on pT , the kinematic variable in terms of which the Aπ
0

LL

measurement is presented, must be assessed. This chapter presents systematic uncertainties

on Aπ
0

LL which come from the relative luminosity and from a nonzero transverse component

in the polarization, followed by a determination of the overall systematic uncertainty on pT ,

which comes from energy, position, and vertex uncertainties.

5.1 Relative Luminosity Systematic

The dominant systematic uncertainty on Aπ
0

LL comes from the relative luminosity deter-

mination.1 Three schemes for determining this systematic have been explored: via direct

comparison between VPD and ZDC, via scaler asymmetries from bunch fitting, and via

scaler subsystem self-consistency through transverse single-spin asymmetries. Additionally,

ALL as determined using R3 from the VPD was compared to that from the ZDC.

Given the representation of ALL in terms of yield and relative luminosity R3 as in equation

1.29, one can propagate the uncertainty of R3, denoted ∆R3 , to an uncertainty on ALL:

∆2
ALL

=

(
∂ALL
∂R3

)2

∆2
R3

=

(
2 (N++ +N−−) (N+− +N−+)

PBPY [(N++ +N−−) +R3 (N+− +N−+)]

)2

∆2
R3
. (5.1)

With the approximation N+++N−− ≈ R3 (N+− +N−+), the systematic uncertainty becomes

∆ALL ≈
1

2
· 1

PBPY
· ∆R3

R3

. (5.2)

1This is a shift systematic uncertainty, which could additively shift the Aπ
0

LL values higher or lower. There

is also a scale systematic uncertainty from the polarization, which affects Aπ
0

LL multiplicatively and will be

discussed in section 6.2.1; however, since the measured Aπ
0

LL values are close to zero, this scale systematic
does not matter as much as any shift systematic does.
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3 distribution with two Gaussian fits.

5.1.1 Direct VPD and ZDC Comparison: ∆R3
Method

One way to obtain a systematic uncertainty is to simply compare the R3 value obtained

from the ZDC to that obtained from the VPD: we simply define ∆R3 as RZDC
3 − RVPD

3 .

Figures 5.1 and 5.2 show the value of ∆R3 for Runs 12 and 13, respectively. For Run 12, the

RMS of the distribution is 2.0× 10−4 and the standard deviation according to the Gaussian

fit is 1.2 × 10−4. Run 13, on the other hand, shows a bimodal distribution with standard

deviations 2.9 × 10−4 for the lower peak and 3.3 × 10−4 for the higher peak and an overall

RMS of 1.4× 10−3.

It turns out that the two separate ∆R3 peaks in Run 13 correspond to two different
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spin pattern sets (see section 5.1.3.2, figures 5.3 and 5.4 for the 8 overall spin patterns for

each Run). From the perspective of double-spin asymmetries, there were two classes of spin

patterns in each of Run 12 and 13. Denoting a same-helicity bunch crossing as “S” and

an opposite-helicity crossing as “O”, the double-spin pattern classes can be represented by

listing the double-spin states of the first 8 bunch crossings; we only need to list 8 because

the spin of bunch n is equal to that of bunch n mod 8, for each beam. The pattern classes

are listed in table 5.1.

Bunch Crossing # mod 8: 0 1 2 3 4 5 6 7
Run 12 Pattern Class A: S O O S O S S O
Run 12 Pattern Class B: O S S O S O O S
Run 13 Pattern Class A: S S S S O O O O
Run 13 Pattern Class B: O O O O S S S S

Table 5.1: Double-Spin Patterns, where “S” denotes same spins and “O” denotes opposite
spins.

The main difference between the Runs is that Run 12 alternates between “SOOS” and

“OSSO” whereas Run 13 alternates between “SSSS” and “OOOO.” The maximum number

of consecutive bunch crossings which have the same double-spin state “S” or “O” is 2 for

Run 12 and 4 for Run 13; consequently, any biases introduced by having multiple consecutive

bunch crossings with same double-spin state will be enhanced in Run 13 with respect to Run

12. This enhancement would only be seen, however, if there was some information from one

bunch crossing spilling over into subsequent bunch crossings. As will be discussed in section

5.1.5, afterpulsing in the scaler systems is a likely culprit and the bimodality of ∆R3 is a

consequence.

Equation 5.2 is used to convert ∆R3 into a systematic uncertainty on Aπ
0

LL. For the

polarization, the overall average luminosity-weighted polarization (see section 6.2) from runs

used in the Aπ
0

LL analysis was used: for Run 12 PB = 0.54 and PY = 0.56 while for Run

13 PB = PY = 0.57. The average VPD R3 values, used for the denominator of equation

5.2, is 0.9967 for Run 12 and 1.002 for Run 13. For Run 12, we use the standard deviation

(σ) from the Gaussian fit as an estimate of ∆R3 ; for Run 13, the standard deviations (σL

and σR) of the two Gaussian distributions are averaged together. The resulting systematic

uncertainties are:

• Run 12: ∆ALL [∆R3 ] =
1

2
· 1

PBPY
· σ (∆R3)

〈R3〉
= 2.1× 10−4

• Run 13: ∆ALL [∆R3 ] =
1

2
· 1

PBPY
· [σL (∆R3) + σR (∆R3)] /2

〈R3〉
= 4.9× 10−4
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5.1.2 Comparison of Aπ0

LL via VPD and ZDC: δALL Method

Another idea to obtain a systematic on Aπ
0

LL is to compare the nominal values of Aπ
0

LL com-

puted using the relative luminosity from the VPD to those from the ZDC. Run 12 has a

δALL , defined as Aπ
0

LL with R3 from the ZDC minus Aπ
0

LL with R3 from the VPD, on the

order of 5–8×10−5 whereas Run 13 has a δALL on the order of 1.5× 10−4. These differences

are much smaller than any other method used to determine systematic uncertainties from

relative luminosity.

The reason δALL is smaller in comparison to the aforementioned systematic uncertainty

is because δALL is sensitive to the mean of ∆R3 , not its standard deviation. To see this,

consider using the maximum likelihood method for determining a value of δALL . Following

the same maximum likelihood method used for extracting Aπ
0

LL (appendix K), the maximum

likely δALL is

δ̄ALL =

∑N
i=1 δALLi/σ

2
i∑N

i=1 1/σ2
i

, (5.3)

where the sums run over DAQ runs and σi is the statistical uncertainty on the ith run’s δALL .

Working out the details, one finds that the numerator terms are δALLi/σ
2
i ∝ 1/∆R3 and the

denominator terms are 1/σ2
i ∝ 1/∆2

R3
. Since the numerator terms are proportional to 1/∆R3

and ∆R3 is centered around zero, up to means of 1.8×10−5 in Run 12 and 9.6×10−5 in Run 13,

the overall value of δALL is expected to be within the same order of magnitude. Ultimately,

this δALL method has been abandoned as a systematic uncertainty for this analysis.

5.1.3 Intrinsic Scaler Double-Spin Asymmetries: ∆SLL Method

One can also evaluate systematic biases of Aπ
0

LL due to the relative luminosity measurement by

measuring a possible residual ALL in one scaler detector while using another scaler detector

to measure the relative luminosity. This method has been employed in various PHENIX

analyses, e.g, as in chapter 4 of [95]. This scaler asymmetry, denoted here as SLL, is extracted

using the bunch fitting technique, which is summarized below; more details are in appendix

H.

In order to relate SLL to a systematic uncertainty on Aπ
0

LL, one must propagate uncer-

tainties on the number of counts in both scaler detectors used in extracting SLL. Referring

to the appendix of [33], the systematic uncertainty is simply

∆ALL ≈ ∆SLL . (5.4)
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5.1.3.1 Bunch Fitting Algorithm

Consider SLL as an asymmetry in scaler subsystem S measured while using scaler system

MB for a “minimum-biased” relative luminosity measurement (it does not have to truly be

minimum-biased, it just needs to be another, independent scaler). It is written as

SLL =
1

PBPY
ε3 =

1

PBPY

(
N++
S +N−−S

)
−RMB

3

(
N+−
S +N−+

S

)
(
N++
S +N−−S

)
+RMB

3

(
N+−
S +N−+

S

) . (5.5)

Writing out the relative luminosity RMB
3 in terms of yields in MB allows this asymmetry to

be expressed as

SLL =
1

PBPY

(
N++
S +N−−S

)
/
(
N++
MB +N−−MB

)
−
(
N+−
S +N−+

S

)
/
(
N+−
MB +N−+

MB

)
(
N++
S +N−−S

)
/
(
N++
MB +N−−MB

)
+
(
N+−
S +N−+

S

)
/
(
N+−
MB +N−+

MB

) . (5.6)

This is just an asymmetry of the ratios of scaler counts from S to MB; the raw asymmetry

can therefore be extracted by minimizing the χ2 of the following fit 2 to the ratio as a function

of bunch crossing number:
N i
S

N i
MB

= c3

(
1 + hiBh

i
Y · ε3

)
, (5.7)

where the superscripts i indicate a bunch crossing number, hB, hY ∈ {−1, 1} are the initial

proton helicities, and {c3, ε3} are the fit parameters. The raw asymmetry ε3 is then divided

by the polarization product to obtain SLL, while the fit parameter c3 is an overall scaling

proportional to the overall yield.

5.1.3.2 Scaler Asymmetry Measurement

Because ultimately the Aπ
0

LL analysis uses the VPD relative luminosity measurement, this

section presents the VPD scaler asymmetry SLL while treating the ZDC as a relative lumi-

nosity measurement; in the language of the bunch fitting algorithm this is a bunch fit to

the ratio VPD/ZDC yields. The rate-safe corrected data is presented here; it turns out that

with the CDF corrections applied, the SLL distribution is more than twice as wide as the

distribution derived using rate-safe corrections.

The distribution of SLL was analyzed for each spin pattern separately as well as for all

spin patterns for an overall distribution. For each Run, there were 4 different spin patterns

for each beam, numbered 1–4. Pattern 1 is the opposite of pattern 2, and pattern 3 is the

2This is another standard way to think about asymmetries. To see this, consider the raw double-spin
asymmetry εLL = (N++ +N−− −N+− −N−+) /N and solve for a particular helicity’s yield in the form of
NhBhY

= c (1 + hBhY εLL). Plugging in, for example hB = hY = +1, we get N++ = 2cN++/N , so the
constant of proportionality is c = N/2. See appendix D for more on thinking about asymmetries in this way.
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opposite of pattern 4. From these beam bunch patterns, 8 different combinations were used

to form the bunch crossing patterns, for example, bunch pattern 1 colliding with pattern

3. Figures 5.3 and 5.4 show the 8 different bunch crossing spin patterns used in Runs 12

and 13, respectively, where the colors are used in the SLL distributions presented below.

The B and Y brackets represent the spin states of the first 8 bunch crossings, while the

numerical subscript represents which of the 4 bunch patterns are used. The double-spin

pattern classes in terms of Ss and Os is also given in parentheses; 4 bunch-crossing spin

patterns are contained in each class, as mentioned in table 5.1.

Figures 5.5 and 5.6 show the SLL distributions, where the overall distribution is in bold

and the distributions for each spin pattern are colored according to figures 5.3 and 5.4. Run

12 shows a single-mode distribution and all spin patterns agree; it is therefore fit with a

single Gaussian with normalization constant N , mean µ, and standard deviation σ. Run

13, on the other hand, shows a bimodal distribution, revealing that SLL is correlated to

spin pattern; this is the same correlation seen in the aforementioned ∆R3 distribution. This

distribution is fit to the sum of two Gaussian functions, where the parameters are given

subscripts L and R for left and right. Pattern class OOOOSSSS tends to have positive SLL

(mean µR = 1.6× 10−3) while pattern class SSSSOOOO tends to have negative SLL (mean

µL = −1.6×10−3). The widths of the two classes agree: σL = 4.0×10−4 and σR = 3.9×10−4.

The Aπ
0

LL systematic uncertainty is, according to equation 5.4, approximately equal to

∆SLL . Because SLL is basically a double-spin asymmetry in the VPD, which could contribute

to the Aπ
0

LL measurement, the absolute value of the mean SLL is added to the standard

deviation (from the fit) as a conservative estimate for the overall ∆ALL . As in the ∆R3

method, the two standard deviations from Run 13 are averaged together. The resulting

systematic uncertainties are:

• Run 12: ∆ALL [∆SLL ] = σ (SLL) + |〈SLL〉| = 1.9× 10−4

• Run 13: ∆ALL [∆SLL ] =
σL (SLL) + σR (SLL)

2
+ |〈SLL〉| = 4.1× 10−4

138



[+ + - - + + - -] ( S O O S O S S O )
3

[+ - + - - + - +] Y1B

[- - + + - - + +] ( O S S O S O O S )
4

[+ - + - - + - +] Y1B

[+ + - - + + - -] ( O S S O S O O S )
3

[- + - + + - + -] Y2B

[- - + + - - + +] ( S O O S O S S O )
4

[- + - + + - + -] Y2B

[+ - + - - + - +] ( S O O S O S S O )
1

[+ + - - + + - -] Y3B

[- + - + + - + -] ( O S S O S O O S )
2

[+ + - - + + - -] Y3B

[+ - + - - + - +] ( O S S O S O O S )
1

[- - + + - - + +] Y4B

[- + - + + - + -] ( S O O S O S S O )
2

[- - + + - - + +] Y4B

Figure 5.3: Run 12 spin patterns legend.
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Figure 5.4: Run 13 spin patterns legend.
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Figure 5.5: Run 12 SLL for VPD while treating ZDC as a relative luminosity measurement.
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Figure 5.6: Run 13 SLL for VPD while treating ZDC as a relative luminosity measurement.
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5.1.4 Scaler Self-Consistency via AN Cross Ratio: ∆DN
Method

A completely alternative method to compute a systematic uncertainty from the relative

luminosity is to measure the transverse single-spin asymmetry AN in a scaler detector by

two different methods: the cross-ratio method, which does not need a relative luminosity,

and the standard method (similar to measuring ALL), which does need a relative luminosity.

The cross-ratio AN can be compared to the AN measured using the relative luminosity; a

difference between the measurements indicates how much the asymmetry is biased by the

relative luminosity.

The cross-ratio method (see, for example, [56]) exploits the following azimuthal symmetry

in order to cancel out the need for a relative luminosity measurement; this technique cannot

be done for any double-spin asymmetry. Let N↑(↓) be the π0 yield for incoming spin-up(down)

protons and let L↑(↓) be the luminosity. Let Ω be the product of efficiency and acceptance

for a detector. Now assume the detector is split left and right, and denote their yields,

luminosities, and acceptance times efficiency by a superscript L for left and R for right. The

assumed azimuthal symmetry is about a 180◦ rotation about the beam axis:

NL
↓

ΩLL↓
=

NR
↑

ΩRL↑
and

NL
↑

ΩLL↑
=

NR
↓

ΩRL↓
. (5.8)

By writing out the expression for AN for both the L and R halves of the detector and

uniting them via this symmetry, one can express AN as the so-called cross-ratio, which is

independent of a relative luminosity:

A
(cross-ratio)
N =

1

P
·

√
NL
↑ N

R
↓ −

√
NR
↑ N

L
↓√

NL
↑ N

R
↓ +

√
NR
↑ N

L
↓

, (5.9)

where P is the polarization of the proton beam used to compute AN .

A value of AN can also be determined using the associated relative luminosity (R1 for

the yellow beam and R2 for the blue beam, as defined in appendix B). Denoting the relative

luminosity as r ∈ {R1, R2}, consider the difference of the AN values:

DN := A
(cross-ratio)
N − 1

P
· N↑ − rN↓
N↑ + rN↓

. (5.10)

The uncertainty on r propagates as

∆DN =

∣∣∣∣
∂DN

∂r

∣∣∣∣ ·∆r =
1

2
· 1

P
· ∆r

r
. (5.11)

141



The uncertainty on a measurement of DN therefore is sensitive to a relative luminosity

uncertainty, ∆r/r; however, this r is a relative luminosity used for a single-spin asymmetry.

Since AN is not sensitive to polarization, a measurement of ∆DN is sensitive to how well the

relative luminosity is in general, and can be used for ALL as well, which just uses different

combinations of incoming spin-states than AN does. To see this more a bit more clearly,

consider the statistical uncertainties on the relative luminosity (see appendix B); they are

∆R1 =

√(
σ2
−+ + σ2

++

)
(L−− + L+−)2 +

(
σ2
−− + σ2

+−
)

(L−+ + L++)2

(L−− + L+−)4 ,

∆R2 =

√(
σ2

+− + σ2
++

)
(L−− + L−+)2 +

(
σ2
−− + σ2

−+

)
(L+− + L++)2

(L−− + L−+)4 ,

∆R3 =

√(
σ2
−− + σ2

++

)
(L−+ + L+−)2 +

(
σ2
−+ + σ2

+−
)

(L−− + L++)2

(L−+ + L+−)4 ,

where σab is the statistical error on Lab. If the four luminosities are equal, then although

the relative luminosities would all be equal to one, their errors would be equal to each other.

Under this assumption, we would therefore have ∆r/r ≈ ∆R3/R3.

Using the above assumption, equation 5.11 is similar to equation 5.2. If we assume the

polarization of each beam is the same, P , then comparing equation 5.11 and 5.2 reveals the

approximating relation

∆ALL ≈
1

P
∆DN . (5.12)

For extracting ALL, the VPD is used for a relative luminosity; therefore, DN is measured

in the VPD. The yields which go into the computation of DN were taken from the VPD

PMT scaler boards, which provide the azimuthal (and pseudorapidity) segmentation needed

to compute an AN . The R1 and R2 relative luminosity values appropriate for east and west

were taken from the VPD rate-safe corrected counts. The ZDC-SMD detector, which has

hodoscope-like segmentation (described in section 5.2), was also used to extract a value of

DN ; the DN distributions in the ZDC are much wider than those in the VPD, however. The

VPD is ultimately more self-consistent than the ZDC, and this is the primary reason the

VPD is used for the relative luminosity in the overall Aπ
0

LL analysis.

In Run 12, the VPD PMTs were not read-out in any scaler system; only the overall VPD

scaler counts were read-out. In Run 13, however, VPD PMT scaler counts were read-out,

and thus the focus of this self-consistency analysis is constrained to the Run 13 VPD. Figure

5.7 shows DN distributions for the east and west VPD systems. The dependence of DN on

spin patterns was also assessed by plotting the distributions for each spin pattern listed in

figure 5.4, where the pattern number here is defined as 10 times the blue pattern number
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Spin pattern number

DN

DN

Spin pattern number

Figure 5.7: Top row is east VPD DN data and bottom row is west VPD. Left column: DN

distribution; black is full distribution and the colors are for each spin pattern (legend in
figure 5.4). A Gaussian fit to the total distribution is also drawn. Right column: DN vs.
spin pattern number; red crosses within each spin pattern indicate the pattern’s DN means
and errors, and the red horizontal line is an overall fit to those means.

plus the yellow pattern number. In the east VPD, one can observe some mild correlation

with spin patterns; this correlation is not nearly as strong in the west VPD, however.

The RMS of the east VPD DN is 3.9× 10−4 and for the west is 2.8× 10−4. The standard

deviations from the Gaussian fits are 2.8×10−4 and 1.9×10−4 for the east and west, respec-

tively; the higher width in the east VPD is attributed to its mild spin pattern correlation.

From equation 5.12, in order to obtain a systematic on Aπ
0

LL one needs to multiply by an

additional factor of 1/PB or 1/PY ; the correct factor is the polarization which is not already

multiplied in DN , e.g., use ∆DN/PB for the east systematic since Deast
N ∝ 1/PY . By using

standard deviation from the fit as ∆DN , we have
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• East: ∆ALL [∆DN ] =
∆east
DN

PB
=

2.8× 10−4

0.57
= 4.9× 10−4

• West: ∆ALL [∆DN ] =
∆west
DN

PY
=

1.9× 10−4

0.57
= 3.3× 10−4

• Average over East and West: 〈∆ALL [DN ]〉 = 4.1× 10−4

5.1.5 Correlations of Run 13 ∆R3
and SLL with Spin Patterns

The exact origin of the Run 13 dependence of ∆R3 and SLL on spin patterns remains under

investigation. One possible cause of a correlation with spin patterns is scaler afterpulsing.

Afterpulsing was introduced in section 4.4, and to look for it, we consider bunch crossing

distributions, defined as the number of (rate-safe corrected) scaler counts for each bunch

crossing. We take a true bunch crossing distribution from scaler data and assume it is

the convolution of a scaler signal pulse with an ideal bunch crossing distribution (the ker-

nel). Applying a deconvolution algorithm reveals the true signal pulse shape, including any

afterpulsing.

Figure 5.8 shows bunch crossing distributions for all data in Run 13, normalized over all

bunch crossings. The two usual abort gaps appear in bunch crossings 31–39 and 111–119; the

nonzero number of counts in the abort gaps is likely from beam background, as well as some

residual afterpulsing. Furthermore, about 25% of the data had bunch crossings 69 and 70

empty, creating a divot in the distributions. The ideal bunch crossing distribution is drawn

in the bottom right panel of figure 5.8, and it assumes that each bunch crossing had a single

collision and the bunches were also filled ideally. This ideal bunch crossing distribution will

be referred to as the kernel distribution; its abort gaps have zero counts and its divot at

bunch crossings 69–70 is set at 75% of the typical filled bunch crossing.

The first few bunch crossings after each abort gap, denoted as the post-abort bunch

crossings, show a slow rise in the number of counts; this is much more evident in the BBC

than in the ZDC or VPD. Furthermore, the BBC shows a complementary fall-off of the

number of counts in the abort gaps (this is also seen in the ZDC and VPD, but there the

abort gap counts are down by a factor of 10,000 from the nominal number of counts). These

abort gap and post-abort features are also seen in and after the 69–70 divot.

The most likely reason for this post-abort gap bunch crossing behavior is claimed to be

afterpulsing somewhere in the scaler systems. In order to explore a possible afterpulsing

effect, first let the pulse seen by scaler phototubes be P (t), where t represents time and can

be mapped to bunch crossing number b by multiplying by the bunch crossing rate (RHIC

clock frequency). Let the pulse shape be defined by a single pulse confined to one bunch
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Figure 5.8: Rate-safe corrected number of counts vs. bunch crossing number for the BBC
(top left), ZDC (top right), VPD (bottom left), and for an ideal scaler (bottom right). All
plots are normalized.

crossing, plus an afterpulse A(b):

P (b) =
1

σP
√

2π
· e−b2/2σ2

P + A(b), (5.13)

where σP is sufficiently small for the pulse to be confined to within one bunch crossing.

Let K(b) be the kernel distribution as defined above; this is the distribution one would see

if P (t) were ideal and there was no afterpulsing. The number of scaler counts per bunch

crossing, denoted N(b), is then modelled as a convolution of the pulse shape and the kernel

distribution:

N(b) = (K ∗ P )(b) =

∫ ∞

−∞
dβ K(β)P (b− β). (5.14)

In an attempt to determine what might have been the original P (b) for a given N(b),

several different deconvolution algorithms were tried. Most of them returned similar results,

but with varying levels of noise and artifacts coming from noise in the N(b) data, from the
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assumption of K(b) and its comparison to the actual bunch filling quality, and from the

deconvolution algorithm itself. The algorithm which resulted with P (t) shapes with the

least amount of noise was the Tikhonov regularization method in Mathematica; more details

can be found in the Mathematica documentation for the functions ListDeconvolve [96] and

ImageDeconvolve [97].

The deconvolved P (b) results are shown in figure 5.9 for each of the three scaler systems,

along with the deconvolved nominal pulse in order to test the algorithm. The horizontal

axis is bunch crossing number, but the pulse begins at bunch crossing number 60; this is

just a consequence of the deconvolution algorithm and hence the horizontal axis numbers

can be interpreted as the number of bunch crossings after the pulse, plus 60. Figure 5.10

shows a zoom in of the noise level on the deconvolved nominal pulse, which is at the 1%

level. Clearly the BBC shows some afterpulsing effect, since P (b) takes ∼ 15 bunch crossings

to settle to zero; the ZDC and VPD pulses decay to zero after 1 or 2 bunch crossings. The

nominal pulse is as expected: a narrow pulse within bunch crossing 61, plus noise.

The bunch crossings with the least amount of afterpulsing effects are those which are

just after the abort gaps, since they feel little-to-no afterpulsing from the preceding abort

gap bunch crossings; however, these post-abort bunch crossings show a strong dependence

on how far they are from the previous abort gap end. After sufficiently many post-abort

gap bunch crossings, the afterpulsing effect is saturated and no more increase in the number

of scaler counts per bunch crossing is observed. Because we are searching for a dependence

on the relative luminosity systematics on spin patterns, we now turn our attention to spin

patterns in the post-abort gap regions.

Table 5.2 shows the absolute value of the difference in the number of S crossings (NS)

and the number of O crossings (NO) within Npa bunch crossings after each abort gap; note

that the spin pattern coming out of each abort gap is the same, since it is a pattern which

repeats every 8 bunch crossings and the post-abort regions begin at bunch crossing 0 and at

bunch crossing 40. In Run 12, the number of S crossings and O crossings balances out every

other bunch crossing. In Run 13, however, the number of S crossings exceeds the number of

O crossings by as much as 4 (and vice versa); if the observed afterpulsing effect occurs for

∼ 4 bunch crossings, then we could see a bias in R3 values which correlates to spin pattern

classes A and B. For example, if the first four post-abort gap crossings are OOOO, then

we have less-than-nominal O scaler counts which would consequently bias R3 toward higher

values. If the effect is stronger in the ZDC with respect to the VPD (or vice versa), then

the difference in their R3 values becomes biased by spin pattern class; consequently so does

the Aπ
0

LL systematic uncertainty from R3 uncertainty.

The above ideas can be tested by omitting the first few post-abort gap bunch crossings
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Figure 5.9: Deconvolved pulse P (b) vs. bunch crossing number for the BBC (top left), ZDC
(top right), VPD (bottom left), and for an ideal scaler (bottom right). The pulse is centered
at bunch crossing 61.

60 70 80 90 100

-0.01

0.00

0.01

0.02

0.03

bunch crossing number

d
e

c
o

n
v
o

lv
e

d
p

u
ls

e

Deconvolution Noise vs. Number of Bunch Crossings

Figure 5.10: Deconvolved nominal pulse P (b) vs. bunch crossing number, zoomed in to show
the noise.
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Npa Run 12 Run 13
1 1 1
2 0 2
3 1 3
4 0 4
5 1 3
6 0 2
7 1 1
8 0 0
9 1 1
10 0 2
11 1 3
12 0 4

Table 5.2: Double-spin state differences |NS −NO| within Npa bunch crossings after an abort
gap.

and recomputing ∆R3 . Figure 5.11 shows the Gaussian fit results of ∆R3 distributions for

the omission of Npa post-abort gap bunch crossings, from 0 omitted up to 40. The blue

points indicate two Gaussian fits were used to fit two separate peaks and the green points

indicate one Gaussian fit to one peak. The open magenta points indicate a single Gaussian

fit to what may actually be two peaks, but the two peak fit was too difficult to implement.

The following features in this oscillation are observed:

• Nodes at approximately Npa ∈ {4, 12, 20, 28, 36} and anti-nodes in between

• The largest splitting of the peaks is in the Npa = 0 case, that is, in the full data set

• Slight damping, which is likely due to afterpulsing saturating the number of scaler

counts

• The period is 8 bunch crossings, which is the same as that of the spin patterns

• The distance between any node and its nearest anti-node is 4, which is related to the

pattern of 4 “S” bunch crossings followed by 4 “O” bunch crossings

• The amplitude is anti-correlated with the value of |NS −NO| from table 5.2

As a complementary study, removal of Npa pre-abort gap bunch crossings was tested.

Figure 5.12 shows the result of the distribution fits. All distributions are bimodal, however,

there is still sinusoidal behavior of the distribution means, with respect to Npa. There is

no value of omitted Npa pre-abort gap bunch crossings for which the distributions merge;
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Figure 5.11: Gaussian fit results for ∆R3 distributions as a function of number of omitted
post-abort gap bunch crossings, Npa. Blue: 2 peaks and 2 Gaussians; Green: 1 peak and 1
Gaussian; Open Magenta: possibly 2 peaks but 1 Gaussian.
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Figure 5.12: Gaussian fit results for ∆R3 distributions as a function of number of omitted
pre-abort gap bunch crossings, Npa. In this case, all distributions were bimodal.
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Figure 5.13: Raw ZDCE scaler asymmetry distributions with VPDX as relative luminosity;
Run 13. Each panel is for a different number of bunch crossings after each abort gap omitted
(0–5).

this property verifies that the observed bimodal structure is sensitive to only post-abort gap

bunch crossings.

This test of omitting post-abort gap bunch crossings was also performed on SLL, although

only up to Npa = 8. The results are similar and are given in figures 5.13-5.14; note that

although the ZDCE/VPDX raw asymmetry with CDF corrections is shown here, the general

result holds for the rate-safe corrected VPD/ZDC SLL as well.
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Figure 5.14: Raw ZDCE scaler asymmetry distributions with VPDX as relative luminosity;
Run 13. Each panel is for a different number of bunch crossings after each abort gap omitted
(6–9).
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5.1.6 Summary of Relative Luminosity Systematics

Table 5.3 shows a summary of the systematic uncertainties on Aπ
0

LL from relative luminosity.

While they are mostly consistent with each other, we have ultimately decided to use the

∆ALL [∆R3 ] values in order to be conservative and because it is the method with the simplest

implementation and interpretation.

Method Run 12 Run 13
∆ALL [∆R3 ] 2.1× 10−4 4.9× 10−4

∆ALL [∆SLL ] 1.9× 10−4 4.1× 10−4

∆ALL [∆DN ] N/A 4.1× 10−4

Table 5.3: Summary of Aπ
0

LL systematic uncertainties from relative luminosity.

This systematic uncertainty is the dominant shift systematic uncertainty on Aπ
0

LL. It is

still smaller than the statistical uncertainty, however, which is on the order of 10−3 for this

analysis.

5.2 Polarization Transverse Component Systematic

While the protons are circulating through RHIC, a transverse polarization is maintained. In

order to achieve collisions with longitudinal polarizations, the spin rotators are used to rotate

the spin states from transverse to longitudinal when the protons enter the STAR hall, and

back to transverse when they exit. This spin rotation may be imperfect, however. A nonzero

transverse component of the polarization just before collision propagates as an additional

systematic to any ALL measurement.

The ZDC has a hodoscopic scintillator layer with 8 horizontal slats and 7 vertical slats.

This layer is called the Shower Maximum Detector (SMD) layer of the ZDC, or ZDC-SMD

[98, 99], and for Run 12 and 13 was used as the main local polarimeter at STAR. Transverse

single-spin asymmetries AN measured during a longitudinally polarized data-taking period

can be compared to expected AN values with transversely polarized collisions. The ratio

between these asymmetries for each beam, along with an estimate of the transverse double-

spin asymmetry, are all factors of the associated ALL systematic. See appendix C for a

discussion of local polarimetry in general, along with a derivation of the Aπ
0

LL systematic

uncertainty from residual transverse polarization; for a more in-depth discussion of local

polarimetry and asymmetries from a quantum mechanical point of view, see appendix D.

Let εT and εL denote the raw transverse single-spin asymmetries, taken during transverse

(T ) and longitudinal (L) data-taking periods, respectively. These asymmetries are measured
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in the ZDC-SMD. Let ANN be the transverse double spin asymmetry, measured for π0s in

the FMS and defined as a function of φ, the pion azimuth, as

ANN = AΣ + ATT cos 2φ. (5.15)

AΣ is the overall offset double-spin asymmetry, and ATT is the amplitude of the azimuthal

modulation. Letting B and Y denote the blue and yellow beams, the systematic uncertainty

on Aπ
0

LL due to residual transverse polarization is

∆ALL

[
P⊥
]

=
εBL
εBT
· ε

Y
L

εYT
· ANN . (5.16)

Figures 5.15-5.17 show the ZDC-SMD raw transverse single-spin asymmetries, for each

beam, plotted versus a run index. Transverse period asymmetries εT are from two transverse

fills’ worth of data taken at
√
s = 510 GeV during the Run 12 longitudinal startup running

period; longitudinal period asymmetries εL are from Runs 12 and 13 longitudinal. Constant

fit lines are shown, which indicate the maximum-likely values of these asymmetries and are

used in equation 5.16.

For the transverse double-spin asymmetry ANN , both AΣ and ATT can be measured

from Run 11
√
s = 500 GeV transverse data, using a similar technique to extracting ALL by

making use of a relative luminosity. The relative luminosity measurement for Run 11 is very

similar to that in Runs 12 and 13. The raw double spin asymmetry is then extracted for bins

in pT using the same Maximum Likelihood Method (MLM) as was used for ALL; however,

this raw asymmetry must also be binned in azimuth. The azimuthal-dependence of the raw

asymmetry is then scaled by polarization and fit to the functional form AΣ + ATT cos 2φ.

Regarding the systematic uncertainty on ALL, only AΣ matters since ATT vanishes upon

averaging over azimuth. Figure 5.18 shows the AΣ result, where vertical error bars are statis-

tical and horizontal error bars are the RMSs of the pT bins. The pT binning and η boundaries

approximately match those in the Aπ
0

LL analysis. Because the transverse polarization compo-

nent systematic is a sub-dominant systematic on Aπ
0

LL, this rough estimate of AΣ is sufficient;

a conservative upper bound of AΣ < 0.008 is used.

Using the mean raw asymmetries from the 3 datasets in equation 5.16, the systematic

uncertainty from each Run is:

Run 12: ∆ALL

[
P⊥
]

=
0.0023

0.055
· 0.0025

0.048
· 0.008 = 1.7× 10−5 (5.17)

Run 13: ∆ALL

[
P⊥
]

=
0.0020

0.055
· 0.0019

0.048
· 0.008 = 1.2× 10−5 (5.18)
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Figure 5.15: Raw transverse single-spin asymmetries in the ZDC-SMD for fills 16570 and
16578, which had transversely polarized collisions at STAR during Run 12 (

√
s = 510 GeV),

vs. an internal run index. The jump in asymmetries around run index 35 represents the
separation between the two fills. The top panel is for the blue beam and the bottom panel
is for the yellow beam.
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Figure 5.16: Raw transverse single-spin asymmetries in the ZDC-SMD for all fills during
Run 12 longitudinal data-taking, vs. an internal run index.
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Figure 5.17: Raw transverse single-spin asymmetries in the ZDC-SMD for all fills during
Run 13 longitudinal data-taking, vs. an internal run index.
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Figure 5.18: Transverse double-spin asymmetries AΣ from Run 11 transverse data, binned
in pT , for outer η region on the left and inner η region on the right. Vertical error bars are
statistical uncertainties and horizontal error bars are pT bin RMSs.
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In comparison to the relative luminosity systematic (∼ 10−4) and statistical uncertainties,

this is a rather small contribution to the overall Aπ
0

LL uncertainty; it is an order of magnitude

smaller than the relative luminosity systematic and is basically negligible, but it is still

included in the final Aπ
0

LL measurement for completion.

5.3 pT Uncertainty

The final Aπ
0

LL values will be plotted as a function of π0 pT , thus an estimate of the overall

pT uncertainty for each pT bin must be assessed. This uncertainty has several contributions:

energy uncertainty, vertex uncertainty, position uncertainty, and other systematic uncertain-

ties arising from calibration studies. This section shows how the pT uncertainty is composed

of the different contributions, followed by a discussion of each.

Consider a π0 with 4-momentum

pπ0 = (E, pT cosφ, pT sinφ, pT cot θ), (5.19)

which represents a π0 scattered at polar angle θ and azimuth φ. Assume the longitudinal

momentum is approximately equal to the energy, i.e., pT ≈ E tan θ; this approximation is

acceptable for the forward η range which the FMS occupies. Now consider the π0 decay

photons hitting the FMS a transverse distance of h from the beam, as in figure 5.19 (i.e., h

is defined using the position of the centroid of the photons). Let Rz be the distance between

the shower max plane and the nominal vertex, so that tan θ = h/Rz. Putting these relations

together,

pT (E, h,Rz) ≈
Eh

Rz

. (5.20)

The uncertainties on E and θ(h,Rz) propagate as

σpT
pT
≈ σE

E
⊕ σh

h
⊕ σRz
Rz

, (5.21)

where the symbol “⊕” denotes quadrature summation: A ⊕ B =
√
A2 +B2. Thus σpT

is linear with respect to pT . Energy resolution, nonlinear PMT response, and calibration

uncertainties give σE, position uncertainty gives σh, and vertex uncertainty gives σRz .

A more accurate determination of the pT uncertainty can be made by making use of

invariant mass and taking into account uncertainties on photon separation and energy im-

balance; however, extra terms which correct equation 5.21, arising from considering the two

photons’ kinematics, are negligibly small (see appendix J).

One could also consider correlation terms in the pT uncertainty. Because there are three
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Figure 5.19: Diagram of geometry used to determine pT uncertainty.

uncertainty terms in equation 5.21, there are three possible correlation terms: energy with

position, energy with vertex, and position with vertex. These terms are not included in the

final pT uncertainty calculation, for reasons which will be discussed in section 5.3.4.

For every π0 which is used for determining Aπ
0

LL, we know all quantities in equation 5.21

and consequently have a value of σpT for each π0. For each pT bin, we can assemble a

distribution of σpT values and from there determine an overall pT uncertainty on each Aπ
0

LL

vs. pT point. The following sections will now discuss in detail the contributing uncertainties:

σE, σh, and σRz .

5.3.1 Energy Uncertainty

The energy uncertainty can be broken into three contributions: energy resolution, nonlinear

response of the PMTs, and calibration uncertainty. By far the most dominant contribution

is from the nonlinear response and the calibration; furthermore, these contributions are

dominant in the overall pT uncertainty. Letting Q represent the energy resolution, G the

uncertainty from nonlinear response, and C the uncertainty from calibration, the energy

uncertainty is decomposed as
σE
E

=
Q√
E
⊕G⊕ C. (5.22)

5.3.1.1 Energy Resolution

The measured energy in a calorimeter is proportional to the number of particles in the

electromagnetic shower, denoted N , which follows a Poisson distribution. Since the mean
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value of N is equal to its variance σ2
N , we have

σN
N

=

√
N

N
∝ 1√

E
. (5.23)

Thus energy resolution is typically quoted in terms of
√
E:

σE
E

=
Q√
E

(5.24)

for Q ∈ (0, 1), which depends on the calorimeter material, setup, and energy measurement.

While the energy of a pion is the sum of energies of its decay photons, the energy

resolution of the pions is the same as that of the decay photons, because, given E =
∑

iEi,

we have

σ2
E =

∑

i

(
∂E

∂Ei

)2

σ2
Ei

=
∑

i

σ2
Ei

=
∑

i

Q2Ei = Q2E. (5.25)

An attempt to measure an estimated energy resolution for a single FMS cell was made

at Fermilab, by making use of an electron beam which was being used for another test

experiment for STAR calorimetry, experiment T-1018 [100]. A single large FMS cell was

wrapped in mylar and coupled to a PMT (radius 1.4 cm, i.e., small cell sized), such that

the coupling could be easily adjusted; the original purpose of this test was to determine the

dependence of photo-electron yield and energy resolution on the optical coupling between

the PMT and the Pb-glass, with the goal to select an optimal coupling for a proposed

refurbishment of the FMS. The cell and coupled PMT were made light-tight, mounted on a

remotely-controllable stage, and the setup was moved into electron beams with energies of

8 GeV and 16 GeV. Data were then acquired for several different PMT-Pb-glass couplings,

in coincidence with several other monitoring detectors, such as a Cherenkov detector, beam

hodoscope, and scaler counters.

The criteria used for event selection included a hodoscope geometry cut, which ensured

centered electron incidence, as well as minimum ADC cuts on associated Cherenkov and

scintillator detectors. The momentum spread of the beam was measured to be about 1.8%,

however the cell’s energy resolution measurement was heavily dominated by light leakage

out of the sides of the cell; it would have been better to test a matrix of cells for an energy

resolution measurement. We have therefore chosen to be conservative and to not try to

deconvolve the “true” energy resolution from the beam momentum spread.

Because this test at Fermilab was not designed to measure the energy resolution and was

focused more on optical couplings, it is not a good measurement of the energy resolution

of the FMS; nonetheless, it is the only measurement available at the time of this analysis.
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Figure 5.20: σE/E vs. PMT-to-Pb-glass air gap length for two different e− beams; data
from test conducted during beam time at Fermilab test experiment T-1018.

Additionally, it was only done for a large cell and no tests were performed with a small cell.

Fortunately, this pT systematic contribution is sub-dominant when compared to the G and

C terms in the overall energy uncertainty.

Figure 5.20 shows a plot of the measured energy resolution as a function of various air-

gap sizes between the Pb-glass and PMT; an air-gap size of 0.1 mm actually represents a

test where the PMT and the Pb-glass were coupled with optical grease. No substantial

dependence on optical coupling was observed in the energy resolution, therefore a fit to a

constant is shown in order to estimate a value of Q ∼ 0.2. The resolution is slightly better

for an air gap of 1–2 mm for the 8 GeV beam case, which motivated us to add air gaps

between the glass and the PMTs during the FMS refurbishment after Run 13; simulations

confirmed this idea.

This estimate of Q ∼ 0.2 is likely an overestimate, given the light leakage out of the sides

of the cell as well as the momentum spread of the electron beam. Even at the estimated scale

of Q, it represents a sub-dominant systematic uncertainty compared to the other contribu-

tions to the energy uncertainty. Furthermore, it is measuring an event-by-event smearing

of the energy, not a bias, and therefore gets averaged out in the overall Aπ
0

LL measurement.

Ultimately it was decided to drop this contribution to the pT systematic uncertainty.
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5.3.1.2 Calibration Anchor Point

The fit algorithm for π0s has a tendency to overestimate the 2-photon opening angle at higher

π0 energies, as described in section 3.4.5. Because of this overestimation of opening angles,

the reconstructed invariant two-photon mass depends on the total energy: a monotonic

increase of the mass as a function of energy is observed. Calibration involves the adjustment

of PMT gains (during RHIC running periods) and gain corrections (after RHIC running)

to shift the π0 mass peaks to be as close as possible to the real π0 mass, uniformly over

all regions of the FMS. Since the mass has a dependence on energy, the calibration result

depends heavily on what range of π0 energies are selected to calibrate with; this choice of

energy range is known as the calibration anchor point.

The anchor point range was 28 ± 10 GeV for the large cells and 40 ± 10 GeV for the

small cells; most of the π0s are found within these energy ranges. If a different calibration

anchor point energy were chosen, the overall calibration would shift. For relevant changes

in the anchor point, the overall energies could change up to about 5%, which represents

another possible systematic bias in pT . Therefore, a value of C = 5% was adopted as a

contribution to the pT uncertainty, arising from the overall choice of calibration. This is the

most dominant contribution to the pT systematic uncertainty.

5.3.1.3 Nonlinear Response

The overall Aπ
0

LL analysis is performed with an implementation of the day-0 nonlinear gain

g(E) correction applied (see section 3.5.2). The result is compared to a parallel analysis of the

data with the day-D corrections applied, as well as a control analysis with the corrections

disabled altogether. By comparing the pT means, i.e., the plotted positions of the final

Aπ
0

LL data points, for the day-0 case with the day-D case, the pT systematic uncertainty

contribution G is determined. The value of G is interpreted as the additional shift in pT that

would incur had we taken into account the increased nonlinearity caused by the radiation

damage. The day-0 model is better understood as a basic nonlinear E-dependent gain

correction, whereas the day-D model as an extention to include radiation damage effects is

not as well-vetted; therefore, we have decided to assign the fractional difference between the

day-0 and day-D pT means as a value of G:

G =
〈pday-D
Tt
〉 − 〈pday-0

Tt
〉

〈pday-0
Tt
〉

. (5.26)

Figure 5.21 shows a comparison of the day-0 pT distribution in blue to the day-D distri-

bution in red. The overall shape looks the same, hence the pT means do not change by much.
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pT [GeV] pT [GeV]

Figure 5.21: Comparison of pT distributions between day-0 in blue and day-D in red. The
day-D distribution has slightly more events, as explained in the text.

There are some additional events in the pT peak region from the day-D model compared

to the day-0 model; this is because all of the kinematics cuts apply to the g(E)-corrected

values (i.e., not the uncorrected, observed values), which differ between the day-D and day-0

models. Some events which satisfy kinematic cuts after day-D corrections may not satisfy

them after day-0 corrections. In fact, more events satisfy kinematic cuts for either day-0 or

day-D corrections than for the case where no nonlinear correction is applied; this is because,

in general, the g(E) corrections tend to reduce E and pT , and this reduction is stronger for

higher values of E and pT (see figures 3.18 and 3.19). More events near the upper limits

of the cuts are being brought down in E and pT into the accepted kinematic region; fewer

events near the lower limits of the cuts are “falling” out of the accepted region. Thus overall,

applying g(E) corrections tends to increase the overall number of events which pass all cuts.

Table 5.4 lists the pT means for each pT bin in the Aπ
0

LL analysis for each of the three

parallel analyses. The value of G is also listed; this contribution to the overall pT systematic

uncertainty is very small. Note that the fractional differences in pT means from the control

analysis are not very high either; this indicates that the net effect of the g(E) correction on

the pT means is effectively washed out.
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pT Bin No g(E) Day-0 g(E) Day-D g(E) G

Outer Region

pthresh
T –4.35 3.91 3.91 3.89 –0.41%
4.35–5.15 4.73 4.73 4.73 –0.07%
5.15–6.15 5.62 5.62 5.62 –0.09%
6.15–pmax

T 7.08 7.08 7.07 –0.06%

Inner Region

pthresh
T –2.95 2.50 2.50 2.50 0.17%
2.95–3.70 3.33 3.33 3.33 –0.04%
3.70–4.60 4.11 4.11 4.11 –0.01%
4.60–pmax

T 5.37 5.37 5.36 –0.29%

Table 5.4: Mean pT values for each bin and for the cases of no g(E) correction, day-0
g(E), and day-D g(E); the pT systematic uncertainty contribution G is also given, which
compares day-0 g(E) to day-D g(E) pT means. Note that while not many significant figures
are printed in the table (because the pT uncertainty is already at least 5% from the calibration
uncertainty), the calculation of G used all available digits, verifying how little G contributes
to the overall pT systematic uncertainty.

5.3.2 Position Uncertainty

Although position uncertainty is expected to be a sub-dominant contribution to the pT

uncertainty, it is nonetheless important to estimate its magnitude. Consider a single photon

cluster in the FMS. Let Ei denote the energy of the ith tower in the cluster and let (xi, yi)

be the coordinates of that tower. Following [101], consider the photon position (x̄, ȳ) as

approximated by the energy-weighted mean of the towers:

x̄ =

∑
i xiEi∑
iEi

. (5.27)

Derivatives of x̄ with respect to each tower energy Ej are (xj − x̄) /E. Given that the energy

resolution is σEj = Q2Ej, the uncertainty on the centroid is

σ2
x̄ =

Q2σ̂2
x

E
, (5.28)

where σ̂2
x is the energy-weighted variance,

σ̂2
x :=

∑

i

Ei (xi − x̄)2

E
. (5.29)

Therefore the error on the photon position, approximated here by the cluster centroid, is

proportional to 1/
√
E, where the constant of proportionality will be henceforth denoted

W := Qσ̂x.
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In addition to the photon centroid, the penetration of the photon into the glass before

the shower initializes must also be taken into account. If the photon has a polar angle θ

from the vertex, then the projection of one radiation length X0 to the front plane of the

FMS is X0 sin θ. This amount represents another possible uncertainty in the reconstructed

transverse position of the photon, especially if the incident angle is high.

A value for W was determined in the RADPHI calorimeter at Jefferson Lab [102], which

is an array of FMS small cells. This value can be extended to the large cells as well, by

multiplying by a factor 6 cm / 4 cm, which is the approximate ratio of large to small cell

transverse sizes. Radiation lengths were measured in other Pb-glass arrays which utilized

the same glass; see [76] for large cells and [77] for small cells. Values of W and X0 are given

in table 5.5.

Large Cell Small Cell

W 1.065 cm ·GeV1/2 0.71 cm ·GeV1/2

X0 3.2 cm 2.5 cm

Table 5.5: W and X0 values for FMS Pb-glass, measured by RADPHI for small cells and
extrapolated to large cells.

Another contribution to the systematic uncertainty is due to the choice of shower shape

model. As mentioned before in section 3.4.2, one can use an asymmetric shower shape

model, which takes into account corrections from the incident photon angle. The symmetric

shower shape model, which is independent of incident angle, is employed in this Aπ
0

LL analysis,

therefore the possible bias from having not applied incident angle corrections must be taken

into account.

At the highest angle of incidence accepted in the FMS, using the asymmetric shower shape

returns a photon position a distance of, at the most, 0.5 cm from the position returned from

the symmetric shower shape. This bias has been confirmed in simulations. Furthermore, as

was mentioned in section 3.4.2, the bias is much more sensitive to the choice of z plane onto

which the photon trajectories are projected, rather than on the transverse shower shape.

Nonetheless, the bias represents another contribution to the overall position uncertainty,

and is denoted as A = 0.5 cm.

Putting everything together, the full position uncertainty is

σh =
W√
E
⊕X0 sin θ ⊕ A. (5.30)

Given typical values of E and θ, the typical contribution to the pT systematic is σh/h ∼ 1%,

which is sub-dominant, but not negligible.
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Figure 5.22: Vertex distribution, in particular, the z-position of the vertex as determined
by the VPD. The black distribution is for all events, magenta is for FMS-JP2, yellow for
FMS-LgBS1, and green for FMS-SmBS1.

5.3.3 Vertex Uncertainty

The offset in the vertex is another possible bias in the overall pT of events seen in the

FMS. This offset, denoted σRz , contributes to the pT systematic as σRz/Rz, where Rz is the

distance between the FMS and the nominal vertex position, 7.2 m. Figure 5.22 shows the

vertex distribution in Run 13, along with distributions filtered by FMS trigger.

Since in Run 13 only the large cells were ultimately analyzed, the LgBS1 trigger is the

most unbiased trigger selection on the vertex distribution, which would give a reasonable

estimate of the vertex offset in the Aπ
0

LL data set. The mean of the LgBS1-filtered vertex

distribution is about 9.8 cm, which gives a value of σRz/Rz = 1.4%; other trigger-filtered

distributions give a very similar mean, so this choice of trigger is of little impact. Further-

more, the Run 12 distribution was similar, and therefore this value of 1.4% is used as an

overall value for this pT systematic contribution.

5.3.4 Correlation Terms in pT Uncertainty

We now return to the question of including correlation terms: energy with position, energy

with vertex, and position with vertex. The measured energy is physically not correlated with

the vertex offset, therefore the energy and vertex term vanishes. The position uncertainty

and vertex offset could be correlated, however this correlation term also includes factors
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for the position and vertex uncertainties themselves, both of which are small with respect

to correlations involving energy uncertainty. Therefore, the position and vertex correlation

term is omitted as negligible. Finally, regarding the energy with position term, the dominant

energy uncertainty contribution, C, is from the calibration anchor point and is not corre-

lated with position. The sub-dominant contribution, G, from including radiation damage

considerations for the nonlinear gain correction, can be correlated with position and needs

some careful thought.

Consider the case where the energy of a shower is underestimated, that is, Eo < Et. This

case occurs because the initial part of the shower was not detected, since it was effectively

blocked by attenuation due to properties of the Pb-glass as well as radiation damage. The

part of the shower that is detected, however, averages out in the transverse plane to a

greater value of h than it would have had the entire shower been observed. Therefore,

underestimating E leads to an overestimate of h and vice versa; the energy and position

uncertainties are thus anti-correlated. The derivatives of pT (E, h,Rz) with respect to E and

h are both positive, so the anti-correlation therefore makes the overall energy and position

correlation term negative and would serve to reduce the overall pT uncertainty. Because this

correlation is based on the sub-dominant pT uncertainty contribution G, it is expected to be

small. Therefore, neglecting this term altogether returns an overall pT uncertainty which is a

slight overestimate. Ultimately, the more-conservative path was chosen and this correlation

term was omitted altogether as well.

5.3.5 pT Uncertainty Result

To summarize the above discussions, the full pT systematic uncertainty is

σpT
pT

= [G⊕ C]⊕ 1

h

[
W√
E
⊕X0 sin θ ⊕ A

]
⊕
[
σRz
Rz

]
, (5.31)

where the contributions from energy, position, and vertex uncertainties have been respec-

tively bracketed. The overall contribution from energy uncertainty ranges around 5–6%, and

is dominant and also dependent on which pT bin is considered. The position and vertex

uncertainties contribute about 1% and 1.5%, respectively, and when added in quadrature

with the energy uncertainty, give an overall σpT /pT of approximately 5–6%.

The σpT value is plotted in figure 5.23 as a function of pT , for all π0 events in the Aπ
0

LL

analysis. The pT binning can be seen in the small discontinuities at the pT bin boundaries,

where the slope increases slightly when proceeding to higher pT . The overall value of σpT /pT

is 5.3% for both the outer and inner regions.
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Figure 5.23: Full pT uncertainty vs. pT for outer region (top) and inner region (bottom).
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5.4 Summary of Systematic Uncertainties

Table 5.6 shows a summary of all of the systematic uncertainties which are included in the

Aπ
0

LL analysis. They are organized by type and origin, indicated in the classification column;

approximate typical values for each uncertainty are given in the rightmost column.

Uncertainty Symbol Classification Typical Value

Relative Luminosity ∆ALL [∆R3 ] Aπ
0

LL Shift 2–5×10−4

Polarization Transverse Component ∆ALL

[
P⊥
]

Aπ
0

LL Shift 1–2×10−5

Overall Polarization σPBPY /PBPY Aπ
0

LL Scale 6.7%

Calibration Bias C pT Bias 5%
Nonlinear Gain Correction G pT Bias < 0.4%

Energy Bias in Position W/h
√
E pT Bias < 0.5%

Position Bias from Shower Depth X0 sin θ/h pT Bias < 0.5%
Position Bias from Shower Shapes A/h pT Bias < 1%

Vertex Offset σRz/Rz pT Bias 1.4%

Table 5.6: Summary of Aπ
0

LL systematic uncertainties.
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Chapter 6

Aπ
0

LL Analysis Procedure

So far we have discussed the π0 event selection in chapter 3, the relative luminosity in

chapter 4, and systematic uncertainties on Aπ
0

LL and on π0 transverse momentum in chapter

5. This chapter shows how these components are combined into the final Aπ
0

LL measurement.

The kinematic binning will be discussed first, followed by the Run 12 and 13 polarization

measurements from the RHIC Polarimetry Group. After that is a discussion of how the π0

yields, relative luminosities, and polarizations are combined for the entire data set into an

Aπ
0

LL measurement for each kinematic bin. This is followed by a study of the π0 signal and

background fractions, which are used to correct for a possible background ALL contribution to

Aπ
0

LL. The full, background-corrected Aπ
0

LL measurement as a function of pT will be presented

in the next chapter.

6.1 Kinematic Binning and Means

Table 6.1 shows the kinematic bins used in the Aπ
0

LL analysis. Two η regions are defined: an

outer region which has mostly large cells and an inner region with mostly small cells. The

η-ring between the regions is set at 3.15 as a rounded value which appropriately separates

the large cells and small cells calibration schemes, as presented in the M vs. η plot back in

figure 3.6. For the outer region, both Runs 12 and 13 are analyzed, whereas only Run 12 is

analyzed for the inner region, because the small cells were heavily radiation-damaged during

Run 13. Furthermore, only the first half of Run 13 data was ultimately analyzed, because

we determined the radiation damage to be too severe in the second half.

Four pT bins are defined separately within the two η regions. Their boundaries were

determined by approximately equalizing the π0 yields within each bin, given the full pT

distribution of the π0s considered in Aπ
0

LL. The value pthresh
T is a time-dependent pT threshold,

which was discussed in section 3.7.2; the lowest kinematically-allowed value of pT , given by
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η Region pT Bin pT Range (Gev) E Range (GeV) η Range

Outer Region

1 pthresh
T –4.35

30–70 2.65–3.15
2 4.35–5.15
3 5.15–6.15
4 6.15–pmax

T

Inner Region

1 pthresh
T –2.95

30–100 3.15–3.90
2 2.95–3.70
3 3.70–4.60
4 4.60–pmax

T

Table 6.1: Kinematic bin ranges for the Aπ
0

LL analysis. Two η regions were used, each divided
into four pT bins.

η Region pT Bin 〈pT 〉 (GeV) 〈E〉 (GeV) 〈η〉

Outer Region

1 3.91 36.8 2.92
2 4.73 42.7 2.88
3 5.62 49.9 2.87
4 7.08 58.6 2.80

Inner Region

1 2.50 41.2 3.49
2 3.33 52.7 3.44
3 4.11 63.8 3.42
4 5.37 79.2 3.38

Table 6.2: Kinematic bin means for the Aπ
0

LL analysis.

pmin
T ≈ Emin/ cosh ηmax, is less than pthresh

T for both η regions. The upper limit of pT is

pmax
T ≈ Emax/ cosh ηmin, which gives a value of pmax

T = 9.8 GeV for the outer region and 8.6

GeV for the inner region.

Table 6.2 lists the means of the kinematic variables pT , E, and η for each of the pT

bins. Note that the pT means quoted here are the values at which the Aπ
0

LL data points are

plotted; these pT means are background corrected (see section 6.4.1), but they are negligibly

different from the uncorrected values. The E and η values are not background-corrected.

These kinematic means are needed in the forthcoming global analysis of ∆g(x), the polarized

gluon distribution function, for which this Aπ
0

LL measurement is a key piece.

6.2 Polarization

An ALL measurement requires three ingredients: particle yields, relative luminosity, and

polarization. The first two ingredients are obtained from STAR detectors and have been

discussed, however the polarization of the proton bunches is measured by an independent set
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of polarimeters which are located in the RHIC ring diametrically opposite STAR. They are

maintained by the RHIC Polarimetry Group at RHIC. For further details of the polarimetry

measurement, see [103] and references therein.

For each fill, the polarimetry group provides two numbers along with their uncertainties:

the initial polarization at the beginning of a fill, P0, and the time dependence of the polar-

ization, P1 = dP/dt. For a given DAQ run which occurs T seconds after the beginning of a

fill, the polarization is

P (T ) = P0 + P1T. (6.1)

The value of T for each run in this analysis is taken from the middle of the run. Typically

a few polarization measurements are taken per fill.

These polarization measurements are then taken together within each fill and combined

into a luminosity-weighted average, returning one value of the polarization for each fill; the

FMS JP2 trigger was used for the luminosity measurement. Statistical and systematic errors

were also propagated on a run-by-run and fill-by-fill basis; details can be found in appendix

I as well as the polarimetry group’s analysis note, [103].

Figures 6.1 and 6.2 show the polarizations for the blue and yellow beams as well as the

polarization product, as a function of a run index. Both the time-dependent polarization

P (t) (in blue) and the luminosity-weighted average P (t) (in magenta) are plotted. The data

shown in these figures are limited to the runs which are used in the Aπ
0

LL analysis. For scaling

the raw double-helicity asymmetry to Aπ
0

LL, the luminosity-weighted average polarizations

are used on a fill-by-fill basis. The overall luminosity-weighted polarizations and their errors

were also computed for both Runs 12 and 13; these numbers are given in table 6.3.

Run 12 Run 13 Runs 12+13

PB 0.54± 0.019 0.57± 0.019 0.55± 0.019
PY 0.56± 0.019 0.57± 0.019 0.56± 0.020

PBPY 0.31± 0.020 0.32± 0.021 0.31± 0.021

Lint 57.4 pb−1 6.0 pb−1 63.4 pb−1

Table 6.3: Overall luminosity-weighted average polarizations with uncertainties; blue beam,
yellow beam, and product polarizations are shown, as well as the overall integrated luminos-
ity. See appendix I for details.

6.2.1 Scale Systematic on Aπ0

LL

The final value of ALL is a measured raw double-spin asymmetry εLL scaled by the polar-

ization product: ALL=εLL/PBPY . Because of this scaling, an additional scale systematic on

Aπ
0

LL is assigned. Table 6.3 indicates this scale systematic for Runs 12 and 13 combined is
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Run 12 Blue Beam Polarization vs. Run Index
P

run index

B

Run 12 Yellow Beam Polarization vs. Run Index
P

run index

Y

Run 12 Polarization Product vs. Run Index

P

run index

YPB

Figure 6.1: Polarizations vs. run index for Run 12; blue line is P (t) and magenta line is the
luminosity-weighted average of P (t) within each fill.

171



Run 13 Blue Beam Polarization vs. Run Index
P

run index

B

Run 13 Yellow Beam Polarization vs. Run Index
P

run index

Y

Run 13 Polarization Product vs. Run Index

P

run index

YPB

Figure 6.2: Polarizations vs. run index for Run 13; blue line is P (t) and magenta line is the
luminosity-weighted average of P (t) within each fill.
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σPBPY /PBPY = 6.7%. This is a systematic uncertainty on Aπ
0

LL that is independent of all

the aforementioned shift systematic uncertainties. Furthermore, the aforementioned shift

systematic uncertainties define an uncertainty of the overall offset from zero; on the other

hand, the polarization scale systematic uncertainty defines an uncertainty in the overall

multiplicative scale of the asymmetry.

6.3 Maximum Likelihood Method ALL Computation

Data at STAR are typically taken in half-hour segments, called DAQ runs. In order to

combine the data from all DAQ runs into a single measurement, a Maximum Likelihood

Method (MLM) is employed. See appendix K for the full derivation; only the final formulae

are presented in this section.

Recalling equation 1.29, the asymmetry for a single run i is expressed as

ALLi =
1

PB
f(i)P

Y
f(i)

(
N++
i +N−−i

)
−R3i

(
N+−
i +N−+

i

)
(
N++
i +N−−i

)
+R3i

(
N+−
i +N−+

i

) , (6.2)

where f(i) is the fill which contains run i. Instead of measuring ALLi for each run, we

combine the yields, relative luminosities, and polarizations into a single formula which gives

the overall maximum likely ALL, denoted by ĀLL:

ĀLL =

∑
i P

B
f(i)P

Y
f(i)

[(
N++
i +N−−i

)
−R3i

(
N+−
i +N−+

i

)]

∑
i

(
PB
f(i)P

Y
f(i)

)2 [(
N++
i +N−−i

)
+R3i

(
N+−
i +N−+

i

)] . (6.3)

While this expression looks similar to equation 6.2, it is a summation over a summation.

Moreover, the numerator summands are weighted by the polarization product, whereas those

in the denominator are weighted by the polarization product squared.

With PBPY the average polarization product and N =
∑

i

(
N++
i +N−−i +N+−

i +N−+
i

)

the total yield, the simplified statistical uncertainty is

σĀLL ≈
1

PBPY
√
N
. (6.4)

The more-exact statistical uncertainty is given in appendix K, which is what is actually used

in the calculation, but the result is extremely close to this approximation.
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6.4 Background Corrections

Any measured asymmetry of any signal could be influenced by a possible nonzero asymmetry

in the background under the signal. Given measurements of both the signal+background

asymmetry and the background asymmetry alone, the signal asymmetry can be extracted

from the signal+background asymmetry. Such a procedure is called the background correction

to the asymmetry and it is applied to Aπ
0

LL, given a background ALL measurement from the

mass window sideband region, which was discussed in section 3.7.3.

6.4.1 Implementation

Let AM be a measured asymmetry in some mass signal window, with a nonzero background;

AM includes both the signal and background contributions. Let AB be the asymmetry of

the background and let AS be the signal asymmetry, which we are trying to extract. Let F

be the signal purity, defined as the fraction of the events within the mass window that are

the true signal events; thus 1 − F is the fraction of events which are from the background.

The measured asymmetry is then decomposed as

AM = FAS + (1− F )AB. (6.5)

The signal asymmetry, corrected by the background asymmetry, is therefore

AS =
1

F
AM −

1− F
F

AB. (6.6)

The uncertainties of AM , AB, and F , written σAM , σAB , and σF , propagate to the uncertainty

of AS as

σ2
AS

=

(
1

F

)2

σ2
AM

+

(
F − 1

F

)2

σ2
AB

+

(
AB − AM

F 2

)2

σ2
F . (6.7)

Typically asymmetries are measured as a function of a kinematic variable v ∈ {η, pT , E}
or a set of such variables. The mean v in each measurement bin, denoted by 〈v〉, also needs

to be corrected by the background. Its correction and uncertainty can easily be obtained by

replacing the As in equations 6.6 and 6.7 by 〈v〉s. The final asymmetry plot is of Aπ
0

LL vs. pT

and we use Aπ
0

LL = AS, ATot
LL = AM , and ABG

LL = AB, as well as similar notation for the mean

pT values. The background correction is then

Aπ
0

LL =
1

F
· ATot

LL −
1− F
F
· ABG

LL , (6.8)
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〈pπ0

T 〉 =
1

F
· 〈pTot

T 〉 −
1− F
F
· 〈pBG

T 〉. (6.9)

In practice, the shift in asymmetry due to the background correction is smaller than the

statistical uncertainty, but it is sometimes larger than the systematic uncertainty; the shift

in 〈pT 〉 is typically smaller than 0.01 GeV and is negligible, but nonetheless implemented.

A correction on the pT uncertainty is not implemented here, since the correction itself is

negligible and the final pT uncertainty given in the Aπ
0

LL measurement plots represents an

overall systematic uncertainty anyway.

Regarding the background-corrected uncertainty, σAS from equation 6.7, one can gain

an understanding of how large the increase in statistical uncertainty will be, which arises

from including the lower-statistics background asymmetry AB determination along with the

higher-statistics AM in order to produce AS, which has less statistics than AM . Let NM and

NB be the number of events used for AM and AB, respectively. Then, with P the polarization

product,

σAB =
1

P
√
NB

=
1

P
√
NM (1− F )

= σAM
1√

1− F . (6.10)

Inserting this relation into equation 6.7 and assumingAB ≈ AM gives the ratio of background-

corrected uncertainty to the original uncertainty as

σAS
σAM

≈
√

2− F
F

, (6.11)

which falls toward 1 as F increases; for F > 0.75, the gain in uncertainty is less than a factor

of 1.5.

For each runset, which is a set of 5–10 consecutive (good) runs, contributions to ATot
LL

and to ABG
LL are included in separate MLM sums of equation 6.3. The final maximum likely

values of these asymmetries are those which are used in equation 6.6 and equation 6.7 is

used as the corrected statistical uncertainty. We now turn to a determination of the signal

purity, F .

6.4.2 Signal and Background Fitting

Let m be invariant mass. The π0 (or η) signal is modelled by a skewed Gaussian,

G(m) = exp

[
−1

2

(
m− µ
ω

)2
]
×
{

1 + erf

[
α√
2
· m− µ

ω

]}
, (6.12)

where the fit parameters are µ, the expected and un-skewed signal mass, ω, the signal

width, and α, which is related to the skewness. The background is modelled with a linear

175



combination of Chebyshev polynomials of the first kind:

B(m) = 1 +
n∑

k=1

bkTk(m), where Tk (cos θ) = cos (kθ) . (6.13)

The degree used here is n = 3 and the coefficients {bk} are the fit parameters. Written

explicitly,

B(m) = 1 + b1m+ b2

(
2m2 − 1

)
+ b3

(
4m3 − 3m

)
. (6.14)

Typical values of {b1, b2, b3} obtained from fitting are around

{1.5 to 2, − 0.5 to 0.5, 1 to 1.5} for the outer region,

{−1.5 to − 1, − 3 to − 0.5, 1 to 1.5} for the inner region.

Now define the following additional fit parameters: the estimated number of pions Nπ, η-

mesons Nη, and background events NB. Letting Gπ(m) and Gη(m) be the skewed Gaussians

for the pions and η-mesons, respectively, the full fit model M(m) is

M(m) = NπGπ(m) +NηGη(m) +NBB(m). (6.15)

The fit functions {Gπ, Gη, B} are considered as probability density functions and are nor-

malized over the full mass range of 0 to 1 GeV. Consequently, the total number of events as

determined by the fit algorithm is

∫ 1

0

M(m)dm = Nπ +Nη +NB. (6.16)

The signal range, Sπ, over which the purity is calculated is determined using an algorithm

similar to that used in determining the E-dependent π0 mass window, described in section

3.7.3. The same idea of starting from the fit maximum and sliding left and right of the peak

to a fraction of the maximum is used in order to establish a similarly defined signal range.

The endpoints of Sπ are used as boundaries of integrals used to calculate the π0 purity.

Using the mass histogram H(m), the pion purity F , defined as the fraction of events in

the signal range Sπ which are pions, is

F = Nπ ·
IGπ
IH

, (6.17)
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where If , given a function of mass f(m), is defined as

If :=

∫

Sπ

f(m)dm. (6.18)

Note that for the case of IH , the integral over Sπ is replaced by a sum over the corresponding

mass bins of H(m), a histogram. In practice, it is better to use the background fit B(m)

compared to the data histogram H(m) to determine the pion purity:

F = 1−NB ·
IB
IH
−Nη ·

IGη
IH

. (6.19)

Note that the η-meson contribution is included in case Sη, the window corresponding to

Gη(m), overlaps into the signal region Sπ; this usually does not happen and for the purpose

of discussion can be ignored.

The propagated uncertainty on F is

σ2
F =

(
∂F

∂NB

)2

σ2
NB

+

(
∂F

∂IH

)2

σ2
IH

+
3∑

j=1

3∑

k=1

∂F

∂bj

∂F

∂bk
σbjbk + 2

3∑

k=1

∂F

∂NB

∂F

∂bk
σbkNB , (6.20)

where the covariances σf1f2 can be written in terms of correlation coefficients ρf1f2 via σf1f2 =

ρf1f2σf1σf2 . The uncertainties {σNB , σbk} and correlation coefficients may all be determined

from the fit, and σIH =
√
IH . Putting everything together, the uncertainty is

σ2
F =

1

I2
H

[
I2
Bσ

2
NB

+
N2
BI

2
B

IH
+

3∑

j=1

3∑

k=1

N2
BITjITkρbjbkσbjσbk (6.21)

+ 2
3∑

k=1

IBNBITkρbkNBσbkσNb

]
.

This uncertainty is useful for determining the fit quality, but it does not impact Aπ
0

LL signif-

icantly, since σF is scaled by a factor of (AB − AM)/F 2 in equation 6.7, which is typically

small.

The signal+background fitting is performed with an extended maximum likelihood fit

algorithm by RooFit [104]. Figures 6.3 and 6.4 show sample fits for the outer and inner

regions, respectively. The fit algorithm was performed runset-by-runset for all pT bins used

in Aπ
0

LL. The fits were to data in a fit window, defined between a lower mass bound of

typically 0.06–0.1 GeV up to an upper bound of 0.6–0.75 GeV. The exact boundaries chosen

depended on the shape of the mass distribution and the performance of the fit algorithm; the

algorithm would tend to be successful for various fit window boundaries, but after a relative
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Figure 6.3: Sample fit results for each of the four pT bins of the outer region. The fit legend
is in the first panel. Tall vertical lines denote signal window Sπ boundaries, and the short
vertical line indicates the upper boundary of the sideband region (which is not used in the
fit or calculation of F ).

limit, the fit would fail if the window was too wide. Consequently, the fit window boundaries

were chosen to push toward that limit, in order to maximize the subset of data considered

in the fit. The lowest three pT bins of the outer region included an η-meson fit; all other pT

bins did not show enough of an η-signal to warrant an η-meson fit attempt.

The signal peak fit height does not match the data peak height as well as one would hope,

especially at higher pT . This weakness justifies the preference toward using the background

fit and data histogram integrals to calculate F (via equation 6.19), rather than making use of

the signal fit integral. The sideband regions, along with the η-meson, seem to be reasonably

well-fit for almost all of the runsets, therefore the background fit is more reliable than the

signal fit for providing a measurement of F .
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Figure 6.4: Sample fit results for each of the four pT bins of the inner region.

6.4.3 Purity Results

Figures 6.5-6.8 show plots of pion purity F as a function of runset as well as a distribution,

for each pT bin for both η regions. The error bars are from equation 6.21. There is some

slight time-dependence observed in some of the F values. In practice, one could background-

correct each runset’s Aπ
0

LL value, use each runset’s value of F , and form an enhanced MLM

sum; however, this would require a good measurement of the background asymmetry for each

runset, which is not available since the background (sideband) sample size is much smaller

than the signal sample size. Therefore, a single maximum-likely value of F for each pT bin

used in Aπ
0

LL is obtained instead; correcting for time-dependent F would not improve the Aπ
0

LL

result much, given the context of the error bars on F .

These maximum likely purity values are indicated by the red constant fit lines. Figure

6.9 shows a plot of these values for each of the pT bins used in Aπ
0

LL. The error bars are from

equation 6.7. The background level is 20–25% for the outer region and 10–15% for the inner

region.

One might ask if there is a systematic uncertainty on Aπ
0

LL associated to this background
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correction. Already, according to equation 6.7, there is an increase in statistical uncertainties

from making this correction. On the other hand, it is reasonable to investigate the Aπ
0

LL

values for different choices of F . It turns out that for changes in F within its uncertainty,

changes in Aπ
0

LL are no more than 3 × 10−4, which is comparable to the relative luminosity

systematic uncertainty and well below the gain in statistical uncertainties. We have therefore

left the uncertainty associated to the background correction to be taken into account via the

increased statistical uncertainties.

The application of the background correction is shown in figures 6.10 and 6.11. The

top-left panel of each figure shows a comparison of signal+background asymmetry ATot
LL in

red, to the background asymmetry ABG
LL in blue. These asymmetries are plotted versus their

pT bin means; the vertical uncertainties are statistical and the horizontal uncertainties are

pT bin RMS values. The bottom-left panel shows the difference ATot
LL −ABG

LL versus corrected

pT means, with error bars representing their propagated uncertainties (since ATot
LL and ABG

LL

are taken from separate parts of the M distribution, the uncertainty on their difference

is the quadrature sum of their uncertainties). A fit line is drawn, showing the difference

between ATot
LL and ABG

LL is no more than one standard deviation. The top-right panel shows

the extracted, background-corrected signal asymmetry Aπ
0

LL in green compared to ATot
LL in red.

The bottom-right panel shows Aπ
0

LL − ATot
LL on the vertical axis versus 〈pπ0

T 〉 − 〈pTot
T 〉 on the

horizontal axis; vertical error bars are not uncertainties, but differences in the uncertainties

of the asymmetries, σ
Aπ

0
LL
− σATot

LL
. Differences between Aπ

0

LL and ATot
LL range from 2× 10−4 to

1.5× 10−3.
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Figure 6.5: Left plots show the π0 purity vs. a runset index, and right plots show the
distributions of purities. The outer region (top plots) includes both Runs 12 and 13, and
there is a vertical black line in the top-left plot showing the boundary between the Runs.
The inner region (bottom plots) does not include Run 13. This is for pT bin 1.
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Figure 6.6: π0 purities for pT bin 2. Note that for pT bins 2–4, there are more runsets plotted;
this is because a few later runsets are completely cut out of pT bin 1 via the time-dependent
pT threshold cut.
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Figure 6.7: π0 purities for pT bin 3.

Runset Index
0 20 40 60 80 100

P
ur

ity

0.2

0.4

0.6

0.8

1

1.2

1.4

 / ndf 2χ  1.78e+03 / 99
p0        0.000464± 0.825 

 / ndf 2χ  1.78e+03 / 99
p0        0.000464± 0.825 

 Bin 4 Purity vs. Internal Runset Index
T

Outer Region p
purity_ls0_p3

Entries  100
Mean   0.811
RMS    0.0437

Purity
0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

2

4

6

8

10

12

14

16

purity_ls0_p3
Entries  100
Mean   0.811
RMS    0.0437

 Bin 4 Purity Distribution
T

Outer Region p

Runset Index
0 10 20 30 40 50

P
ur

ity

0.6

0.7

0.8

0.9

1

1.1
 / ndf 2χ  285 / 51

p0        0.000402± 0.894 
 / ndf 2χ  285 / 51

p0        0.000402± 0.894 

 Bin 4 Purity vs. Internal Runset Index
T

Inner Region p
purity_ls1_p3

Entries  52
Mean   0.882
RMS    0.0173

Purity
0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 10

2

4

6

8

10
purity_ls1_p3

Entries  52
Mean   0.882
RMS    0.0173

 Bin 4 Purity Distribution
T

Inner Region p

Figure 6.8: π0 purities for pT bin 4.
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Figure 6.10: Background corrections implementation for outer region; see text for description
of plots.
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Figure 6.11: Background corrections implementation for inner region; see text for description
of plots.
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Chapter 7

Aπ
0

LL Measurement Result

We are now prepared to discuss the Aπ
0

LL measurement result. This measurement has been

released first in 2014 [105], as a preliminary measurement, meaning that some corrections

and systematics were not yet studied. Four years later, it has been published as a final

measurement [15], which includes everything discussed in this dissertation. This chapter

presents both of these versions, along with a discussion of the impact of the result.

7.1 Preliminary Aπ0

LL Measurement

Measurements at STAR are typically released to the public twice: the first release is a

preliminary release, and is an early look at a particular measurement; typically a preliminary

measurement is in a state where further analysis is unlikely to change its story much. After

further detailed analysis, when a particular measurement is mature enough and well-vetted

within the collaboration, it is published as a final result. The preliminary measurement of

Aπ
0

LL was released in 2014 [105], and does not include many of the topics that have been

discussed, such as the pT systematic uncertainty.

Most of the π0 selection cuts were somewhat less-restrictive than they are for the final

measurement. The inner and outer regions were both analyzed together, and the asymmetry

was determined for 6 bins in energy, integrating over pT , as well as for 6 bins in pT , integrating

over energy. The π0 selection cuts were the following:

• 2.5 < η < 4

• 2.5 < pT < 10 GeV for Run 12 and 2.0 < pT < 10 GeV for Run 13

• 30 < E < 100 GeV

• Z < 0.8
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• Similar E-dependent mass cut, but it was not yet time-dependent

The time-dependent pT threshold cut was also not yet implemented, meaning a fraction of

sub-threshold π0s were included in the analysis (see figures 3.25-3.27).

Two π0 isolation cones sizes were used (see section 3.4.4): 35 mrad and 100 mrad, inspired

by the dependence of Aπ
0

N on π0 isolation, where higher Aπ
0

N is observed for more-isolated π0s

[58]. The relative luminosity used for the preliminary plots was measured by averaging the

R3 values obtained from the VPDE, VPDW, and VPDX using the CDF corrections, since the

preliminary plots were released before the rate-safe corrections were implemented. Finally,

the beam-current fill-by-fill polarization measurements were used, rather than the luminosity-

weighted averages of the time-dependent polarizations; the impact of this change on Aπ
0

LL is

negligibly small, however the RHIC polarimetry group prefers the use of luminosity-weighted

average polarizations for any asymmetry analysis.

Figures 7.1 and 7.2 show Aπ
0

LL plotted vs. E and pT , respectively. The vertical lines are

statistical uncertainties, the horizontal lines are E and pT bin RMSs, and the vertical size

of the shaded boxes represents the systematic uncertainty from the relative luminosity. For

the relative luminosity systematic, the widths of the SLL distributions were used (for Run

13, the distribution was bimodal, and the width of the wider distribution was used), plus

the distribution mean. For Run 12, the systematic uncertainty on Aπ
0

LL was 2.8 × 10−4 and

for Run 13 it was 6.2 × 10−4. These uncertainties were averaged together, weighted by π0

statistics for each bin.

The red markers are for 35 mrad π0 isolation, and the blue markers are for 100 mrad

isolation. For visibility, the 100 mrad points are offset to the right by 1 GeV in energy in

figure 7.1 and by 0.1 GeV in pT in figure 7.2. Unlike Aπ
0

N , which depends on π0 isolation, no

such dependence is observed in Aπ
0

LL. Given the statistical and systematic uncertainties, this

measurement does not show any significant nonzero asymmetry; the highest pT point in figure

7.2 is an outlier, being almost two standard deviations from the zero line, however it was

later found that hot towers were contributing to this point’s anomalously high asymmetry.

The statistical and systematic uncertainties therefore represent overall bounds on the size of

Aπ
0

LL for these forward kinematics.
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STAR PRELIMINARY

35 mr Isolation Cone
100 mr Isolation Cone

Figure 7.1: Preliminary measurement of Aπ
0

LL vs. E; see text for details.

35 mr Isolation Cone
100 mr Isolation Cone

STAR PRELIMINARY

Figure 7.2: Preliminary measurement of Aπ
0

LL vs. pT ; see text for details.
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7.2 Final Aπ0

LL Measurement

Figure 7.3 shows the final version of the Aπ
0

LL measurement [15], as a function of pT , for the

outer and inner η regions (see table 6.1 for the binning). Numerical values for the points and

errors are provided in table 7.1. The vertical error bars represent the statistical uncertainty

on Aπ
0

LL, and the vertical extent of the shaded boxes represents the Aπ
0

LL shift systematic

uncertainty from relative luminosity and polarization transverse component. The horizontal

extent of the shaded boxes represents the pT systematic uncertainty. The polarization scale

systematic uncertainty of 6.7% is not included in the plot.

Extrapolations of the present theoretical models of Aπ
0

LL(pT ) to these kinematics have

been plotted as well; the measured Aπ
0

LL is in agreement with both of them. These extrap-

olations were determined from next-to-leading order calculations from [106, 107] and the

following PDF and polarized PDF sets were supplied to the algorithms used to generate

these predictions:

• NNPDFpol1.1 polarized PDF [13] with NNPDF2.3 PDF [108]

• DSSV14 polarized PDF [14] with CTEQ6M PDF [109]

For both of these, the DSS fragmentation functions were used [110].

The uncertainty band on the theoretical Aπ
0

LL(pT ) extrapolation is that for the NNPDF

prediction. The NNPDF collaboration trains a neural network based fit on Monte Carlo

generated copies of the data, called replicas, which take into account the data nominal

values, errors, and correlations. Given 100 replicas, the variance in the neural network

parameterized ∆g(x,Q2) was determined, along with the central value; this was done for

the possible values of x and Q2 corresponding to the pion transverse momenta. The next-

to-leading order calculation of Aπ
0

LL was performed for the variations of ∆g(x,Q2) within

one standard deviation, providing the error band. It is worth mentioning that this is an

uncertainty band on an extrapolation, which is somewhat open to interpretation.

We have also fit the Aπ
0

LL measurement data points to a constant, which gives an overall

maximum likely value for each pseudorapidity region, denoted Āπ
0

LL; note that the fit result

is not plotted. For the fit, the Aπ
0

LL statistical and shift systematic uncertainties are added in

quadrature for each point, but the polarization scale systematic uncertainty is not included.

The constant fit results, along with the χ-squared per number of degrees of freedom are:

• Outer Region: Āπ
0

LL = −0.0011± 0.0012, with χ2/NDF = 0.47/3

• Inner Region: Āπ
0

LL = +0.000018± 0.0011, with χ2/NDF = 2.0/3
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Figure 7.3: Final measurement of FMS Aπ
0

LL vs. pT for the outer region (top) and inner
region (bottom). The vertical error bars are statistical uncertainties, the vertical extent
of the shaded boxes is the shift systematic uncertainty, and the horizontal extent is the pT
systematic uncertainty. Extrapolations of model calculations for Aπ

0

LL(pT ) to these kinematics
are also plotted, where the dashed blue curve is that from DSSV14 [14] and the solid black
curve that from NNPDF [13]. The hatched band represents the uncertainty on the NNPDF
extrapolation, as described in the text.
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pT Bin 〈pT 〉 Aπ
0

LL Aπ
0

LL Stat. Unc. Aπ
0

LL Sys. Unc. pT Sys. Unc.

Outer Pseudorapidity Region: 2.65 < η < 3.15, 30 < E < 70 GeV
1 3.91 –0.00191 0.0022 0.00034 0.21
2 4.73 –0.00085 0.0024 0.00032 0.25
3 5.62 –0.00177 0.0025 0.00031 0.29
4 7.08 +0.00015 0.0024 0.00029 0.37

Inner Pseudorapidity Region: 3.15 < η < 3.90, 30 < E < 100 GeV
1 2.50 –0.00154 0.0022 0.00021 0.13
2 3.33 +0.00210 0.0021 0.00021 0.18
3 4.11 –0.00140 0.0022 0.00021 0.22
4 5.37 +0.00076 0.0023 0.00021 0.29

Table 7.1: Aπ
0

LL measurement numerical values. The columns are pT bin number, mean pT
(GeV) of the point, Aπ

0

LL measurement in that pT bin, Aπ
0

LL statistical uncertainty, Aπ
0

LL shift
systematic uncertainty, and pT systematic uncertainty (GeV).

7.3 Discussion and Outlook

The measured Aπ
0

LL is consistent with both theoretical extrapolations. While the gluon

polarization models, represented by ∆g(x), are rather unconstrained in the low-x region

(x < 0.05), these extrapolations essentially assume the central ∆g(x) fit, which is nearly

zero at low x. Although all of the Aπ
0

LL data points’ error bars cross the zero line, this

measurement presents upper bounds on Aπ
0

LL for these forward π0 kinematics. This is the

first time Aπ
0

LL has been assessed for forward π0 kinematics to such a high sensitivity (cf., for

example, figure 1.17, [60]). Our measurement is sensitive to gluons down to x ∼ 10−3 (see

figure 1.15), a region that is abundant with soft gluons. A new global analysis combining

other recent results is needed in order to constrain the true size of ∆g(x) for these low-x

gluons, as well as the shape of ∆g(x) at higher x.

Along with this measurement, several other recent ALL measurements from RHIC will

be included in the next global analysis [111]. In particular, some recent measurements at

STAR include inclusive jets and dijets at central pseudorapidity (|η| < 1) [64, 65, 112], as

well as inclusive dijets at intermediate pseudorapidity (0.8 < η < 2) [62]. Figure 7.4 gives a

sense of the impact these new data will have on the upcoming global analyses. It defines the

contributions to the proton spin from the gluons and the quarks as running integrals, where

the integrals are taken over the polarized PDFs from a minimum x value, xmin, up to 1:

∆G|1xmin
:=

∫ 1

xmin

dx∆g(x), (7.1)
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(middle), and orbital angular momentum (right) distribution at Q2 = 10 GeV2 as a function of xmin. The gray-
shaded band denotes the DSSV08 [17] fit which includes primarily DIS data. The blue-shaded band is based on
the DSSV14 fit [18], which includes polarized p+p data from RHIC collected prior to 2012. The yellow-shaded
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Q2, the spin of the proton can be written in terms
of its constituents using the Jaffe–Manohar sum
rule [21]

1

2
=

1

2

∫ 1

0
dx∆Σ

(
x,Q2

)
+

∫ 1

0
dx∆g

(
x,Q2

)
+ L(Q2) , (2)

where 1
2∆Σ(x,Q2) represents the quark helicity

contribution, and ∆g(x,Q2) represents the gluon
helicity contribution to the total spin of the pro-
ton. The respective orbital angular momenta of
quarks and gluons are represented by L(Q2) =∑

q

[
Lq(Q

2) + Lq̄(Q
2)
]

+ Lg(Q
2).

Figure 9 shows an extraction of the integrals of
the quark and gluon contributions in Eq. 2, run-
ning between x = xmin and x = 1 with their 90%
confidence level (C.L) uncertainties. The gray-
shaded band is the outcome of the DSSV08 [17]
analysis, which is almost exclusively based on
the existing DIS data. The blue-shaded band
shows the result of the DSSV14 [18] fit, which in-
cludes polarized p+p data from RHIC. The yellow-
shaded region shows the projected constraints on
the parton distributions once all RHIC data col-
lected through 2015 is included. In the plots, the
region to the right of the dashed vertical line is
constrained by current data. It is clear that preci-

sion data are needed to determine the parton con-
tribution to the proton’s spin, especially at low x.
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Figure 10: Present knowledge of the evolution in x of
the structure function g1, based on the DSSV14 ex-
traction [19]. The dotted lines show the results for
alternative fits that are within the 90% C.L. limit.

The fraction of the spin from angular mo-
menta can be obtained by subtracting 1

2∆Σ(Q2)
and ∆G(Q2) from the total spin of the proton, us-
ing the sum rule in Eq. 2. The right panel in Fig. 9

13

Figure 7.4: Running integrals ∆G|1xmin
(left) and ∆Σ|1xmin

(right), indicated by the solid black
curves. The gray and blue bands are for the DSSV08 [5] and DSSV14 [14] global analyses,
respectively. The yellow band indicates the projected uncertainties for the upcoming global
analysis. Figure adapted from [113].

∆Σ|1xmin
:=

∫ 1

xmin

dx∆Σ(x) =
∑

f∈{q,q̄}

∫ 1

xmin

dx∆f(x). (7.2)

The lower xmin is, the better understood ∆G and ∆Σ are; some say that these running

integrals may converge to a central value after xmin is low enough, but that remains to be

investigated.

The solid black curves in figure 7.4 represent ∆G|1xmin
and ∆Σ|1xmin

from the DSSV14

global analysis [14]; their uncertainty bands are given by the blue shaded regions. The gray

bands represent the uncertainties from the previous DSSV08 global analysis [5]. The yellow

band represents projected uncertainties for the upcoming global analysis, which will be based

on data for x > 10−3, indicated by the vertical dashed line. While these plots are rather open

to interpretation, they provide some sense of the impact that the recent RHIC pp data will

have on our understanding of ∆G, with the largest improvements to be seen in the region

10−3 < x < 10−2.

One might ask if the analyzed π0s are primarily originating from the QCD hard scattering,

or if a substantial fraction of them are coming from proton remnants or other multi-parton

interations. Aπ
0

LL could be diluted by π0s which do not come from the hard-scattering.

Typically NLO calculations fold in these additional π0 sources, as does Pythia (provided we

do not try to simulate gluons which are too soft). One could instead look at forward dijet
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asymmetries, which are guaranteed to originate from the hard scattering. In this channel,

the asymmetry will not be diluted, however dijets represent a rather small fraction of the

overall cross section.

Measuring ALL for forward dijets in an upgraded forward calorimetry system at STAR,

where both jets are in the range 2.8 < η < 3.7 (and
√
s = 500 GeV), could push sensitivity

down to x ∼ 10−5 [114]. This is one of the many motivations for an upgrade to the forward

calorimetry at STAR, which includes a tracking system in the STAR barrel, along with a new

electromagnetic calorimeter and a new hadronic calorimeter, both to be installed in place

of the FMS [115]. The FMS was dismantled in 2018, allowing for the installation of these

new systems to begin, opening the door to many exciting new measurements. Moreover,

the upcoming Electron Ion Collider (EIC), which will collide polarized electron beams with

polarized proton beams, will provide many more precise measurements, further pushing the

boundaries of our understanding of the proton and of QCD in general into new frontiers

[113].
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Appendix A

Decay Kinematics of π0→ γ + γ

A.1 Invariant Mass

Consider the decay of a π0 with momentum along the z axis into two photons spanning the

xz plane with 4-momenta

k1 = (E1, E1 sinα1, 0, E1 cosα1) , (A.1)

k2 = (E2,−E2 sinα2, 0, E2 cosα2) . (A.2)

The invariant mass squared is

M2 = (k1 + k2)2 = 2k1k2 = 4E1E2 sin2 α

2
, (A.3)

where α = α1 + α2 is the photon decay opening angle. Let E = E1 +E2 be the total energy

and let Z = |E1 − E2| /E be the energy imbalance. The invariant mass is then

M = 2
√
E1E2 · sin

α

2
≈
√
E1E2 · α (A.4)

= E
√

1− Z2 · sin α
2
≈ E

2

√
1− Z2 · α. (A.5)

The mass can be thought of as a function of E1 and E2 or of E and Z, given a fixed value

of α. Solving for the opening angle gives

α = 2 arcsin

(
M

2
√
E1E2

)
≈ M√

E1E2

(A.6)

= 2 arcsin

(
M

E
√

1− Z2

)
≈ 2M

E
√

1− Z2
. (A.7)
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Note that the opening angle spans approximately zα/w cells, where z is the distance to the

interaction point and w is the cell width. For z = 7 m, a 10 mrad opening angle spans 7 cm,

which is just over 1 large cell width or just under 2 small cell widths.

In order to explore the inter-dependencies of the kinematic variables, the next few pages

show various planes cut from the M(E,Z, α) and M(E1, E2, α) hypersurfaces.

• Figure A.1 shows M -contours in the α vs. E plane for fixed values of Z, as described by

equation A.7. These plots show the energy-dependence of the opening angle: higher

energy pions (M = 0.135 GeV) have smaller opening angles than those with lower

energy, and the more massive η-mesons (M = 0.55 GeV) have much larger opening

angles than pions.

• Figure A.2 shows α-contours in the M vs. E plane for fixed values of Z, as described

by equation A.5. For constant opening angles, the invariant mass rises as a function

of energy. If the opening angle as a function of energy is overestimated, then data

will tend to show an increase in the mass as a function of energy. In other words,

the observation of a positive linear dependence of the invariant mass on the energy is

evidence of an overestimation of the photon separation at higher energies.

• Figure A.3 shows α-contours in the M vs. Z plane for fixed values of E. At higher

Z, the mass decreases for fixed values of α. This decrease is more extreme at higher

energies. Note that the uncertainty on Z becomes much greater as the photon separa-

tion decreases and approaches the region where it is difficult to distinguish 1-photon

clusters from those with 2 photons.

• Figures A.4 and A.5 show contours of α(E1, E2) and α(E,Z) given M fixed at the π0

mass and at the η mass. Placing an upper limit on a π0 opening angle, a consequence

of an isolation cone, helps reduce contributions from low energy soft photons.
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Figure A.1: α vs. E plane with M contours for fixed Z = 0 (top), Z = 0.5 (middle), and
Z = 0.8 (bottom).
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Figure A.2: M vs. E plane with α contours for fixed Z = 0 (top), Z = 0.5 (middle), and
Z = 0.8 (bottom).

197



Figure A.3: M vs. Z plane with α contours for fixed E = 35 GeV (top), E = 65 GeV
(middle), and E = 92.5 GeV (bottom).
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Figure A.4: E2 vs. E1 plane (left) and E vs. Z plane (right) with α contours for M fixed at
the π0 mass.

Figure A.5: E2 vs. E1 plane (left) and E vs. Z plane (right) with α contours for M fixed at
the η-meson mass.
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A.2 Note on Small Angles from π0 Decay Cones

Consider a 30 GeV π0 decaying toward the FMS. Typically it will decay into a pair of

photons with an opening angle of 10 mrad. Assuming the decay can happen with any

azimuthal orientation, the space of possible photon trajectories forms a 10 mrad cone, which

intersects the FMS front plane in an ellipse, since the cone axis is at an angle with respect

to the normal vector of the FMS front plane. The question is whether we can just use

the transverse separation between the photons as a simple approximation to get α (which

assumes the cone intersects the FMS plane as a circle), or if we need to correct for slight

ellipticity.

Let the angle between the cone axis and the FMS plane’s normal vector, which is equiv-

alent to the π0 scattering angle θ, be 70 mrad, corresponding to photon hits detected 0.5

m away from where the beam pipe intersects the FMS front plane. The eccentricity of the

projected ellipse is then

ε =
sin 0.070

cos 0.010/2
= 0.07. (A.8)

The ratio of the ellipse’s minor axis length to the major axis length is then
√

1− ε2 = 0.9975,

which is too small to be noticeable with respect to the position resolution of the FMS. Thus

ellipticity corrections are not needed in the determination of opening angles based solely on

distance between photon hits.
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Appendix B

Spin Asymmetries and their Relative

Luminosities

This appendix lists the 9 possible spin asymmetries and their associated relative luminosities,

defined using a notation which is commonly used at STAR and PHENIX. Their relations

to the spin asymmetries defined in physics literature, such as ALL and AN , are listed at the

end.

B.1 Notation

a = asymmetry number (following STAR relative luminosity convention)

hB = blue (west) beam proton helicity

hY = yellow (east) beam proton helicity

εa = raw asymmetry

dσsign(hB)sign(hY ) = proton helicity-dependent differential cross section

Ra = relative luminosity

Lsign(hB)sign(hY ) = proton helicity-dependent integrated luminosity

Ha = helicity factor (see appendix H)

Ha = +1 for helicity combo in Ra numerator

Ha = −1 for helicity combo in Ra denominator

201



a εa Ra Ha Description

1
(dσ++ + dσ−+)− (dσ+− + dσ−−)

(dσ++ + dσ−+) + (dσ+− + dσ−−)

L++ + L−+

L+− + L−−
hY yellow SSA

2
(dσ++ + dσ+−)− (dσ−+ + dσ−−)

(dσ++ + dσ+−) + (dσ−+ + dσ−−)

L++ + L+−

L−+ + L−−
hB blue SSA

3
(dσ++ + dσ−−)− (dσ+− + dσ−+)

(dσ++ + dσ−−) + (dσ+− + dσ−+)

L++ + L−−

L+− + L−+
hBhY DSA

4
dσ++ − dσ−−
dσ++ + dσ−−

L++

L−−
hB + hY

2
like sign asym

5
dσ−+ − dσ−−
dσ−+ + dσ−−

L−+

L−−
(1− hB)hY

2
yellow SSA, hB = −1

6
dσ+− − dσ−−
dσ+− + dσ−−

L+−

L−−
(1− hY )hB

2
blue SSA, hY = −1

7
dσ++ − dσ+−

dσ++ + dσ+−
L++

L+−
(1 + hB)hY

2
yellow SSA, hB = +1

8
dσ−+ − dσ+−

dσ−+ + dσ+−
L−+

L+−
hY − hB

2
unlike sign asym

9
dσ++ − dσ−+

dσ++ + dσ−+

L++

L−+

(1 + hY )hB
2

blue SSA, hY = +1

Table B.1: The nine asymmetries and their relative luminosities.

B.2 Nine Asymmetries and Relative Luminosities

Table B.1 lists the 9 asymmetries defined at RHIC, along with their corresponding relative

luminosities. While these asymmetries are longitudinal asymmetries, they can also be defined

for transverse polarized collisions as well, however they gain a dependence on azimuth, φ. The

naming conventions for physics asymmetries are usually as follows (given a = 1 corresponds

to the RHIC yellow beam and a = 2 to blue):

• Single-Spin Asymmetries (SSAs):

– Longitudinal: AYL =
1

PY
ε1 Transverse: AYN cosφ =

1

PY
ε1

– Longitudinal: ABL =
1

PB
ε2 Transverse: ABN cosφ =

1

PB
ε2

• Double-Spin Asymmetries (DSAs):

– Longitudinal: ALL =
1

PBPY
ε3 Transverse: ANN = ATT +AΣ cos 2φ =

1

PBPY
ε3

202



Assuming the luminosity uncertainties (i.e., statistical uncertainties of scaler counts) of

LhBhY are ∆hBhY , the relative luminosity uncertainties are:

∆R1 =

√(
∆2
−+ + ∆2

++

)
(L−− + L+−)2 +

(
∆2
−− + ∆2

+−
)

(L−+ + L++)2

(L−− + L+−)4

∆R2 =

√(
∆2

+− + ∆2
++

)
(L−− + L−+)2 +

(
∆2
−− + ∆2

−+

)
(L+− + L++)2

(L−− + L−+)4

∆R3 =

√(
∆2
−− + ∆2

++

)
(L−+ + L+−)2 +

(
∆2
−+ + ∆2

+−
)

(L−− + L++)2

(L−+ + L+−)4

∆R4 =

√
∆2

++L
2
−− + ∆2

−−L
2
++

L4
−−

∆R5 =

√
∆2
−+L

2
−− + ∆2

−−L
2
−+

L4
−−

∆R6 =

√
∆2

+−L
2
−− + ∆2

−−L
2
+−

L4
−−

∆R7 =

√
∆2

++L
2
+− + ∆2

+−L
2
++

L4
+−

∆R8 =

√
∆2
−+L

2
+− + ∆2

+−L
2
−+

L4
+−

∆R9 =

√
∆2

++L
2
−+ + ∆2

−+L
2
++

L4
−+
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Appendix C

Local Polarimetry and Residual

Transverse Component Systematic

Here we discuss polarization measurements at STAR, obtained by the ZDC-SMD [98, 99].

Measuring polarization at STAR provides an independent verification that the beams are

polarized transversely, during a transverse running period, by measuring transverse single-

spin asymmetries (TSSAs) in the ZDC-SMD. During a longitudinal running period, the

TSSA should be very close to zero; if so, the spin rotators are appropriately rotating the

proton bunch spin states to longitudinal, since any residual transverse component of the

polarization would appear in the ZDC-SMD as a nonzero TSSA. This appendix outlines

measurements of these asymmetries and their application to a measurement of the systematic

uncertainty on Aπ
0

LL due to possible nonzero transverse polarization components.

C.1 Local Polarimetry

Consider a beam of protons, accelerated by a synchrotron, entering a local coordinate system

such that the beam is along the z axis, with the y axis vertical and the x axis parallel to

the synchrotron radius. During a transverse polarization running period, let the incoming

proton polarization vector be
~PT = (0, PT , 0) , (C.1)

assuming that longitudinal components are zero (i.e., negligible Thomas precession). During

a longitudinal polarization running period, let the polarization vector be

~PL = (Px, Py, Pz) , (C.2)
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where Pz >> Px, Py.

During a transverse run, the raw left/right TSSA is

εT = PTAN =

√
N↑LN

↓
R −

√
N↑RN

↓
L√

N↑LN
↓
R +

√
N↑RN

↓
L

, (C.3)

where AN is the TSSA (analyzing power), and N↑,↓L,R is the number of hits (viz. ZDC-SMD,

but this could be done with any appropriately segmented detector) which scatter to the left

(L) or right (R) for incoming proton spin up (↑) or down (↓). This is the cross-ratio formula

for a TSSA, which does not require a measurement of the relative luminosity [56].

During a longitudinal run, given that the polarization vector can have arbitrary nonzero

transverse components, one can look at two asymmetries: the raw left/right asymmetry

εLR = PyAN =

√
N+
LN

−
R −

√
N+
RN

−
L√

N+
LN

−
R +

√
N+
RN

−
L

, (C.4)

and the raw up/down asymmetry

εUD = PxAN =

√
N+
UN

−
D −

√
N+
DN

−
U√

N+
UN

−
D +

√
N+
DN

−
U

. (C.5)

For the longitudinal running period, the notation for yields N+,−
L,R,U,D is a bit different: L

and R again denote scattering left or right, U and D denote scattering up and down, but

since the beam is ideally polarized along the beam axis, the notational superscripts + and

− are used to indicate incoming polarization aligned and anti-aligned along the beam axis,

respectively. If there is a nonzero transverse component to the polarization, either + will

select the transverse component up protons and − will select the transverse component down

protons or vice versa. Therefore the signs of εLR and εUD will depend on the azimuth of the

polarization vector’s transverse component; however, it turns out that this sign ambiguity

does not matter in the determination of the final polarization vector angles.

Converting to polar coordinates, the longitudinal polarization vector becomes

Px = PL sin θ cosφ, (C.6)

Py = PL sin θ sinφ, (C.7)

where PL =
√
P 2
x + P 2

y + P 2
z can be measured by the RHIC polarimetry group by, for ex-

ample, by their pC polarimeters.
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Inserting equations C.6 and C.7 into equations C.4 and C.5 and using the value of AN

from equation C.3 yields

εLR =
PL
PT

εT sin θ sinφ, (C.8)

εUD =
PL
PT

εT sin θ cosφ, (C.9)

the solution of which gives the polarization polar angle and azimuth:

sin θ =
PT
PL

√
ε2
LR + ε2

UD

εT
, (C.10)

tanφ =
εLR
εUD

. (C.11)

Instead of measuring εLR and εUD, one can fit the TSSA cross-ratio as a function of φ

to the form εL sin (φ+ φ0), with fit parameters εL, the asymmetry, and φ0, a phase angle

related to the azimuth of the transverse component of the polarization. This “overall” TSSA

is related to the U/D and L/R asymmetries via

εL = P⊥L AN =
√
P 2
x + P 2

yAN =
√
ε2
LR + ε2

UD.

Since AN is independent of polarization, we have

AN =
εT
PT

=
εL
P⊥L

, (C.12)

which implies
εL
εT

=
P⊥L
PT

. (C.13)

Note that by equation C.10 this verifies sin θ = P⊥L /PL.

C.2 Relating Local Polarimetry to ALL Systematic

Let PB and PY be the polarization vectors for two colliding longitudinally-polarized proton

bunches. Define their product as ρ = PBPY as well as the products of their transverse and

longitudinal components as ρ⊥ = P⊥B P
⊥
Y and ρ‖ = P

‖
BP
‖
Y .

In the ZDC-SMD, we can measure the raw TSSA during longitudinal running, εL, and

compare it to εT , the raw TSSA during a period of transverse polarization with polarization

PT , with the same conditions under which εL was measured, such that P 2
T ≈ P ‖2 +P⊥2 = P 2
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(e.g., by disabling spin rotators for a few fills during a longitudinal running period). Following

equations C.12 and C.13, we have for each beam

εL
P⊥

=
εT
P
. (C.14)

Letting NhBhY be the yield, given proton spin states hB, hY ∈ {+,−}, and R3 be the

relative luminosity, the measured overall double-spin asymmetry (DSA), denoted A, may

be decomposed into contributions from ALL and from the transverse DSA ANN = AΣ +

ATT cos 2φ as

A =
1

ρ
· N

++ +N−− −R3 (N+− +N−+)

N++ +N−− +R3 (N+− +N−+)
= A′LL + A′NN , (C.15)

where A′LL = εLL/ρ is the measured longitudinal DSA, and A′NN = εNN/ρ is the measured

transverse DSA (see appendix D for details). The primes denote that these asymmetries

are measured with respect to the overall polarization; they can be compared to the “true”

DSAs, ALL = εLL/ρ
‖ and ANN = εNN/ρ

⊥, allowing A to be expressed as

A =
ρ‖

ρ
ALL +

ρ⊥

ρ
ANN . (C.16)

By assuming P⊥ << P , we expand the factors of the first term:

P ‖

P
=

√
P 2 − P⊥2

P 2
=

√
1−

(
P⊥

P

)2

= 1 +O

[(
P⊥

P

)2
]
. (C.17)

In the context of small asymmetries, the higher order terms can be ignored and we may

safely assume ρ‖/ρ ≈ 1.

The systematic uncertainty then is just the difference between the measured asymmetry

and extracted “true” asymmetry:

∆ALL

[
P⊥
]

:= A− ALL =
P⊥B
PB
· P
⊥
Y

PY
· ANN =

εBL
εBT
· ε

Y
L

εYT
· ANN , (C.18)

where equation C.14 was used to write the fractional transverse polarization components as

ratios of asymmetries measured in the ZDC-SMD.
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Appendix D

Decomposing Cross Sections in terms

of Spin Asymmetries

This section illustrates how cross sections can be decomposed into the longitudinal and

transverse spin asymmetries. It essentially follows appendix A.3 of [33], and is meant to

show another interpretation of spin asymmetries in general.

D.1 Longitudinal Components

Consider a particle, described by the state |ψ〉, heading in the z direction. Let its spin be in

the xz plane, such that it makes an angle α with the z axis. That is, the spin vector is

~P = (P sinα, 0, P cosα) (D.1)

(the label P stands for polarization, which is more properly defined for an ensemble of

particles, but P is chosen instead of S to avoid confusion with spin operators). If α = 0,

then the spin of |ψ〉 is aligned with its momentum.

Consider the two helicity states: spin along the +z axis, described by |+〉, and spin along

the −z axis, described by |−〉. These states form a basis

{
|+〉 =

(
1

0

)
, |−〉 =

(
0

1

)}
, (D.2)

which spans the spinor space on which the spin-1/2 representation of the spin operators act.

The matrices corresponding to the spin operators Sx, Sy, and Sz in this representation can
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be expanded as follows:

Sx =
1

2

(
0 1

1 0

)
=

1

2

(
|+〉〈−| + |−〉〈+|

)
, (D.3)

Sy =
1

2

(
0 −i
i 0

)
=
i

2

(
|−〉〈+| − |+〉〈−|

)
, (D.4)

Sz =
1

2

(
1 0

0 −1

)
=

1

2

(
|+〉〈+| − |−〉〈−|

)
. (D.5)

With the spin vector of |ψ〉 defined via equation D.1, the expectation values of the spin

operators must be

〈ψ|Sx|ψ〉 =
1

2
sinα, (D.6)

〈ψ|Sy|ψ〉 = 0, (D.7)

〈ψ|Sz|ψ〉 =
1

2
cosα. (D.8)

We expand |ψ〉 in the {|+〉, |−〉} basis as |ψ〉 = c+|+〉+ c−|−〉. Acting with Sz yields

Sz|ψ〉 =
1

2
c+|+〉 −

1

2
c−|−〉

and hence the expectation value,

〈ψ|Sz|ψ〉 =

(
c∗+〈+|+ c∗−〈−|

)(
1

2
c+|+〉 −

1

2
c−|−〉

)
=

1

2

(
c2

+ − c2
−
)
,

together with equation D.8, implies the relation

c2
+ − c2

− = cosα. (D.9)

The Sx operator yields a similar relation:

〈ψ|Sx|ψ〉 =

(
c∗+〈+|+ c∗−〈−|

)(
1

2
c+|−〉+

1

2
c−|+〉

)
= c+c−,

and thus

2c+c− = sinα. (D.10)

Simultaneously solving equations D.9 and D.10 for c± allows us to express the state in terms
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of its spin vector angle:

|ψ〉 =

√
1 + cosα

2
|+〉+

√
1− cosα

2
|−〉. (D.11)

Now consider two colliding particles a and b with spin vector angles α and β, described

as:

|a〉 =

√
1 + cosα

2
|a+〉+

√
1− cosα

2
|a−〉, (D.12)

|b〉 =

√
1 + cos β

2
|b+〉+

√
1− cos β

2
|b−〉. (D.13)

The scattering cross section may be written as:

4σab = 4 · 〈ab|σ|ab〉 = (1 + cosα) (1 + cos β)σ++ + (1 + cosα) (1− cos β)σ+− +

(1− cosα) (1 + cos β)σ−+ + (1− cosα) (1− cos β)σ−−

= (σ++ + σ+− + σ−+ + σ−−) + cosα (σ++ + σ+− − σ−+ − σ−−) +

cos β (σ++ − σ+− + σ−+ − σ−−) + cosα cos β (σ++ − σ+− − σ−+ + σ−−) ,

where

σ±± := 〈a±b±|σ|a±b±〉

and

σ = σ++ + σ+− + σ−+ + σ−−.

Defining the following asymmetries

AaL =
(σ++ + σ+− − σ−+ − σ−−)

σ
,

AbL =
(σ++ + σ−+ − σ+− − σ−−)

σ
,

ALL =
(σ++ + σ−− − σ+− − σ−−)

σ
,

allows us to write the cross section as

σab =
σ

4

(
1 + AaL cosα + AbL cos β + ALL cosα cos β

)
. (D.14)
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D.2 Transverse Components

We can easily move to the transverse basis {|↑〉, |↓〉} with the following transformation:

|+〉 =
1√
2

(
|↑〉+ |↓〉

)
,

|−〉 =
1√
2

(
|↑〉− |↓〉

)
.

The spin operators become

Sx =
1

2

(
|↑〉〈↑| − |↓〉〈↓|

)
,

Sy =
i

2

(
|↑〉〈↓| − |↓〉〈↑|

)
,

Sz =
1

2

(
|↑〉〈↓| + |↓〉〈↑|

)
,

and the state is expanded as

|ψ〉 = c↑ |↑〉+ c↓ |↓〉.

Expectation values give rise to the following relations:

〈ψ|Sx|ψ〉 =
1

2

(
c2
↑ − c2

↓
)

=
1

2
sinα,

〈ψ|Sz|ψ〉 = c↑c↓ =
1

2
cosα.

Solving this system yields

|ψ〉 =

√
1 + sinα

2
|↑〉+

√
1− sinα

2
|↓〉. (D.15)

Similar to the longitudinal case, one can define the following asymmetries, which are az-

imuthally modulated:

AaP =
σ↑↑ + σ↑↓ − σ↓↑ − σ↓↓

σ
= Ra + AaN cosφ,

AbP =
σ↑↑ + σ↓↑ − σ↑↓ − σ↓↓

σ
= Rb + AbN cosφ,

APP =
σ↑↑ + σ↓↓ − σ↑↓ − σ↓↑

σ
= AΣ + ATT cos (2φ) ,

where φ is the azimuth of the measured particle or jet and R is related to the relative

luminosity. The cross ratio single-spin asymmetry can be used for AP , negating the need for
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the offsets R, and hence we can assume R = 0 if AN is properly measured. Finally, the cross

section may be written as

σab =
σ

4

{
1 + AaN sinα cosφ+ AbN sin β cosφ+ [AΣ + ATT cos (2φ)] sinα sin β

}
. (D.16)

D.3 Application: Systematic Uncertainty on ALL due

to Nonzero Transverse Polarization

The full cross section, after averaging over azimuth, assuming parity conservation (AL = 0),

and assuming cosα = cos β ≈ 1 is

σab ∝ 1 + ALL cosα cos β + AΣ sinα sin β

≈ 1 + ALL + AΣ sinα sin β.

The systematic uncertainty on ALL from a nonzero transverse polarization component is just

the extra term:

δALL = |AΣ · sinα · sin β| . (D.17)

This is the same as equation C.18 when we average that over azimuth (so ANN = AΣ) and

use sin θ = P⊥/P , where θ ∈ {α, β}. If we allow a and b to have a nonzero azimuth, equation

D.17 becomes

δALL = |AΣ · sinα · sin β · cos (φa − φb)| , (D.18)

but since φa and φb are typically difficult to measure, the most consersative estimate of

cos (φa − φb) = 1, which gives equation D.17, suffices.
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Appendix E

Shower Shape Derivation and

Incident Angle Corrections

This appendix presents a derivation and a possible physical motivation for the shower shape

model used for reconstructing photon positions from contiguous regions of energy deposition

(clusters) in the FMS cells. The derivation begins with the simpler 1-dimensional version,

followed by an extension to 2 dimensions in application to the FMS; this method allows for

the physical motivation for the model to become clear. Finally, some ideas for correcting the

shower shape for nonzero incident angles are presented. The original reference upon which

the shower shape model is based is [90].

Some attempts of incident angle corrections involve taking the original model and apply-

ing it to six longitudinal slices. Each slide is a copy of the model in [90], fit to a simulated

transverse profile. Each slice’s fit result is then weighted by the longitudinal shower profile.

For details on this method, see [91] and [92]. This appendix, however, presents progress

toward a much simpler alternative.

E.1 Derivation of the Symmetric Shower Shape

We begin by deriving the symmetric shower shape, as used in [90]. It is called “symmetric”

because it assumes the incoming photon which starts the shower is at normal incidence to

the detector, causing a transverse profile which is symmetric about the photon’s trajectory.

Correcting for nonzero incidence angles would skew the shower shape.

213



Figure E.1: 1-dimensional Cauchy distribution physical picture.

E.1.1 1-Dimensional Shower Shape

The shower shape, whether skewed by incident angles or not, is modelled by a sum of 2-

dimensional Cauchy distributions, thus it is important to first understand a simple, but

relevant physical scenario in which a Cauchy distribution appears. We begin with a physics

question which forms the motivation for the use of a 1-dimensional Cauchy distribution, and

later show how it extends to 2 dimensions and applies to the shower shape model used in

FMS photon reconstruction.

E.1.1.1 The Cauchy Distribution

Consider a point P from which photons are emitted, uniformly in all angles. Let P be a

distance b from a line, as shown in figure E.1. Given that photons have a uniform probability

of being emitted at any angle θ, what is the probability distribution of photons hitting the

line, as a function of source distance b and of position x on the line?

The probability distribution of photons being emitted as a function of θ, denoted f(θ),

is constant but must be normalized. If the line is infinitely long, it will detect photons for

all θ ∈ (−π/2, π/2), thus for f(θ) to be normalized over this range, we have f(θ) = 1/π.

The angular coordinate θ from the source is related to those of the plane, x and b, by

θ = arctan
(x
b

)
. (E.1)

This relation can be used to transform the distribution f(θ) to f(x). The probability of a
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photon being emitted within a small angle ∆θ is equal to the probability of observing it in

a small interval of the line ∆x, which is determined by ∆θ and θ. The transformation of

probability distributions is then

∫
dxf(x) =

∫
dθf(θ) =⇒ f(x) =

∣∣∣∣
dθ

dx

∣∣∣∣ f(θ). (E.2)

Differentiating equation E.1 shows that

f(x) =
1

π

b

b2 + x2
, (E.3)

which is the 1-dimensional Cauchy distribution. It is a function of x, for a given parameter

b, which is proportional to the width of the distribution. When b is small, that is the photon

source is close to the line, f(x) is peaked sharply at x = 0; on the other hand, when the

source is distant from the plane, f(x) is much more spread out over x.

E.1.1.2 Segmenting the Line into Cells

Now imagine that the line is segmented, as a 1-dimensional detector might be: it is composed

of cells, which are segments each of length d, where only the total number of photons which

strike each cell is read out (more correctly, the ADC counts). If we draw a straight line

from P to the detector such that this line is perpendicular to the detector, it will intersect

a particular cell which will see the highest relative number of photons; this cell is called the

high tower, and let the point at which the line intersects it be denoted by p.

Define xc as the transverse distance between p and the center of a particular cell; any

cell works, but it should either be the high tower or one nearby. Let this cell be denoted by

C. What is the probability distribution over xc, in other words, what is the relative number

of photons seen in the cell C, as compared to its neighboring cells?

Cumulative distribution functions (CDFs) of a given probability distribution can be

used to determine probabilities within ranges; this assumes the probability distribution is

integrable. In this case, CDF of f(x) is:

F (x) =

∫ x

−∞
dx̂f(x̂) =

1

2
+

1

π
arctan

(x
b

)
. (E.4)

To obtain the fraction of light detected in cell C, we consider the probability of observing the

photon in a range [xc − d/2, xc + d/2]. This probability, denoted G(xc), is then the difference
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of two CDFs evaluated at the range endpoints:

G(xc) = F

(
xc +

d

2

)
− F

(
xc −

d

2

)
. (E.5)

E.1.1.3 Multiple Photon Sources

Instead of just considering one source P at a distance b, one can consider a set of sources {Pi},
with each Pi a distance bi from the line detector. The overall probability distribution seen

at the line would just be a sum of Cauchy distributions for each i (this ignores interference).

If we consider N sources, all along a straight line perpendicular to the detector line, then

the probability distribution on the detector is:

f(x) =
1

π

N∑

i=1

aibi
b2
i + x2

. (E.6)

The parameters (weights) ai represent relative photon emission rates of the sources, and in

order to maintain normalization, the sum of all ais must be 1. The CDF of this weighted

sum is the weighted sum of Cauchy distribution CDFs, and consequently the G(xc) for N

sources is easy to derive. The FMS shower shape model from [90], which is 2-dimensional,

considers 3 Pis all along a straight line perpendicular to the FMS plane.

If the sources are along a line which is not perpendicular to the detector line, then we

must account for the x position of each source. To do so, the terms in equation E.6 just

need to be shifted by x 7→ x+xi, where xi is the transverse distance of Pi from some central

axis through x = 0. This consideration will be our motivation for the simpler incident angle

corrections idea.

E.1.2 2-Dimensional Shower Shape

Now consider a source P at a distance b from a plane. The source emits a uniform distribution

of photons with respect to a polar angle θ and an azimuthal angle φ, as shown in figure E.2.

The uniform probability distribution must be normalized over θ ∈ [0, π/2) and φ ∈ [0, 2π),

thus f(θ, φ) = 1/2π.

The detector plane coordinates x, y are related to the source coordinates by

θ = arctan

(√
x2 + y2

b

)
, (E.7)

φ = arctan
(y
x

)
. (E.8)
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Figure E.2: 2-dimensional Cauchy distribution physical picture.

The transformation of the source emission probability distribution is again achieved by equat-

ing integrals, bearing in mind the necessity of Jacobian factor in the source’s integrand:

∫
dxdy f(x, y) =

∫
dφdθ · sin θ · f(θ, φ). (E.9)

Differentiating each side returns

f(x, y) =

∣∣∣∣
∂(θ, φ)

∂(x, y)

∣∣∣∣ · sin θ · f(θ, φ), (E.10)

where the second Jacobian factor comes from the generalized chain rule. Writing out the

Jacobian and extending the result to an arbitrary number of sources (in a perpendicular

line) gives the expression

f(x, y) =
1

2π
·
N∑

i=1

aibi

(b2
i + x2 + y2)

3/2
. (E.11)
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This equation is the sum of N 2-dimensional Cauchy distributions; it matches the shower

shape model given by equation 10 in [90].

We now extend this model to a plane which is segmented into squares, each with side

lengths d; this segmentation is that of the FMS with the squares representing the Pb-glass

cells. The CDF of equation E.11 is

F (x, y) =

∫ x

−∞

∫ y

−∞
dx̂dŷf(x̂, ŷ) =

=
1

4
+

1

2π

N∑

i=1

ai

[
arctan

(
x

bi

)
+ arctan

(
y

bi

)
+ arctan

(
xy

bi
√
b2
i + x2 + y2

)]
(E.12)

and the segmented distribution (cf. equation 5 in [90]) is

G(xc, yc) = F

(
xc +

d

2
, yc +

d

2

)
− F

(
xc −

d

2
, yc +

d

2

)
−

− F
(
xc +

d

2
, yc −

d

2

)
+ F

(
xc −

d

2
, yc −

d

2

)
, (E.13)

which is the sum of two corners’ CDFs, minus the sum of the opposite two.

E.1.2.1 The FMS Shower Shape Parameterization

The symmetric shower shape for the FMS is modelled by 3 sources along a straight line. The

default parameter values, as determined from a fit in [90], are:

• a1 = 0.8, b1 = 0.8 cm

• a2 = 0.3, b2 = 0.2 cm

• a3 = −0.1, b3 = 7.6 cm

• (given N = 3 and d = 4 cm)

The biggest contributions come from P1 and P2, which are close to the FMS plane and are

thus sharply peaked at x = y = 0. The distant source P3 “anti-contributes” to the shower

shape. The fit may not have been constrained by the aforementioned physical picture, where

we would likely prefer all ai > 0; nonetheless, this parameterization has been used in many

analyses of FMS data.

It is worth noting that the longitudinal position of the plane here is a bit ambiguous:

while it definitely should not be the front plane of the FMS glass, it could be the shower

max plane (where the electromagnetic shower is at maximum), the PMT plane, or something
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else. Whatever the plane may be, the transverse position of reconstructed photons is highly

sensitive to the choice of plane, which only really matters when we take into account incident

angle corrections.

E.2 Incident Angle Corrections

When the angle of incidence is nonzero, the electromagnetic shower is no longer symmetric.

To correct for the nonzero skewness, we must use an asymmetric shower shape. Recalling

section 5.3.2, however, the effect of correcting for the incident angle imparts only a maximum

of a 0.5 cm change in the photon position; the energy uncertainty from the calibration

(5%) completely eclipses this effect. Nonetheless, incident angle corrections are still worth

considering if one desires higher accuracy in the photon position reconstruction

E.2.1 Longitudinal Slices of Symmetric Shower Shapes

One attempt at incident angle corrections simply takes the symmetric shower shape model

(with N = 3) and uses it for each of six (or any reasonable number) longitudinal slices.

Each slice k has its own set of parameters {ak1, ak2, ak3, bk1, bk2, bk3}. The shower shapes

for each slice are centered along a line which represents the incident photon’s trajectory,

which may not be at normal incidence. The transverse position-dependence of each slice

is injected into the xc and yc variables for each slice (see [92, 91] for details). Simulations

were performed to determine the shower shape slice-by-slice, and fits were done for each

slice. Each slice was also weighted according to the longitudinal shower profile. Ultimately,

there are 42 parameters in this model: 6 slices, each with 6 shower shape parameters and

1 longitudinal weight (although the longitudinal weights could have been absorbed into the

aki parameters, giving 36 free parameters overall). Altogether, this is a linear combination

of 18 2-dimensional Cauchy distributions.

Because there are so many parameters involved, this shower shape model is rather com-

plicated for practical matters, where millions of photons need to be reconstructed. The

model begins to break down as the incidence angle is increased (beyond FMS acceptance);

furthermore, it is not valid for all incident photon energies, since the longitudinal position

of the shower max plane is dependent on incident energy and angle. The slicing procedure

overlooks the already present longitudinal dependence of the Cauchy distributions: the bi

parameters. Instead, a computer algorithm was used to determine the values of aki and

bki, and many of them have become nonsensical, even though the overall sum of the 18

Cauchy distributions looks reasonable even at the highest scattering angles within the FMS
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acceptance.

E.2.2 Simpler Alternative: Cherenkov Parameterization

We now attempt an alternative model: making use of physical intuition to try to simplify the

incident angle-dependent shower shape. Since the default shower shape parameters do not

seem to be physically motivated, one can try to re-parameterize the shower shape according

to a simplified physical model of the shower development. The model presented here is an

unfinished endeavor.

The idea here, which is based on photon sources that come from shower particles, is to re-

parameterize the shower shape with ais and bis chosen such that we have a “path” of sources

approaching a detector plane; this path depends on the incident angle of the photon which

starts the electromagnetic (EM) shower. The weight ai of each source could be determined

by a property of the shower, such as the number of shower particles per radiation length X0,

which is assumed to double after each X0.

Cherenkov Shower Model

Consider a charged particle moving through a medium with a velocity faster than the phase

velocity of light in that medium. This particle will leave behind a trail of spherical EM waves

which will add together to form a phase-front, shaped like a cone, which trails behind the

charged particle. This radiation, called Cherenkov radiation, is typically within the visible

part of the EM spectrum, and well within the photo-sensitivity range of the FMS PMTs. If

we assume that most of the photons that the PMTs detect are Cherenkov photons, we first

consider modelling the Cherenkov part of the EM shower.

Consider the simplified model of an EM shower, where after every radiation length either

pair-production γ → e+e− or bremsstrahlung e± → e±γ occurs. Assume that after each

radiation length, the number of shower particles doubles while the energy per particle halves.

A simple shower re-parameterization is to have a source Pi at each radiation length (up to

a limit, called “shower max”), and have the weights double as ai = 2ai−1. These sources

are physically analogous to the “trail” of spherical EM waves which form the addends of the

Cherenkov cone. The next few sections show how to modify the parameters of the current

shower shape in order to model this Cherenkov shower development.

Parameter N

We would like N to be the number of radiation lengths to consider. Since at every radiation

length t, the energy per shower particle E(t) halves, eventually E(t) will be less than a critical
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energy value E0, where pair-production and bremsstrahlung will cease to be the dominant

energy-loss mechanism. At this point in the shower development, the number of particles

will be maximized, which gives rise to its name: shower max.

Let δ represent the depth of a shower into the Pb-glass; the number of radiation lengths

is t = δ/X0. Given an incident photon energy of Eγ, the energy for particles at a depth of t

radiation lengths is approximately

E(t) =
Eγ
2t
. (E.14)

Define the shower max position tm to occur at a depth such that E(tm) = E0. Solving for

tm returns the value

tm(Eγ) =
ln(Eγ/E0)

ln 2
. (E.15)

We may then define N to be tm, truncated to an integer, that is, let

N(Eγ) = btm(Eγ)c. (E.16)

Parameters ai

We assume the sources are positioned at each radiation length t, so that the ith source’s

weight parameter ai is proportional to 2i. Since the sum of all ais must be 1, we have a

normalization factor, which depends on N(Eγ), times 2i:

ai(Eγ) =
1

∑N(Eγ)
i=0 2i

· 2i =
2i

2N(Eγ)+1 − 1
. (E.17)

One caveat to this idea is that only the electrons and positrons in the shower will con-

tribute to the Cherenkov shower; in the first radiation length there are 0 leptons, then in

the second there are 2. In the third length there are still 2 leptons, plus two bremsstrahlung

photons. In the fourth length, the two photons pair produce, giving a total of 6 leptons.

Continuing this process and letting ni denote the number of leptons in layer i of the shower,

we have a recurrence relation which can be used to determine ni for each i:

ni = 2ni−2 + ni−1 =
2

3

[
2i − (−1)i

]
. (E.18)

To determine ai using this recurrence relation, one divides each ni by the total number of

leptons after N(Eγ) layers, which returns

ai(Eγ) =
2i+1 − 2(−1)k

2N(Eγ)+2 − (−1)N(Eγ) − 3
. (E.19)
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It turns out that equation E.19 is approximately the same as equation E.17, with the differ-

ence between the two decreasing as N(Eγ) increases. For N(Eγ) = 10, the difference is of

order 10−4, thus for simplicity equation E.17 will be used for ai(Eγ).

Parameters bi

At this point, it is unclear exactly where the “detector plane” should be, relative to the path

of sources. One idea is to let the detector plane be a distance of L radiation lengths from

source PN , with the distance measured along the path of sources Pi. Let ri be the distance

of source Pi to the detector plane, with ri measured along the path of Pis:

ri(Eγ, L) = [N(Eγ)− i+ L] ·X0. (E.20)

Given an angle of incidence θγ of the incident photon, the distance between any source Pi

and the plane is then

bi(Eγ, L, θγ) = ri(Eγ, L) · cos θγ. (E.21)

The distance L is left as a free parameter of the re-parameterized shower shape.

Parameters (xi, yi)

Now define (xi, yi) to be the transverse position of the source Pi, such that (x = 0, y = 0)

corresponds to the point at which the path of sources intersects the detector plane. If the

photon enters the Pb-glass with an azimuthal angle φγ, we then have

xi(θγ, φγ) = ri(Eγ, L) · sin θγ · cosφγ, (E.22)

yi(θγ, φγ) = ri(Eγ, L) · sin θγ · sinφγ. (E.23)

Re-parameterized Shower Shape

Putting all of the above together using equation E.11, the probability distribution becomes

f(x, y;Eγ, θγ, φγ) =
1

2π
·
N(Eγ)∑

i=0

ai(Eγ) · bi(Eγ, L, θγ){
bi(Eγ, L, θγ)2 + [x− xi(θγ, φγ)]2 + [y − yi(θγ, φγ)]2

}3/2
.

(E.24)

Note that all the old parameters ai and bi are now in terms of the incident photon properties,

and that the only free parameter of this shape is L, the distance between PN and the detector

plane.
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The CDF is then the same as equation E.12, but with the following substitutions:

N → N(Eγ) (E.25)

ai → ai(Eγ) (E.26)

bi → bi(Eγ, L, θγ) (E.27)

x 7→ x− xi(θγ, φγ) (E.28)

y 7→ y − yi(θγ, φγ) (E.29)

This parameterization has shown potential of getting us closer to a proper incident angle

correction, and is certainly worthy of further exploration, for those who wish to improve pho-

ton position reconstruction accuracy. Improving photon position accuracy may ultimately

improve 2-photon invariant mass resolution for π0 and η-meson reconstruction.

Figure E.3 shows one of the fit attempts of this shower shape to simulation data. It uses

a similar parameterization, although there is certainly room for improvement and further

exploration:

ai(Eγ) =
2i

2N(Eγ)+1 − 1
(E.30)

bi =
X0

W
[L+N(Eγ)− i cos θγ] (E.31)

x 7→ x− iX0 sin θγ (E.32)

y 7→ y (E.33)

G (xc, yc) 7→ V ·G (Hxc + S tan θγ, 0) (E.34)

With N(Eγ) fixed at 10, W fixed at 4X0 and H fixed at −1, the remaining fit parameters

are L, V (a vertical scale), and S (an additional horizontal shift). This is a 1-dimensional

model, so y is not changed. Figure E.3 is the best parameterization we have been able to do

so far, but clearly needs work.
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Fits to Simulation

θ = 0º

θ = 5º

θ = 10º

θ = 15º

Figure E.3: New shower shape parameterization result. FMS Geant4 simulation data are
plotted as black points, and the shower shapes are drawn; parameters L, V , and S are
written in the upper right corner of each plot. Four angles of incidence are plotted, and Eγ
is fixed at 60 GeV.
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Appendix F

Additional Relative Luminosity

Figures

This appendix contains extra figures for relative luminosity measurements and cross checks,

as discussed in chapter 4:

• ZDC R3 measurements: figures F.1 and F.2

• CDF-corrected E and W R3 comparison: figures F.3 and F.4

• CDF-corrected E and X R3 comparison: figures F.5 and F.6

• CDF-corrected W and X R3 comparison: figures F.7 and F.8
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Figure F.1: R3 from ZDC for Run 12; from top to bottom: CDF corrected E, CDF corrected
W, CDF corrected X, rate-safe corrected.
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Run 13 ZDC R3 vs. Run Index
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Figure F.2: R3 from ZDC for Run 13.
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Figure F.3: Run 12 R3 from E minus R3 from W vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Figure F.4: Run 13 R3 from E minus R3 from W vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Figure F.5: Run 12 R3 from E minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Figure F.6: Run 13 R3 from E minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Figure F.7: Run 12 R3 from W minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Figure F.8: Run 13 R3 from W minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Appendix G

Rate-Safe Counting Derivation

This derivation is a summary of that in [95]. This is a method for correcting scaler counts

for accidental coincidences and multiple collisions, and is the method used for computing

the relative luminosities used for Aπ
0

LL. It is called the rate-safe counting method, or also

sometimes the pile-up correction method.

G.1 Rate-Safe-Corrected Scaler Counts

Event Classes

Assume that there can be multiple collisions per bunch crossing; typically there are ∼ 1

collisions / bunch crossing. We define two classes of collisions, called “event classes”:

1. Double-sided events (DS): collisions which will trigger a coincidence

• DS events occur an average of λX times / bunch crossing

2. Single-sided events (SS): collisions which will trigger a single hit, but not a coincidence

• East Single-sided events (ESS) occur an average of λE times / bunch crossing

• West Single-sided events (WSS) occur an average of λW times / bunch crossing
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Hit Probabilities

– DS events

The probability for detecting kE hits in the E-scaler from DS events, given that the E-scaler

has efficiency × acceptance = εE is

PDS (kE) =
(εEλX)kE e−εEλX

kE!
. (G.1)

Likewise, the probability for detecting kW hits in the W-scaler from DS events, given that

the W-scaler has efficiency × acceptance = εW is

PDS (kW ) =
(εWλX)kW e−εWλX

kW !
. (G.2)

The joint probability that the E-scaler detects kE hits and the W-scaler detects kW hits from

DS events is

PDS (kE, kW ) = PDS (kW |kE) · PDS (kE) , (G.3)

where PDS (kW |kE) is the probability that the W-scaler detected kW hits, given that the

E-scaler detected kE hits.

Let i denote the number of collisions in the bunch crossing. After a bit of effort (see

[95]), one can show that this joint probability distribution may be written as

PDS (kE, kW ) =
∑

i≥max(kE ,kW )

(
i

kW

)(
i

kE

)
εkWW εkEE (1− εW )i−kW (1− εE)i−kE

λiXe
−λX

i!
. (G.4)

– SS events

The probability for detecting kE hits in the E-scaler from SS events is

PESS (kE) =
(εEλE)kE e−εEλE

kE!
. (G.5)

Likewise, the probability for detecting kW hits in the W-scaler from SS events is

PWSS (kW ) =
(εWλW )kW e−εWλW

kW !
. (G.6)
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Probabilities for Detecting Zero Hits

Consider the following three probability distributions:

1. Zero hits in E-scaler

P (kE = 0) = PDS (kE = 0) · PESS (kE = 0) = e−εE(λX+λE) (G.7)

2. Zero hits in W-scaler

P (kW = 0) = PDS (kW = 0) · PWSS (kW = 0) = e−εW (λX+λW ) (G.8)

3. Zero hits in both E and W scalers

P (kE = 0, kW = 0) = PDS (kE = 0, kW = 0) · PESS (kE = 0) · PWSS (kW = 0) =

= eεW εEλX−εWλX−εEλX−εWλW−εEλE

(G.9)

Let P ∗ denote the probability that we detect zero hits in both E and W scalers, given

the condition that both the E and W scalers also detected zero hits. Using the Kolmogorov

definition of conditional probability, P ∗ is expressed as

P ∗ =
P (kE = 0, kW = 0)

P (kE = 0) · P (kW = 0)
= eΩλX , where Ω := εW εE. (G.10)

Let PE(W ) be the probability of detecting at least 1 E(W)-scaler single, and PX be the

probability of detecting at least 1 coincidence. These probabilities are used to rewrite the

above three probability distributions for detecting zero hits in the form of

(probability of zero hits) = 1 - (probability of at least 1 hit).

Rate-Safe Correction Equation

Take the logarithm of P ∗ to obtain

ΩλX = lnP ∗ = ln

[
1− PX

(1− PE) (1− PW )

]
. (G.11)

Assume the probability distributions of detecting NE(W ) hits in the E(W )-scaler and NX

coincidences are all binomial, given a total of Nbx bunch crossings. Binomial distributions are
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needed, since the probability of a trigger is significant for all filled bunch crossings. Denoting

the mean of these binomial distributions by 〈·〉, we thus have

PS =
〈NS〉
Nbx

, where S ∈ {E,W,X}. (G.12)

Finally, the product of E and W acceptances and efficiencies times the rate-safe counts Nrsc is

written in terms of the raw scaler counts {NE, NW , NX} and total number of bunch crossings

Nbx as

ΩNrsc = Nbx · ln
[

1− 〈NX〉/Nbx

(1− 〈NE〉/Nbx) (1− 〈NW 〉/Nbx)

]
, (G.13)

where the subscript “rsc” stands for “rate-safe correction”. Because the relative luminosities

are computed as ratios of corrected counts, for different spin combinations, the Ω factor may

be left here, since it will cancel out in any relative luminosity computation.

G.2 A Note on Accidental Coincidences

1. For bunch crossings with 1 collision, we either have a true coincidence from a DS-event

or a single hit from a SS-event

• No accidental coincidences can occur in this case

2. For bunch crossings with more than 1 collision, we have the following possibilities:

• Detection of coincidence event: either one or both of the following cases must

occur:

– At least 1 DS-collision – occurs an average of λX times / bunch crossing

– At least 1 ESS-collision and 1 WSS-collsion – occurs an average of λE and

λW times / bunch crossing, respsectively

• Detection of single event

– DS-event contribution

– All SS-events in the bunch crossing are toward one detector – occurs an

average of λE or λW times / bunch crossing

Since P ∗ only depends on λX , but not on λE or λW , equation G.13 for Nrsc only counts “true

coincidences,” eliminating the need to consider “accidental coincidences.”
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G.3 Corrected Statistical Uncertainty

Define the function f , through which the counts uncertainties will be propagated:

f (NX , NE, NW ) := Ω ·Nrsc (NX , NE, NW ) . (G.14)

The uncertainties in {NX , NE, NW} propagate to an uncertainty in Ω ·Nrsc as

σ2
Ω·Nrsc =

(
∂f

∂NX

)2

σ2
NX

+

(
∂f

∂NE

)2

σ2
NE

+

(
∂f

∂NW

)2

σ2
NW

+

+ 2

[
∂f

∂NX

∂f

∂NE

σNXNE +
∂f

∂NX

∂f

∂NW

σNXNW +
∂f

∂NE

∂f

∂NW

σNENW

]
,

(G.15)

where σA is the uncertainty (variance) of A and σAB is the covariance of A and B. All

derivatives are evaluated at NS = 〈NS〉, with S ∈ {X,E,W}. Since the scaler counts {NS}
are given by binomial distributions, the variances are

σ2
NS

= NbxPS (1− PS)

= 〈NS〉
(

1− 〈NS〉
Nbx

)

= 〈NS〉 · ζ (NS) ,

(G.16)

where

ζ (NS) := 1− 〈NS〉
Nbx

. (G.17)

The covariances can be obtained from 2-dimensional histograms. Finally, the derivatives of

f evaluate to
∂f

∂NX

=
−1

ζ (NX)
and

∂f

∂NE,W

=
1

ζ (NE,W )
. (G.18)

Inserting the variances, covariances, and derivatives yields the propagated uncertainty:

σ2
Ω·Nrsc =

〈NX〉
ζ (NX)

+
〈NE〉
ζ (NE)

+
〈NW 〉
ζ (NW )

−

− 2σNXNE
ζ (NX) ζ (NE)

− 2σNXNW
ζ (NX) ζ (NW )

+
2σNENW

ζ (NE) ζ (NW )
.

(G.19)

In practice, however, it is better to use the Pearson correlation coefficients, which are covari-

ances normalized by the product of the variances: ρS1S2 := σS1S2/σS1σS2 . Typically, these

correlation coefficients are close to unity for the present analyses.

Inserting the expression of the variances, the propagated uncertainty can be rewritten
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using the Pearson correlation coefficients as

σ2
Ω·Nrsc =

〈NX〉
ζ (NX)

+
〈NE〉
ζ (NE)

+
〈NW 〉
ζ (NW )

− 2ρNXNE

√
〈NX〉〈NE〉

ζ (NX) ζ (NE)

− 2ρNXNW

√
〈NX〉〈NW 〉

ζ (NX) ζ (NW )
+ 2ρNENW

√
〈NE〉〈NW 〉

ζ (NE) ζ (NW )
.

(G.20)

Equations G.13 and G.20 represent the quantity used for computing the relative lumi-

nosity and its statistical uncertainty. The statistical uncertainty in equation G.20 is further

propagated into the nine relative luminosity equations.
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Appendix H

Bunch Fitting and Scaler

Asymmetries

This appendix explains the bunch fitting algorithm, used to determine the intrinsic scaler

asymmetry, SLL, which was used as another method to determine the relative luminosity

systematic in section 5.1.3. Refer to chapter 4 of [95] (see also [33]) for the method used to

compute ε3, the double-spin asymmetry via the bunch fitting algorithm; this appendix is a

summary of the method and how it applies to any general spin asymmetry.

H.1 General Bunch Fitting Algorithm

Let ri be a quantity defined for bunch crossing i ∈ B, where B is the set of bunch crossing

numbers under consideration. The quantity ri could be scaler counts, a ratio of scaler

counts, yields, etc. The objective of bunch fitting is to fit ri to the following equation, which

is motivated by the general relation of spin asymmetries and cross sections, as outlined in

appendix D:

ri = ca
(
1 +H i

aεa
)
, where H i

a =





hiY , if a = 1

hiB, if a = 2

hiBh
i
Y , if a = 3

. (H.1)

The fit parameters are ca and εa, for each asymmetry number a ∈ {1, . . . , 9} (see appendix

B). The yellow (east-facing) and blue (west-facing) single-spin asymmetries are ε1 and ε2;

the double-spin asymmetry is ε3. The parameter ca is approximately the average value of ri

for the case where εa
∑

i∈BH
i
a << |B|.

The bunch fitting algorithm determines the pair of parameters (ca, εa), which minimizes

240



the χ2
a of the fit for asymmetry number a, given by

χ2
a =

∑

i∈B

[
ca (1 +H i

aεa)− ri
σri

]2

, (H.2)

where σ2
ri is the variance of ri. Using (H i

a)
2

= 1, ∀ a and i, the summands expand such that

χ2
a = c2

a

(
1 + ε2

a

)
Σ(1)− 2caΣ(ri) + 2c2

aεaΣ(H i
a)− 2caεaΣ(H i

ar
i) + Σ(ri

2

), (H.3)

where for a bunch crossing-dependent quantity xi, the function Σ(xi) is defined as

Σ(xi) :=
∑

i∈B

xi

σ2
ri
. (H.4)

The pair (ca, εa) which minimizes equation H.3 is the solution to the system





0 =
∂χ2

a

∂εa
= 2c2

aεaΣ(1) + 2c2
aΣ(H i

a)− 2caΣ(H i
ar
i)

0 =
∂χ2

a

∂ca
= 2ca (1 + ε2

a) Σ(1)− 2Σ(ri) + 4caεaΣ(H i
a)− 2εaΣ(H i

ar
i)

. (H.5)

The solution, which can be expressed solely in terms of the summations Σ(xi) is:

εa =
Σ(H i

a)Σ(ri)− Σ(1)Σ(H i
ar
i)

Σ(H i
a)Σ(H i

ar
i)− Σ(1)Σ(ri)

, (H.6)

ca =
Σ(H i

a)Σ(H i
ar
i)− Σ(1)Σ(ri)

Σ(H i
a)

2 − Σ(1)2
. (H.7)

The asymmetry εa is thus easy to extract for a given quantity ri.

H.2 Uncertainty Propagation

Propagation of uncertainty of each ri gives the uncertainties on the fit parameters:

σ2
εa =

∑

k∈B

(
∂εa
∂rk

)2

σ2
rk , (H.8)

σ2
ca =

∑

k∈B

(
∂ca
∂rk

)2

σ2
rk . (H.9)
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The derivative of the function Σ (xi) is nonzero if xi is dependent on ri, e.g., for xi = f(ri),

∂

∂rk
Σ ◦ f(ri) =

∑

i∈B

1

σ2
ri

∂

∂rk
f
(
ri
)

=
1

σ2
rk

∂

∂rk
f
(
rk
)
. (H.10)

Derivatives of the χ2
a-minimizing fit parameters are then

∂εa
∂rk

=
1

σ2
rk

[Σ(H i
a)

2 − Σ(1)2]
[
Σ(H i

ar
i)−Hk

aΣ(ri)
]

[Σ(H i
a)Σ(H i

ar
i)− Σ(1)Σ(ri)]2

, (H.11)

∂ca
∂rk

=
1

σ2
rk

Hk
aΣ(H i

a)− Σ(1)

Σ(H i
a)

2 − Σ(1)2
. (H.12)

The propagated uncertainties are therefore

σ2
εa =

∑

k∈B

[
1

σrk

[Σ(H i
a)

2 − Σ(1)2]
[
Σ(H i

ar
i)−Hk

aΣ(ri)
]

[Σ(H i
a)Σ(H i

ar
i)− Σ(1)Σ(ri)]2

]2

, (H.13)

σ2
ca =

∑

k∈B

[
1

σrk

Hk
aΣ(H i

a)− Σ(1)

Σ(H i
a)

2 − Σ(1)2

]2

. (H.14)

H.3 Scaler Asymmetries

The above procedure can be used to extract raw asymmetries εa from a scaler system S,

given a minimum-bias relative luminosity measured by detector MB by choosing

ri =
N i
S

N i
MB

,

where N i
D is the number of scaler counts for bunch crossing i, measured by scaler D. The

fractional error on ri is given by propagation of uncertainty, assuming N i
S and N i

MB are

uncorrelated:
σri

ri
=

√
1

N i
S

+
1

N I
MB

. (H.15)

Let N
+(−)
D be the total number of scaler counts seen by D, summed over bunch crossings

with like (unlike) proton helicities. Then, for example, the raw double-spin asymmetry

extracted with the above definition of ri is

ε3 =
N+
S /N

+
MB −N−S /N−MB

N+
S /N

+
MB +N−S /N

−
MB

=
N+
S −RMB

3 N−S
N+
S +RMB

3 N−S
, (H.16)

where the minimum bias relative luminosity is RMB
3 := N+

MB/N
−
MB. This asymmetry is then
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seen as a raw double-spin asymmetry in scaler detector S, with respect to a minimum bias

scaler detector MB. Including the beam polarizations allows the definition of the scaler spin

asymmetries (with respect to MB) as





SYL := ε1/PY

SBL := ε2/PB

SLL := ε3/PBPY

. (H.17)

This is the expression of SLL used for the relative luminosity systematic uncertainties, where

ε3 was obtained from applying the bunch fit algorithm to ri = N i
VPD/N

i
ZDC.
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Appendix I

Polarization Uncertainties

This appendix is a summary of polarization uncertainty propagation from the analysis note

written by the CNI Polarimetry Group at RHIC [103], but with additional details specific

to the Run 12 and 13 double-spin analysis.

We begin with a discussion of polarization for a single beam, along with its systematic

uncertainty, followed by a section which outlines how the polarization product and product

uncertainty is calculated. This is followed by a section concerning the combination of uncer-

tainties for Runs 12 and 13. Finally, the fully averaged polarizations and uncertainties are

presented.

I.1 Single Beam Polarization

Let r ∈ {1, . . . , Nr} ⊂ N denote a single run number and f ∈ {1, . . . , Nf} ⊂ N denote a

single fill number, where Nr and Nf are the total numbers of runs and fills, respectively. Let

Ff be the set of runs with fill number f , and let f(r) be the fill number of the fill which

contains run r.

The CNI Polarimetry Group provides polarimetry parameters for each fill Ff as a pair

of parameters
{
P 0
f , P

1
f

}
along with their uncertainties

{
σP 0

f
, σP 1

f

}
. Letting tr be the time of

run r since the beginning of its fill Ff(r), the time-dependent polarization for one beam for

run r is

Pr = P 0
f(r) + P 1

f(r) · tr. (I.1)

The parameter P 0
f represents the polarization at the beginning of Ff , while P 1

f represents

the rate of polarization change.

For each fill Ff , we may compute a luminosity-weighted average, given the luminosity of
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run r is denoted by Lr:

〈P 〉LW
f =

1

Lf

∑

r∈Ff
LrPr = P 0

f +
P 1
f

Lf

∑

r∈Ff
Lrtr, where Lf :=

∑

r∈Ff
Lr. (I.2)

The uncertainties on the polarimetry parameters,
{
σP 0

f
, σP 1

f

}
, propagate to an uncertainty

on 〈P 〉LW
f , along with a relative fill-to-fill systematic uncertainty on the pC polarization,

σsys(P )/P , as

σ〈P 〉LWf = σP 0
f
⊕
σP 1

f

Lf

∑

r∈Ff
Lrtr ⊕ 〈P 〉LW

f ·
σsys(P )

P
. (I.3)

Values of σsys(P )/P are obtained from table 4 in [103]:

• Run 12: 0% for blue beam, 3.1% for yellow beam

• Run 13: 2.8% for blue beam, 1.4% for yellow beam

We may then combine the fill-by-fill luminosity-weighted average polarizations into an overall

polarization, denoted by P, by luminosity-averaging 〈P 〉LW
f over each fill:

P =
1

L

Nf∑

f=1

Lf〈P 〉LW
f , where L :=

Nf∑

f=1

Lf . (I.4)

The fill-by-fill uncertainties σ〈P 〉LWf from equation I.3 propagate as the quadrature summation

σP =
1

L

Nf⊕

f=1

Lfσ〈P 〉LWf . (I.5)

There are two additional systematic uncertainties to consider: uncertainty from overall

polarization scale and uncertainty from the profile correction. The overall scale uncertainties

σscale(P )/P , which originate from H-jet and pC scale uncertainties and are summarized in

table 5 of [103], are:

• Run 12: 3.4% for PB, 3.4% for PY , and 6.6% for PBPY

• Run 13: 3.2% for PB, 3.3% for PY , and 6.4% for PBPY

The uncertainty due to profile correction, σprofile(P )/P is

• For single beam: 2.2%/
√
Nf

• For both beams together: 3.1%/
√
Nf
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At this point, one must be careful not to double-count uncertainties. The uncertainty σP

in equation I.5 actually already contributes to σscale(P )/P . If NT is the total number of fills

used to obtain the polarimetry AN and, in turn, σscale(P )/P , then we can approximately

correct σP by using a factor:

σP → σP,corr = σP · Re

√
1− Nf

NT

. (I.6)

For the case where more fills were analyzed Nf than were used to obtain polarimetry AN ,

then Nf > NT implies σσP,corr = 0 and the scale systematic is completely double-counted.

On the other hand, if Nf < NT , then σσP,corr accounts for the extra statistical uncertainty

from having analyzed fewer than NT fills. The values of NT are (from table 6 in [103]):

• Run 12: 49 for blue, 49 for yellow

• Run 13: 138 for blue, 139 for yellow

As for the numbers of fills analyzed, Nf = 45 for Run 12 and Nf = 40 for Run 13.

All of the above uncertainties are combined together to form a total uncertainty on the

P for a single beam as

σTot
P = σP,corr ⊕ P · σscale(P )

P
⊕ P · σprofile(P )

P
, (I.7)

which can be written as a relative uncertainty on P as

σTot
P
P

=
σP,corr

P
⊕ σscale(P )

P
⊕ σprofile(P )

P
. (I.8)

I.2 Beam Polarization Product

Equation I.7 represents the uncertainty of the overall polarization of one beam, but the

Aπ
0

LL analysis uses the product of polarizations from each beam. Let us now consider the

polarizations of two beams, denoted P and Q. The product of polarizations for one run r is

PrQr =
(
P 0
f(r) + P 1

f(r) · tr
) (
Q0
f(r) +Q1

f(r) · tr
)
, (I.9)

and the luminosity-weighted average for one fill f expands to

〈PQ〉LW
f = P 0

fQ
0
f +

1

Lf


(P 0

fQ
1
f + P 1

fQ
0
f

)∑

r∈Ff
Lrtr + P 1

fQ
1
f

∑

r∈Ff
Lrt

2
r


 . (I.10)
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The statistical uncertainty, including fill-to-fill systematic uncertainties, is

σ〈PQ〉LWf =
σP 0

f

Lf


Q0

fLf +Q1
f

∑

r∈Ff
Lrtr


⊕

σP 1
f

Lf


Q0

f

∑

r∈Ff
Lrtr +Q1

f

∑

r∈Ff
Lrt

2
r


⊕

⊕
σQ0

f

Lf


P 0

fLf + P 1
f

∑

r∈Ff
Lrtr


⊕

σQ1
f

Lf


P 0

f

∑

r∈Ff
Lrtr + P 1

f

∑

r∈Ff
Lrt

2
r


⊕〈PQ〉LW

f ·
σsys (PQ)

PQ
,

(I.11)

where σsys (PQ) /PQ = σsys (P ) /P ⊕ σsys (Q) /Q = 3.1% for both Runs 12 and 13. The

overall luminosity-weighted average polarization product is then

PQ =
1

L

Nf∑

f=1

Lf〈PQ〉LW
f , (I.12)

and the statistical uncertainty is

σPQ =
1

L

Nf⊕

f=1

Lfσ〈PQ〉LWf . (I.13)

The double-counting correction is

σPQ → σPQ,corr = σPQ · Re

√√√√1− Nf

Min
(
NP
T , N

Q
T

) , (I.14)

where the lesser of NP
T and NQ

T is used, since that would be the number of fills one would

need in order to calculate a polarimetry double-spin asymmetry. Finally,

σTot
PQ = σPQ,corr ⊕ PQ · σscale(PQ)

PQ
⊕ PQ · σprofile(PQ)

PQ
, (I.15)

where the scale and profile systematic uncertainties are

• σscale(PQ)/PQ = 6.6% for Run 12, 6.4% for Run 13

• σprofile(PQ)/PQ = 3.1%/
√
Nf for both Runs together
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I.3 Combining Uncertainties over Two RHIC Runs

If the analyzed data include polarizations from two RHIC Run periods, there will be two

sets of polarimetry uncertainties to propagate, in order to determine an overall polarization

uncertainty. This section demonstrates how to combine the two sets of uncertainties from

Runs 12 and 13; altogether, four uncertainties need to be considered:

1. The fill-to-fill systematic uncertainty, σsys(PQ)/PQ, is trivial to combine since it enters

each term of the quadrature sum in equation I.11.

2. The profile correction uncertainty, σprofile(PQ)/PQ is also straightforward, since it is

the same for both Runs 12 and 13.

3. For the scale uncertainty, σscale(PQ)/PQ, [103] suggests to use the larger uncertainty

between the two RHIC Runs.

4. For the double-counting correction, adding together the number of fills involved gives

the correction factor

σPQ → σPQ,corr = σPQ · Re ·
√√√√1− Nf,12 +Nf,13

Min
(
NP
T,12, N

Q
T,13

)
+ Min

(
NP
T,12, N

Q
T,13

) , (I.16)

where the numbers of fills are subscripted by the RHIC Run numbers.

I.4 Results

We now list the numerical results of the polarization, following the notation used in this

appendix. Run 12 is shown first, followed by Run 13, then the combination of Runs 12 and

13. The printed number of digits is not necessarily the actual number of significant figures,

since 4 digits were printed past the decimal point for all numbers.
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RUN 12

Lint = 57.4036 pb−1

PB = 0.5434 σPB = 0.0187

PY = 0.5641 σPY = 0.0194

PBPY = 0.3069 σPBPY = 0.0204

σPB ,(fill-to-fill scale) = Re
[√

1− 45/49
]
· [0.0066] = 0.0019

σPY ,(fill-to-fill scale) = Re
[√

1− 45/49
]
· [0.0078] = 0.0022

σPBPY ,(fill-to-fill scale) = Re
[√

1− 45/49
]
· [0.0058] = 0.0017

PB · σscale(PB)/PB = 0.5434 · 0.0340 = 0.0185

PY · σscale(PY )/PY = 0.5641 · 0.0340 = 0.0192

PBPY · σscale(PBPY )/PBPY = 0.3069 · 0.0660 = 0.0203

PB · σprofile(PB)/PB = 0.5434 · 0.0033 = 0.0018

PY · σprofile(PY )/PY = 0.5641 · 0.0033 = 0.0018

PBPY · σprofile(PBPY )/PBPY = 0.3069 · 0.0046 = 0.0014
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RUN 13

Lint = 6.0140 pb−1

PB = 0.5688 σPB = 0.0192

PY = 0.5656 σPY = 0.0194

PBPY = 0.3225 σPBPY = 0.0212

σPB ,(fill-to-fill scale) = Re
[√

1− 40/138
]
· [0.0067] = 0.0056

σPY ,(fill-to-fill scale) = Re
[√

1− 40/139
]
· [0.0057] = 0.0048

σPBPY ,(fill-to-fill scale) = Re
[√

1− 40/138
]
· [0.0054] = 0.0045

PB · σscale(PB)/PB = 0.5688 · 0.0320 = 0.0182

PY · σscale(PY )/PY = 0.5656 · 0.0330 = 0.0187

PBPY · σscale(PBPY )/PBPY = 0.3225 · 0.0640 = 0.0206

PB · σprofile(PB)/PB = 0.5688 · 0.0035 = 0.0020

PY · σprofile(PY )/PY = 0.5656 · 0.0035 = 0.0020

PBPY · σprofile(PBPY )/PBPY = 0.3225 · 0.0049 = 0.0016
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RUNS 12 + 13

Lint = 63.4177 pb−1

PB = 0.5458 σPB = 0.0191

PY = 0.5642 σPY = 0.0199

PBPY = 0.3083 σPBPY = 0.0208

σPB ,(fill-to-fill scale) = Re
[√

1− 85/187
]
· [0.0060] = 0.0044

σPY ,(fill-to-fill scale) = Re
[√

1− 85/188
]
· [0.0071] = 0.0052

σPBPY ,(fill-to-fill scale) = Re
[√

1− 85/187
]
· [0.0053] = 0.0039

PB · σscale(PB)/PB = 0.5458 · 0.0340 = 0.0186

PY · σscale(PY )/PY = 0.5642 · 0.0340 = 0.0192

PBPY · σscale(PBPY )/PBPY = 0.3083 · 0.0660 = 0.0204

PB · σprofile(PB)/PB = 0.5458 · 0.0024 = 0.0013

PY · σprofile(PY )/PY = 0.5642 · 0.0024 = 0.0013

PBPY · σprofile(PBPY )/PBPY = 0.3083 · 0.0034 = 0.0010
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Appendix J

Including Photon Uncertainties in pT

Uncertainty

The pT uncertainty was approximated in equation 5.21, rewritten here:

σpT
pT
≈ σE

E
⊕ σh

h
⊕ σRz
Rz

. (J.1)

A more accurate determination of the pT uncertainty can be made by making use of invariant

mass and taking into account uncertainties on photon separation and energy imbalance;

however, it will be shown that the additional terms which correct equation J.1 are suppressed.

Given a π0 with the 4-momentum given in equation 5.19, its invariant mass is

M2 = E2 − p2
T csc2 θ. (J.2)

Defining Z as the photon energy imbalance and α as the decay opening angle, the two-photon

system invariant mass is

M2 = E2
(
1− Z2

)
sin2 α

2
. (J.3)

Let R be the distance between the nominal vertex and the point on the FMS plane at which

the π0 would have struck had it not decayed; the plane should be the one which was used

for photon position reconstruction. Let D be the transverse distance between the detected

photon hits. Then

tan
α

2
=

D

2R
=
D cos θ

2Rz

=: T (D, θ). (J.4)

Now take α(D, θ) from equation J.4, insert it into equation J.3 and equate the result to

equation J.2:

E2
(
1− Z2

) T 2

1 + T 2
= E2 − p2

T csc2 θ. (J.5)
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Solving for pT gives

pT (E,Z, θ,D) = E sin θ ·
√

1 + T 2Z2

1 + T 2
. (J.6)

The uncertainty propagates as

σpT =
∂pT
∂E

σE ⊕
∂pT
∂Z

σZ ⊕
∂pT
∂θ

σθ ⊕
∂pT
∂D

σD. (J.7)

By defining X as

X := D · ∂pT
∂D

= E sin θ · (Z2 − 1)T 2

(1 + T 2)3/2
√

1 + Z2T 2
, (J.8)

the derivatives in equation J.7 are

∂pT
∂E

=
pT
E
, (J.9)

∂pT
∂Z

=
(1 + T 2)ZX

Z2 − 1
, (J.10)

∂pT
∂θ

= pT cot θ −X tan θ, (J.11)

∂pT
∂D

=
X

D
. (J.12)

Because tan θ = h/Rz,

σ2
θ = sin2 θ cos2 θ

[(σh
h

)2

+

(
σRz
Rz

)2
]
. (J.13)

It is also easy to show that, given Z = (E1 − E2)/E and σE1/E1 = σE2/E2 = σE/E,

σZ =
1− Z2

√
2
· σE
E
. (J.14)

It turns out that X is quite small when compared to other contributions to σpT . If we

set X = 0, the σZ and σD terms drop out. The σθ term is then the same as that in equation

J.1, up to a factor of cos2 θ, which is within 2% of unity for relevant values of θ. Since the

dominant E term is the same as that in equation J.1, the determinations of σpT in equations

J.1 and J.7 are approximately the same.
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Appendix K

Maximum Likelihood Method for ALL

Measurement

This appendix derives the maximum likely value of ALL, given a set of runs; it follows

[116], appendix D. We first review the maximum likelihood method (MLM), followed by its

application to ALL.

K.1 Maximum Likelihood Method

Let f (xi, α) be the probability of measuring xi in the ith measurement of a sequence of

repeated measurements, where α represents the actual value of the measurement, i.e., what

the measurement is nominally. Such a probability is often a Gaussian distribution:

f (xi, α) =
1

σ
√

2π
exp

[
−(xi − α)2

2σ2

]
. (K.1)

Define the likelihood function L as the product of the probability distributions for N mea-

surements:

L =
N∏

i=1

f (xi, α). (K.2)

The maximum likely value, denoted ᾱ, is the α such that L is maximized: ᾱ is the solution

to

0 =
∂L

∂α

∣∣∣∣
α=ᾱ

. (K.3)
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Because L is a product, it is simpler to evaluate the maximum value of its logarithm:

0 =
∂ lnL

∂α

∣∣∣∣
α=ᾱ

=
N∑

i=1

∂ ln f (xi, α)

∂α

∣∣∣∣
α=ᾱ

. (K.4)

With f (xi, α) as a Gaussian distribution, the likelihood function is

L =

(
1

σ
√

2π

)N
exp

[
− 1

2σ2

N∑

i=1

(xi − α)2

]
. (K.5)

Differentiating the logarithm of L with respect to α yields

∂ lnL

∂α

∣∣∣∣
α=ᾱ

=
∂

∂α

[
N ln

(
1

σ
√

2π

)
− 1

2σ2

N∑

i=1

(xi − α)2

]∣∣∣∣∣
α=ᾱ

=

=
1

σ2

N∑

i=1

(xi − ᾱ).

(K.6)

Setting this to zero returns the solution

ᾱ =
1

N

N∑

i=1

xi. (K.7)

Now consider the same Gaussian probability distribution, but allow for the width σ to

vary from measurement-to-measurement, denoted as σi. The modified distribution is

f (xi, α) =
1

σi
√

2π
exp

[
−(xi − α)2

2σ2
i

]
. (K.8)

Differentiating lnL gives

∂ lnL

∂α

∣∣∣∣
α=ᾱ

=
∂

∂α
ln

{
N∏

i=1

(
1

σi
√

2π

)
· exp

[
−

N∑

i=1

(xi − α)2

2σ2
i

]}∣∣∣∣∣
α=ᾱ

=

= − ∂

∂α

N∑

i=1

(xi − α)2

2σ2
i

∣∣∣∣∣
α=ᾱ

=

=
N∑

i=1

xi − ᾱ
σ2
i

.

(K.9)
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Setting this equal to zero yields ᾱ as a weighted average:

ᾱ =

∑N
i=1 xi/σ

2
i∑N

i=1 1/σ2
i

. (K.10)

K.2 Maximum Likely ALL

The above MLM can be used to extract a maximum likely value of the asymmetry ALL,

denoted ĀLL. Let i represent a single DAQ run. Let

Si := N++
i +N−−i ,

Di := N+−
i +N−+

i ,

Pi := PB
i P

Y
i ,

(K.11)

where N sign(hB)sign(hY ) is the number of π0s with the initial proton spin states as hB and hY .

Let Ri be the relative luminosity R3 for run i. For a single run, the measurement of ALLi is

written

ALLi =
1

Pi
· Si −RiDi

Si +RiDi

. (K.12)

The probability for measuring ALLi in the ith DAQ run, given a nominal value denoted by

ÂLL, is modelled as a Gaussian with run-dependent uncertainty σi:

f
(
ALLi , ÂLL

)
∝ exp


−

(
ALLi − ÂLL

)2

2σi


 . (K.13)

Using the MLM technique above, the maximum likely value is

ĀLL =

∑N
i=1 ALLi/σ

2
i∑N

i=1 1/σ2
i

. (K.14)

The task is to now compute σi =: σALLi , which is the uncertainty of ALLi . From now on,

we suppress the i subscripts for brevity. We also assume that statistical uncertainties of Ri

and Pi are negligibly small when compared to the statistical uncertainties of the yield (and

the statistical uncertainty on Pi is already accounted for in the calculation of the overall
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polarization uncertainty in appendix I). The uncertainty in ALLi is

σ2
ALL

=

(
∂ALL
∂S

)2

σ2
S +

(
∂ALL
∂D

)2

σ2
D =

=
(1− ALLP )2 σ2

S + (1 + ALLP )2R2σ2
D

P 2 (S +RD)2 .

(K.15)

Assume that the raw asymmetry ALLP << 1 and can be neglected in the calculation of

σALL . Also let σS =
√
S and σD =

√
D, because the yield distributions are assumed to be

Poissonian. The uncertainty becomes

σ2
ALL

=
S +R2D

P 2 (S +RD)2 . (K.16)

If the relative luminosity is close to unity, then the assumption R2 ∼ R can be made and

the numerator cancels a factor in the denominator, returning

σ2
ALL
≈ 1

P 2 (S +RD)
. (K.17)

Substituting equation K.17 into equation K.14 gives the MLM value of ALL used in this

analysis:

ĀLL =

∑N
i=1 Pi (Si −RiDi)∑N
i=1 P

2
i (Si +RiDi)

. (K.18)

K.3 Statistical Uncertainty

It remains to propagate statistical uncertainty of S and D to ĀLL:

σ2
ĀLL

=
N∑

i=1

[(
∂ĀLL
∂Si

)2

σ2
Si

+

(
∂ĀLL
∂Di

)2

σ2
Di

]
. (K.19)

The derivatives with respect to Si and Di are

∂ĀLL
∂Si

=
Pi − P 2

i ĀLL∑N
k=1 P

2
k (Sk +RkDk)

, (K.20)

∂ĀLL
∂Di

=
−RiPi −RiP

2
i ĀLL∑N

k=1 P
2
k (Sk +RkDk)

. (K.21)
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Assuming that P 2
i ĀLL is negligible, inserting these derivatives into equation K.19 gives

σĀLL =

√∑N
i=1 P

2
i (Si +R2

iDi)
∑N

i=1 P
2
i (Si +RiDi)

. (K.22)

Making the approximation Pi = P̄ , the average polarization, as well as Ri = 1, the uncer-

tainty becomes simply

σĀLL ≈
1

P̄
√
N
, (K.23)

where N =
∑N

i=1 (Si +Di). It turns out that equation K.23 is extremely close to the

value determined from equation K.22; ultimately equation K.22 is used for the statistical

uncertainty on Aπ
0

LL.
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Appendix L

Curing Radiation Damage in the FMS

by Photobleaching

The problem of radiation damage in the FMS Pb-glass cells was discussed in section 2.3.4.

This appendix discusses in more detail the photobleaching techniques that were used to

reverse the effects of radiation damage, effectively “curing” the FMS.

L.1 Solar Photobleaching

After the end of Run 13, the FMS was unstacked during the summer of 2013 and all cells were

exposed to 48 hours of sunlight. During the exposure time, transverse transmittance spectra

were measured at three longitudinal depths along a cell. Figure L.1 shows the spectrum

of light used for the transmittance measurement; the spike at 656 nm is due to deuterium

emission from the light source. Figure L.2 shows the transmittance spectra for a clear (not

damaged) large cell, clear small cell, and damaged large and small cells; the colors indicate

three longitudinal measurements: one near the front face (green), one in the center (red),

and one near the back (blue). The vertical axis is a transmittance relative to the average

transmittance for wavelengths greater than 900 nm (note that since this is just a relative

transmittance, it can be greater than 1). For the large cell, the front measurement shows the

most damage, whereas for a small cell, the middle measurement shows the most; for both

cells, the back measurement shows the least amount of damage.

Figure L.3 shows the ratio of transmittance of the damaged cell to that of the clear cell,

given no sunlight exposure, 15 hours of exposure, and 40 hours of exposure, respectively for

each row of plots in the figure. The clear cell was exposed in tandem with the damaged cell

exposure. After 40 hours of exposure, the cells were 90–95% cured.
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Figure L.1: Light source spectrum used for Pb-glass transmission spectra.

Figure L.2: Transmittance spectra for a large clear (not damaged) cell (top-left), small clear
cell (top-right), damaged large cell (bottom-left) and damaged small cell (bottom-right).
The colors indicate three longitudinal depths at which the transverse transmittance was
measured: near the front (green), near the middle (red), and near the back, where the PMT
would be (blue). The relative transmittance at 410 nm is written on each plot.
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No Sunlight Exposure

After 15 Hours Exposure

After 40 Hours Exposure

Figure L.3: Ratios of transmittance spectra for a large cell (left) and small cell (right) for
0 hours exposure (top), 15 hours (middle), and 40 hours (bottom). Transmittance ratios at
410 nm are written on each plot.
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Figure L.4: Relative transmission of a small cell as a function of UV-LED exposure time
(hours) for three different wavelengths: 410–415 nm (blue, slowest), 385–390 nm (red, mid-
dle), and 375–380 nm (black, fastest).

L.2 Photobleaching with UV-LEDs

After Run 16, the FMS Pb-glass was radiation damaged enough to once again necessitate

curing. Since unstacking the FMS again and exposing all cells to sunlight is a laborious task,

an alternative idea was employed. After testing multiple UV sources such as tanning bed

lights and bug lights, we settled on UV-LEDs and constructed a thin UV-LED array to sit

in front of the FMS glass. This array was designed to be turned on between RHIC fills for

a few hours per day during Run 17, in order to combat the radiation damage and attempt

to keep the glass relatively clear.

A variety of UV-region wavelengths were tested. Figure L.4 shows the relative transmis-

sion in a small cell as a function of time (in hours) for 3 different wavelengths of light; the

fastest curing was from the lowest wavelength: 375–380 nm. Thus an array of this wave-

length of UV-LEDs was constructed. Due to a mistake in construction, however, a fraction

(∼ 1/3) of the UV-LEDs were not the intended wavelength; they most likely are closer to

400 nm. As a consequence of this mistake, although we were not able to power the array to

its full intended power, the overall emission spectrum of the array was broader, which may

have actually helped clear a broader range of F-centers.

Due to design and installation restrictions, the UV-LED array needed to be built in

modules; it also need to be as flat as possible so it could fit in the region in front of the

FMS. This region housed the LED flasher array (see section 3.5.1), which also had to be
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redesigned. The UV-LED array was positioned approximately 3 inches in front of the FMS

glass, with the UV-LEDs facing the glass directly. The LED flasher system, which previously

sent LED signals into every single FMS cell via fiber optics, was removed. The flasher LEDs

themselves were extracted from the fiber optics system, polished, and then re-connected and

mounted on the front face of the FMS, so that they faced away from the FMS and toward

the UV-LED array. Since the UV-LEDs were mounted on aluminum plates, the aluminum

provided enough reflectance of the flasher LEDs such that the flasher system could still be

used in the same manner: for time-dependent gain tracking.

Since the UV-LEDs ran rather hot, a method of keeping them cool was needed. The

UV-LEDs were mounted on aluminum plates, embedded with copper pipes which carried

chilled water; these plates not only served as heat-sinks for the array, but also allowed the

array itself to be segmented into small enough pieces such that installation was streamlined.

Ultimately during operation, the temperature of the FMS rose only a couple of degrees and

returned back to normal about 15 minutes after the UV-LED array was powered down.

Figure L.5 shows the effect of radiation damage as a function of pseudorapidity; the

vertical axis is the ratio of flasher LED amplitudes between the end and the beginning of

a 47 pb−1 period of
√
s = 200 GeV pp collisions. The damage is seen to be more severe

at higher pseudorapidities, therefore the density of the UV-LEDs in the array was made to

increase as a function of pseudorapidity. Figure L.6 shows a diagram of one quadrant of the

UV-LED array, where the beam pipe passes through the bottom left corner. The distribution

of UV-LEDs is shown, along with the 7 aluminum plates that make up the array quadrant;

the aluminum plates cover the majority of the large and small cells within the quadrant.

Each UV-LED needed 10 W of power, supplied by a voltage drop of 10 V per LED and 1

A of current. Only 1 W of UV radiation power was emitted per LED; the rest was dissipated

as heat. Given that there are approximately 768 UV-LEDs, multiple power supplies were

used. The power was first distributed to the power supplies via a 3-phase Power Distribution

Unit (PDU); one PDU was used for the north half and another for the south half. Each

PDU was connected to a 208 V input and contained 3 banks (one for each phase) with 4

power supplies attached to each. On each power supply, there were 2 circuits containing 4

parallel strings of UV-LEDs, each with 4 UV-LEDs in series along with a fuse. Figure L.8

shows a diagram of this power distribution setup.

Both PDUs were connected to the local intranet as well as directly linked to the control

room via a fiber optic connection. Since both the PMT HV and UV-LED array were remotely

controllable, a graphical user interface was designed in order to simplify operations, as shown

in figure L.9. The graphical interface also served as a software interlock between the UV-LED

array and the PMT HV system, since having both on at the same time could possibly damage
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the PMTs: exposing the sensitive PMTs to the high flux of UV radiation could overpower

them. Because of this danger, the system demanded verification that the UV-LEDs were off

before permitting the HV to be turned on, and vice versa. Furthermore, for every time any

button was clicked on the control interface, a text message was sent to those responsible for

FMS operations, the so-called experts; if the UV-LEDs were ever detected to be on at the

same time, both the UV-LEDs and HV systems were shut down, and the operator in charge

would be presented with a message to call the experts immediately. During the entirety of

Run 17, this critical state of the UV-LEDs and HV systems being simultaneously on never

occurred.

Figure L.7 shows the ratio of flasher LED amplitudes for a 43 hour exposure of the

FMS to the UV-LED array; this ratio is plotted as a function of pseudorapidity. Overall,

the UV-LED array successfully cleared the Pb-glass and it was used daily for a few hours

per day during Run 17 to maintain glass transparency and a relatively constant trigger

rate throughout the entire Run. This array was effectively the solution to the problem of

radiation damage in the FMS.
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Figure L.5: Ratio of LED flasher amplitudes between end and beginning of a period of
radiation damage accumulation, as a function of pseudorapidity.

Figure L.6: One quadrant of the UV-LED array, showing the distribution of LEDs and their
associated aluminum plates. The UV-LEDs were wired in groups of four (wiring not drawn).
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Figure L.7: LED amplitude after 43 hour exposure to UV-LED array, divided by LED
amplitude before exposure, vs. pseudorapidity. Radiation-hard cells (which are a few cells
that are “hardened” against the effect of radiation damage) were omitted from this diagram,
as well as cells with misbehaving PMTs.

PDU

B1

B2

B3

PS 6B

PS 5B

PS 6T

PS 5T

PS 4B

PS 3B

PS 4T

PS 3T

PS 2B

PS 1B

PS 2T

PS 1T

Power Supply 
4-Bottom

208V
Main

Fuses

uvLEDs
Ground

Figure L.8: Diagram of power distribution to the UV-LED array.
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