The Pennsylvania State University
The Graduate School
Eberly College of Science

LONGITUDINAL DOUBLE-SPIN
ASYMMETRY OF FORWARD NEUTRAL
PIONS FROM +/s = 510 GEV POLARIZED

PROTON-PROTON COLLISIONS AT STAR

A Dissertation in
Physics
by
Christopher J. Dilks

(© 2018 Christopher J. Dilks

Submitted in Partial Fulfillment
of the Requirements

for the Degree of
Doctor of Philosophy

December 2018



The dissertation of Christopher J. Dilks was reviewed and approved® by the following;:

Steven Heppelmann
Professor of Physics
Dissertation Adviser

Chair of Committee

Mark Strikman
Distinguished Professor of Physics

Anna Stasto

Associate Professor of Physics

Stéphane Coutu
Professor of Physics and of Astronomy & Astrophysics

Donghui Jeong
Assistant Professor of Astronomy & Astrophysics

Nitin Samarth
Professor of Physics

Department Head

* Signatures are on file in the Graduate School.

i



Abstract

Longitudinally polarized proton-proton scattering experiments provide access to the gluon
polarization contribution to the overall proton spin via a measurement of the longitudinal
double-spin asymmetry, Apyp. During RHIC data-taking periods in 2012 and 2013, a sig-
nificant sample of s scattered in the forward direction was acquired from proton-proton
collisions with a center-of-mass energy of 510 GeV and beam polarizations of ~ 55%. The
70 kinematics were measured by the STAR Forward Meson Spectrometer, an electromag-
netic calorimeter spanning a forward pseudorapidity range of 2.5 < 1 < 4 and a transverse
momentum range of 2 < pr < 10 GeV/c. This forward region is primarily sensitive to 7’s
originating from a hard quark, carrying a significant fraction x of the proton momentum,
scattering with a soft, low-x gluon. The polarized gluon distribution function, Ag(x), which
represents the gluon spin contribution to the proton spin, is positive at high x but is rather
unconstrained at low x. There are many more gluons than quarks at lower x, and their
contribution to the proton spin remains unknown. This new measurement of A;; presented
in this dissertation will help place constraints on Ag(z) in this important region, down to

x ~ 1073,
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Chapter 1

Introduction

1.1 Overview

The spin of the proton and its relation to the spin and orbital angular momenta of its partons,
quarks and gluons, are still not fully understood. Modern models decompose the proton
spin as a sum of the quark and gluon spins and orbital angular momenta. Historical models,
however, assumed that since the proton is stable it is in its lowest energy configuration, which
is a spherically symmetric state with orbital angular momentum quantum number [ = 0.
This assumption implies that the net contribution of partonic orbital angular momentum
to the proton spin is zero [1]. Since the proton is in a spherically symmetric state, its
potential, mediated by the gluons, is also likely spherically symmetric and the gluon angular
momentum was therefore assumed to not contribute to the proton spin. The quark spin was
the only contribution to the proton spin that was thought to be nonzero [2].

Since the proton and the quarks are all spin-1/2 particles and the proton is composed
of three constituent quarks, two up quarks and one down quark, it was assumed that the
projection of the proton spin along any axis, say the z axis, is the sum of the quark spins
projected along z: two of the quarks have spin aligned with the proton spin and the other
anti-aligned. Typically the two up quarks’ spins were thought to be aligned with the proton
spin and the down quark’s anti-aligned, however this configuration is not the only possibility.
No matter which quark has which spin, the assumption was that if the proton spin projection
is +1/2, then that is equal to the sum of two +1/2 quark spins and one —1/2 quark spin
from the third.

The EMC experiment [3, 4] shattered this simple model in 1987, by performing a mea-
surement that revealed the quark spins only contribute a fraction (~ 4 —24%) to the overall
proton spin. This measurement led to the so-called proton spin crisis, giving rise to the
question of the true origin of the proton spin. Modern measurements have constrained the
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quark spin contribution to ~ 0.24, at a scale given by the momentum transfer squared
Q% = 10 GeV?/c? [5, 6, 7, 8, 9]. To solve the crisis, the gluon angular momentum and
partonic orbital angular momentum must also contribute substantially to the proton spin
[10, 11, 12].

We now know the gluon angular momentum, :.e., helicity, also contributes a non-negligible
fraction to the proton spin. The contribution from gluons which carry a fraction x of the
proton longitudinal momentum in the range 0.05 < z < 1.0 is around 0.23 £ 0.06 [13] or
0.20700% [14]. On the other hand, the partonic orbital angular momentum has not yet been
measured, however it likely accounts for the remainder of the proton spin.

The naive picture of a proton as being composed of three quarks with mediating gluons
is a mere cartoon; one must instead attempt to consider all of the partons within the proton,
including the sea quark and antiquark pairs, along with the soft gluons. The number density
of partons within a proton is modelled as a probability density distribution dependent on
x. For x > 0.03, the up and down quarks dominate the partonic densities, however as x
decreases toward lower values, the gluons begin to vastly dominate. Furthermore, models
which describe the contribution to the spin of the proton from gluon helicity are rather
unconstrained for x < 0.05, which leaves one to question how much this myriad of soft,
low-x gluons is contributing to the proton spin.

This dissertation presents a measurement of the longitudinal double-spin asymmetry,
App, for forward-scattered neutral pions [15], which is directly sensitive to the gluon helicity
contribution down to z ~ 1073, a region abundant with soft gluons. This is the first time this
important region of gluonic x has been sampled with this level of sensitivity. The measure-
ment agrees with extrapolations of theoretical models that predict the low-x gluon helicity
contribution is nearly zero; however, given the large uncertainties on these predictions at low
x, this measurement ultimately places constraints on the models. Analyses of all available
Arpp data, including measurements from inclusive jets and dijets at lower rapidities, i.e., at
more-central scattering angles, along with our new measurement for forward neutral pions,
will bring the gluon helicity contribution into clearer focus, especially for this important
low-z region.

This chapter begins with an introduction of quantum chromodynamics, which provides
sufficient background to begin discussing the partonic model of proton-proton scattering.
Building on this foundation, the definition of Ay, will be presented and its direct sensitivity
to the gluon helicity will be emphasized. Finally, a survey of recent Ay measurements that
are pertinent to this analysis will be presented.

Chapter 2 then follows with details of the experiment itself, which took place at the Rel-
ativistic Heavy Ion Collider (RHIC) in the STAR experimental hall. Chapter 3 details the
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event selection, which is used to select for neutral pions, chapter 4 details a measurement of
the relative luminosity, which is needed in order to measure Ay, and chapter 5 discusses var-
ious contributions to the systematic uncertainty on Ay and on pion transverse momentum.
Chapter 6 then brings everything together, illustrating how Ap; was measured from the
pion sample and relative luminosity, along with proton beam polarizations. Lastly, the A,
measurement result is presented in chapter 7, along with a discussion thereof. Derivations,

along with other topics that are relevant but a bit digressive, are found in the appendices.

1.2 Quantum Chromodynamics in the Proton

Most of the matter we humans interact with is composed of atoms. The atom, the so-
called building block of matter, derives its name from the Greek word atomos, meaning
“indivisible.” This is a bit of a misnomer, however, as the atom is composed of a hard, dense
nucleus, surrounded by electrons. The nucleus itself is composed of nucleons: positively
charged protons and neutral neutrons. The divisibility of matter does not stop here, however.
The nucleons are further composed of quarks and gluons, the fundamental particles which
interact under the strong interaction. The associated strong force is what holds the nucleus
together, and without it, the electrical repulsion between the protons would cause the nucleus
to fall apart. The topic of this dissertation focuses on the proton as a probe into the world
of quantum chromodynamics (QCD), the quantum mechanical understanding of the strong
interaction. For introductory-level material on this topic and on particle physics in general,
see textbooks such as [16, 17, 18].

1.2.1 Protons and Neutrons

The proton is the primary object of study in this thesis. Given the electron charge of
—e ~ —1.6 x 107 Coulombs, the proton has a positive charge of +e. Furthermore, its
spin quantum number is s = 1/2, the same as the electron; the spin angular momentum
of a spin-1/2 particle measured along a particular axis will only be s, = +h/2, called spin-
up, or s, = —h/2, called spin-down, where h = h/2x is the reduced Planck’s constant.
This quantization of the electron spin was observed in the Stern-Gerlach experiment, where
electrons were sent through a magnetic field, perpendicular to their momentum, and the
spin-up electrons deflected one way while the spin-down electrons deflected the other [19, 20].
Since the proton has a half-integer spin, it is classified as a fermion, as opposed to bosons,
which have an integer values of s. Finally, the mass of the proton is 1.67 x 10727 kg, or

in units more useful in high energy physics, 938.3 MeV/c? [21], which makes use of the



mass-energy equivalence in special relativity, £ = mc?.

As an aside, it is common in high energy physics literature to use a set of units where
the speed of light in a vacuum, ¢ & 3.00 x 10% m/s, is set simply to 1, with no units, that is,
dimensionless 1. The energy-momentum relation in special relativity, £? = (m02)2 + (pe)?,
simplifies to E? = m? + p?, which causes both mass m and momentum p to each have units
of energy. Many other such conveniences also occur and this ¢ = 1 convention, along with
h =1, will be assumed throughout this dissertation.

The neutron is very similar to the proton, enough so that the neutron and proton are in
general referred to as nucleons, since they are the constituents of the atomic nucleus. The
neutron is electrically neutral, also has a spin quantum number of s = 1/2, and has a mass
of 939.6 MeV/c? (or MeV, with ¢ = 1 units) [21]. As will be discussed later, the quantum
chromodynamic properties of the constituents of the proton can be studied by accelerating
protons in an accelerator, and colliding them with other protons or nuclei in a collider. The
neutron cannot be directly accelerated, however, since it is not charged (although it can be
studied via the deuteron, which is a nucleus with one neutron and one proton). Therefore,

the proton is the most appropriate “lab” in which we can study QCD.

1.2.2 Quarks and Gluons

The internal structure of an atom was first explained by Ernest Rutherford in 1911 [22],
during experiments performed in 1908-1913 by Hans Geiger and Ernest Marsden in collab-
oration with Rutherford, wviz., [23]. In the cited experiment, « particles, which are nuclei
composed of two protons and two neutrons, were directed at a thin sheet of metal; if an «
particle scattered back on the same side of the metal, it was observed as a scintillation in a
zinc sulfide screen. Of the metals tested, gold produced the highest rate of observed scintil-
lations; moreover, a small rate of scintillations was even observed when no metal sheet was
in place, due to scattering off atoms in the air. These “back-scatterings” of a particles can
only be explained by hard-scatterings of a particles on some dense concentration of electric
field within the atoms: this dense object is the atomic nucleus.

If atoms were just diffuse distributions of charge, most of the a particles would deflect
at small angles, but since large scattering angles are observed, the atom has some internal
hard structure. The same sort of question can be asked about the nucleons, for example by
directing electrons at protons in an experiment called Deep Inelastic Scattering (DIS). Such
experiments were first performed at the Stanford Linear Accelerator Center (SLAC), where
an electron beam was directed at a liquid hydrogen target, composed of mostly protons,

from the perspective of the incoming electrons. The deflection of electrons to high scattering



angles was observed [24] [25], and similar to the Rutherford experiment, the observation of
high scattering angles in DIS was indicative of internal, hard structure within the proton.

It is now known that protons are composed of quarks (¢), antiquarks (¢), and gluons (g),
particles which are collectively called partons. There are six types of quarks, called flavors:
up (u), down (d), charm (c), strange (s), top (t), and bottom (b). The u, ¢, and t quarks
have a charge of +2e/3 whereas the d, s, and b quarks have a charge of —e/3. All quarks
have have spin quantum number 1/2 and are therefore fermions. The u and d quarks each
have a mass of a few MeV, but defining bare quark mass is difficult to do, for reasons which
will be revisited after some discussion of quantum chromodynamic phenomena.

The gluons, on the other hand, have some properties identical to the photon: no mass
(and therefore also propagate at the speed of light), spin s = 1 (bosonic), and electrical
neutrality. Whereas the photons are the mediators of the electromagnetic interaction, the
gluons mediate the strong interaction. When one charged particle moves, the change in the
electric field around that particle propagates at the speed of light; this “ripple of change”
in the field can be thought of as a photon, and another charged particle nearby does not
feel the effect of the change in the electromagnetic field until the ripple (photon) reaches
it. This model is a cartoon picture of quantum electrodynamics (QED), simply stating that
the photon mediates or “carries” the electromagnetic force. An analogous picture can be
thought of for the strong force, where the gluons mediate the strong interaction between
quarks in QCD.

The proton is composed of two v quarks and a d quark; that is not completely true, as
will be discussed later, but for now the notion is sufficient. Let us assess how the quark
properties combine to give the proton properties. Adding the quark charges together, one
obtains 2(2¢/3) — e¢/3 = e, the correct proton charge. Regarding the spin, if one imagines
that the u quarks’ spin projections are aligned with the proton spin projection, while the
d quark spin is anti-aligned, then the full spin adds as 2(1/2) — 1/2 = +1/2, which is
indeed the spin of the proton. This composition of the proton spin is not what is observed
experimentally however, and we will return to this important point after discussing more on
parton properties in general. Finally, adding the quark masses together of a few MeV each
does not nearly account for the full ~ 1 GeV mass of the proton, leading one to question
where the rest of the proton mass comes from. It turns out that the binding energy of the
quarks, provided by the mediating gluons, actually accounts for the vast majority of the
mass. Consequently, the mass of most observed matter in the universe actually comes from

the energy holding the nuclei together.



1.2.3 Color

The prefix chromo- in “chromodynamics” derives from the Greek word khroma, meaning
“color.” The color in QCD is not the same color which corresponds to wavelengths of visible
light; instead QCD color refers to a type of charge associated with the strong force: color
charge. While objects with electric charge participate in the electromagnetic interaction,
objects with color participate in the strong interaction, and quarks and gluons are the only
known particles with color.

In the electromagnetic interaction, there is only one type of charge, the electric charge,
which can either be positive or negative. On the other hand, in the strong interaction there
are three color charges: red, green, and blue. There is a notion of positivity and negativity
for each color: quarks can be red (), green (g), or blue (b), whereas antiquarks can be antired
(7), antigreen (g), or antiblue (b). The quarks and antiquarks not only have electromagnetic
charge, which allows them to participate in the much weaker electromagnetic interaction,
but they also have color charge, which allows them to also participate in the dominant strong

interaction.

1.2.3.1 Hadrons and Confinement

In the electromagnetic interaction, a charge-neutral system has an equal number of positive
and negative charges (or the trivial case of no charges). Similarly in the strong interaction, a
quark-antiquark pair with the same color charges but opposite in sign has a net color charge
of zero; this gives us three possible color-neutral systems: r7, bb, and gg. Furthermore, the
combination of three quarks, each colored differently, forms the color-neutral system rgb,
as does the antiquarks in 7gb; these combinations of three colors explain the inspiration for
using the word “color,” since shining red, green, and blue spotlights toward the same area
on a screen reveals the combination of the three colors is the colorless white.

One of the most striking properties of QCD is color confinement: the observation of a
single color-charged object so far seems to be impossible, and all particles directly observable
in nature are color-neutral. A quark prefers to be either paired with an antiquark or with
two other quarks, such that the final system is color-neutral. These color-neutral systems
which are composed of quarks and gluons are composite particles called hadrons, and those
which are composed of a quark and an antiquark are called mesons, with the color part of

the wave function .
P = — (rf—l—gg+bl_)) , (1.1)

V3

while hadrons with a color-neutral system of three quarks (or three antiquarks) are called



baryons, with the color wave function

P = L (rgb+ gbr + brg — bgr — rbg — grb) . (1.2)
7
The meson color wave function is symmetric, that is, if two colors are exchanged then the
sign of 127 does not change; on the other hand, exchanging two colors does change the sign
of the baryon color wave function, which is antisymmetric. Thus mesons are bosons with
integer spin, whereas baryons are fermions with half-integer spin.

We now mention some example hadrons, focusing on those pertinent to this thesis. An
important example meson is the pion, composed of up and down quarks and antiquarks.
Since the u and d quarks are the least massive flavors, the pions are the least massive of all the
hadrons. The charged pions, the 7t and 77—, are composed of ud and du, respectively, while
the neutral pion, denoted 7°, is composed of a quantum superposition of v and dd and is the
primary observable discussed in this thesis. Regarding baryons, the proton is one composed
of uud quarks, as is the neutron, being composed of ddu quarks. Any other combination of
the 6 quark flavors into ¢g mesons or gqq baryons (or gGg antibaryons) is possible, and names
are given to each observed or predicted hadron; higher order color-neutral combinations are
also theoretically possible, such as penta-quarks, which are composed of 5 quarks (typically
rgb plus a color+anticolor pair), as well as glue balls, which are color-neutral bundles of

gluons; since gluons also carry color (and anticolor) and can even self-interact.

1.2.3.2 A Note on Feynman Diagrams

Before discussing gluon color, we pause here to briefly introduce Feynman diagrams. The
interactions in QCD, or in any quantum field theory in general, are described by scattering
amplitudes, the square of which gives the associated scattering differential cross sections.
Feynman diagrams are used to calculate these amplitudes, but this use of them is outside
the scope of this dissertation (see instead standard textbooks such as [26, 27]); instead,
diagrams will be used here only in order to help classify the types of possible interactions as
needed.

In quantum field theory, one defines an interaction as the transformation from a set of
initial states, e.g., incoming particles with specific 4-momenta, to a set of final states, outgo-
ing particles with 4-momenta, such that energy and momentum are conserved overall. The
scattering amplitude for any interaction can be expressed as a sum of terms in a perturbative
expansion, with each one of these terms represented by a Feynman diagram. Each diagram
is a graph, as in a graph from the mathematical field of graph theory, built with lines and

vertices. Lines on a Feynman diagram represent propagators, which describe the transit of
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a particle with a certain 4-momentum from one moment in time to another. The endpoints
of a propagator represent these moments, which can be either at a verter or a source. A
vertex represents a fundamental interaction in the quantum field theory, where 3 or more
propagators can meet at a point such that sum of all incoming particles’ 4-momenta balances
the sum of all outgoing particles’. A source, on the other hand, represents a particle in either
the initial or final state of the overall interaction, defined at times sufficiently far in the past
or the future from the interaction time.

In order to interpret a single diagram, one mandates a time-ordering in order to distin-
guish the final states from the initial states. For internal propagators, which are those with
each endpoint at a vertex, the time-ordering is often ambiguous; for those propagators, the
perturbative summation basically sums over the two possibilities, thus their time-ordering
does not really matter. These internal propagators are called virtual particles and while not
observed in the interaction, they are still considered in the scattering amplitude calculation.

Regarding notation, a line with an arrow represents a fermion or antifermion propaga-
tor: it is a fermion (antifermion) if the arrow is pointing along (opposite) the time-ordering
direction. Again, since time-ordering for virtual particles is ambiguous, an internal, arrowed
propagator represents both a fermion and an antifermion. Wavy lines denote photon propa-
gators and looped lines denote gluon propagators; neither of these have arrows because each
is its own antiparticle.

Any quantum field theory, such as QCD or QED, has a set of fundamental vertices which
describes all allowed fundamental interactions within that theory. All possible Feynman
diagrams for any interaction, no matter how complicated, can be constructed as graphs using
only the fundamental vertices and propagators. The only fundamental vertex in QED is a
fermion-antifermion-photon vertex, as shown in figure 1.1. In order to interpret this vertex,
let f represent a fermion, f an antifermion, and v a photon. The six possible time-orderings

are:

f — ~f: a fermion emits a photon, continuing on with less momentum
(time direction )

fy — f: a fermion absorbs a photon, continuing on with more momentum
(time direction )

f — ~vf: an antifermion emits a photon, continuing on with less momentum
(time direction )

fv — f: an antifermion absorbs a photon, continuing on with more momentum
(time direction \)



Figure 1.1: QED fundamental vertex.

e ff — ~: afermion and an antifermion annihilate, becoming a photon

(time direction J)

e v — ff: a photon with sufficient energy pair-produces a fermion-antifermion pair

(time direction 1)

QCD is somewhat analogous to QED, with a similar fundamental vertex: quark-antiquark-
gluon. The presence of color charge, however, allows for additional fundamental vertices per-
taining to gluon self-interactions. This self-interaction ultimately introduces two additional

fundamental vertices to QCD.

1.2.3.3 Gluon Color

While the photon mediates the electromagnetic force in QED, it does not carry electric
charge. The gluon of QCD does, however, carry color charge; in fact, gluons carry both color
and anticolor. For example, if a red quark and a green quark scatter by exchanging a gluon,
then the red quark could become green and the green quark will become red; in this case
the gluon carried red+antigreen or green+antired (technically, the sum of the two in terms
of QCD scattering amplitudes via Feynman diagrams). Because the gluons carry color, they
can also interact with one another. One gluon can become two, or two can become one,
and both of these are enumerated in the 3-point gluon vertex. There is also a 4-point gluon
vertex, which represents any of the processes G — GGG, GG — GG, or GGG — G; we
temporarily use a capital G to denote gluon, to distinguish it from the green color charge g.

When drawing Feynman diagrams in QCD, arrowed lines are used for quark and antiquark
propagators, as they are used for fermions in QED and in general. Looped lines are drawn for
gluon propagators. One can also draw the “flow” of color in these diagrams, as shown in figure
1.2, which illustrates the possible QCD vertices in the left column and example color flows
in the right column. The first vertex is the qqG vertex, which represents gluon absorption
or emission by a quark, gluon absorption or emission by an antiquark, quark-antiquark
annihilation into a gluon, and pair-production of a quark-antiquark pair. The middle vertex

and bottom vertex represent the gluon 3-point and 4-point vertices, respectively.
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Figure 1.2: QCD vertices (left column) and associated sample color flow diagrams (right
column). The top vertex represents a qu interaction, the middle a gluon 3-point vertex,
and the bottom a gluon 4-point vertex.

The right column of figure 1.2 illustrates an example of color charges that the interacting
partons could have. In the gGG vertex, time-ordered left-to-right, a quark comes in with color
r, emits or absorbs a gluon carrying a color of (rg+ g7)/ V2, and then emerges from the
interaction as a g quark. For the gluon 3-point and 4-point vertices, the color flow diagrams
are examples involving all three colors, but other combinations of colors are possible. The
main point of these color flow diagrams is to keep track of the conservation of color: analogous
to the conservation of electrical charge in the electromagnetic interaction, the color charge is
a conserved quantity in the strong interaction. Therefore, each QCD vertex must have the

same amount of color charge going in as it does going out.

1.2.3.4 Color Antiscreening

Antiscreening, or charge screening in general, is a quantum mechanical effect which emerges
from asking the following question: how close can one really get to a point charge? In
QED, an example electrical point charge is an electron, since the electron has no observed
internal substructure (it is thus called a fundamental particle). Just like in DIS, one can
imagine an attempt to probe the structure of an electron by colliding other charged particles
with it. In the particle-wave duality picture, a particle with momentum p has a de Broglie
wavelength of A\ = 27 /p (with h = 27 since h = 1). In order to probe the very small,

short-distance structure of the electron, one must use a particle probe with a comparably
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short wavelength; in other words, exploring smaller substructure requires the use of higher
energy probe particles.

Imagine the probe as another charged particle, say, another electron. As the energy of the
probe electron increases, the mediating virtual photon will eventually have enough energy to
sustain the production of a virtual electron—+positron pair, where the positron has identical
properties to the electron, but with a charge of +e. The number of electron-positron pairs
increases as the energy of the probe increases, so the closer one gets to the target electron,
the more electron-positron pairs appear “in the way.” The virtual positrons tend to be closer
to the target electron than the virtual electrons are, which causes a net polarization (of the
vacuum) and effectively screens the apparent charge of the target electron. The closer one
gets to an electron, the higher its effective charge becomes, and this phenomenon is called
charge screening (also called running coupling in QED).

A similar effect appears in the strong interaction, but in a different manner. The strength
of the electromagnetic force decreases as a function of distance, in agreement with the de-
crease of the effective electrical charge as a function of distance from the charge. The strong
force behaves differently: its strength does not decrease as a function of distance.! If one
could pull two quarks apart, the energy of the mediating gluons between them increases as a
function of distance, which means quark+4antiquark pairs can appear, as well as gluon pairs,
triplets, etc. due to the gluon self-interactions. Consequently, antiscreening of the apparent
color charge of the quarks is observed.

The apparent color charge of a quark increases as a function of distance from that charge.
When one is extremely close to a quark, the strong interaction is very weak and the quark
becomes apparently free as one asymptotically approaches the infinitesimal distance scale
of the quark; this is called asymptotic freedom. On the other hand, at larger distances the
confinement barrier is reached, where the strong interaction is very strong and therefore keeps
the proton held together when probed with a low energy particle. Some models indicate that
color antiscreening fully accounts for confinement, effectively making any color source appear
color-neutral to an outsider from a sufficient distance away [29], however the true mechanism
of confinement is still an open question (see, for example, [30]). Exploring the QCD dynamics

of the proton requires probes with high enough energy to break the confinement barrier.

I There is a subtlety here: it is assumed that attempting to separate a quark and antiquark causes the
mediating gluons (and additional quark-antiquark pairs between) to be concentrated in a color flur tube
between them (see figure 1.3). This color flux tube model implies the strong potential is linear, hence the
strong force between them is constant no matter the distance [28]; however, as the distance between the
quark and antiquark increases, the color flux tube will contain more and more quark-antiquark pairs, leading
to hadronization, discussed below.
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1.2.3.5 Hadronization

Given that one needs high-energy probes to see the internal structure of the proton, an
interesting question to consider is what happens if one pulls a single quark out of a proton,
or any hadron in general. To achieve this, one would need to scatter a high energy particle off
of that quark, which can be done with a high-energy particle collider, such as the Relativistic
Heavy Ion Collider (RHIC).

It is simpler to explain what happens to that struck quark in the following thought
experiment: imagine simply pulling a quark away from another quark, as illustrated in figure
1.3, where the two quarks are represented by black dots. In step (1), the quarks are bound
to each other by a single gluon. As the distance between that quark and the other quarks
in the hadron increases in step (2), the strong interaction resists. There is more binding
energy between the quarks, allowing for the formation of quark+antiquark pairs as well as
more gluons. The resistance of quark separation can be thought of as a color flux tube,
which contains gluons, quarks, and antiquarks that are trying to hold the original quarks
together, and step (3) shows an even more extreme case with several quark+antiquark loops
and gluon self-interactions.

The color flux tube behaves analogously to a rubber band, in that the more the rubber
band is stretched, the harder the rubber band tries to relax. At some point, however, the
rubber band snaps, and a similar behavior occurs in the color flux tube. At some point, the
available energy between the quark and the rest of the hadron is so high that the formation
of additional hadrons from the colored partons in the color flux tube can occur: the color flux
tube “snaps” and all of the available color charges reassemble themselves into color-neutral
hadrons, such that color charge is completely conserved. This process, called hadronization,
is illustrated in step (4), where the dashed lines indicate momentum vectors. These color-
neutral hadrons that have similar momenta toward the left or toward the right form two
jets of hadrons. These outgoing hadrons (and/or their decay products) are subsequently
observable in particle detectors and provide insight into the behavior of partons within the

proton.

1.2.4 Proton Spin Composition

In the early days of understanding the constituent structure of the proton, the total proton
spin of S, = 1/2 was assumed to be entirely from the quark spins: the two up quarks have
spins S, aligned with the proton spin while the down quark has spin S, aligned opposite the
proton spin. In this model, if S, = 1/2, then S, = 1/2 and S; = —1/2, which add sensibly
as S, = 25, + Sq. In 1987, an experiment by the European Muon Collaboration (EMC)
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(3)

Figure 1.3: Ilustration of hadronization. See text for an explanation of the steps.

disproved this idea [3, 4] and characterized the quark spin contribution to be a rather small
fraction (~ 4 — 24%) of the overall proton spin. This result was rather unexpected at the
time and given the title “proton spin crisis,” or the less foreboding “proton spin puzzle.”
For a summary of the history of the proton spin puzzle, see [31].

In this EMC experiment, longitudinally polarized muons were scattered off of a polarized
proton target, and the difference in cross sections between the case where the muon and
proton spins are parallel and the case where they are antiparallel was measured. The ratio
of this difference in cross sections to the total cross section is called a spin asymmetry, and
the asymmetry measured in this experiment was directly sensitive to the difference between
quark spins aligned and anti-aligned with the parent proton spin. Since they measured a
spin asymmetry consistent with a quark spin contributing only a small fraction to the proton
spin, they speculated the remainder of the proton spin comes from the gluon spin as well as
the orbital angular momenta of the partons.

The model of a proton as just consisting of three quarks and the binding gluons is not
quite complete. If one boosts the proton such that it is moving very fast, then quark-+antiquark
pairs as well as additional gluons can appear inside the proton, such that color-neutrality is
maintained. These additional quarks+antiquarks are called sea quarks, while the three uud
quarks are called valence quarks. It turns out that the proton spin also involves contribu-
tions from the spins of the sea quarks and antiquarks, as well as the spins of the gluons.
Furthermore, the orbital angular momenta are also thought to contribute to the proton spin,
since the partons can be pictured as swirling around each other. Figure 1.4 shows an illus-
tration of these spin contributions (right-hand diagram) compared to the naive quark spin
picture (left). How these contributions add up to the proton spin will be expounded on

below, however the current understanding can be stated now: the total quark spin accounts
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Proton Spin Composition

Figure 1.4: Illustration of proton spin structure. The arrows indicate the spins and orbital
angular momenta. The left diagram is the naive model, which assumed the proton spin only
comes from the quark spins: two of the quarks have spins aligned with the proton and the
third has spin anti-aligned. The right diagram shows the more appropriate model, which
also includes sea quark spins, gluon helicities, and orbital angular momenta. Adapted from
[32].

for ~ 20 — 30% of the proton spin [5, 6, 7, 8, 9], while the gluon helicity contribution, al-
though still somewhat unconstrained, may account for another ~ 20 — 30% [13, 14]. The
orbital angular momentum contribution has not yet been measured, and ideas for how the
experimentalist would attempt to do so are still being discussed.

This dissertation focuses on a measurement that will help constrain the gluon spin con-
tribution to the proton spin. This measurement is of another type of spin asymmetry, the
longitudinal double-spin asymmetry for forward-going neutral pions, and like the spin asym-
metry measured in the EMC experiment, is a difference of cross sections for given initial
spin states divided by the total cross section. As will be detailed in the following sections,
every part of the theoretical calculation of this asymmetry is well-constrained, except for the
gluon polarization component. Thus by measuring this asymmetry, constraints on the gluon

spin contribution can be improved.
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1.3 Proton-Proton Scattering

The introduction of QCD discussed above sets the foundation for the experiment: the col-
lision of partons from within two colliding protons. At RHIC, the proton spins can be
controlled, that is, ensembles of protons circulating around the accelerator synchrotrons can
be polarized. This section begins with a discussion of the kinematics of proton-proton scat-
tering, building up to a full description of the asymmetry measurement presented in this
thesis. It then explains why this particular measurement is sensitive to the gluon spin con-
tribution. For details on proton-proton scattering, see standard textbooks such as [16], and
for details on the double-spin asymmetry regarding its sensitivity to gluon helicity, see for

example [33] and references therein.

1.3.1 Parton Kinematics

In order to introduce the variables that are used to describe parton dynamics and proton
structure, consider DIS, as illustrated in figure 1.5. This figure shows the process e p — e~ X,
where e~ denotes an electron, p denotes the proton, and X denotes the remnants of the
struck proton. The target proton is represented by three quark propagators and has a total
momentum P, while the incoming electron has momentum k. Before the interaction with the
electron, one of the quarks is selected from the proton, as represented by the blob labelled
f which denotes a parton distribution function and is discussed in the next section. This
quark carries a fraction £ of the proton momentum. The electron interacts with this quark
via the exchange of a virtual photon with momentum ¢. The scattered electron leaves with
momentum &’ and the scattered quark leaves with momentum p’. The subsequent blob,
labelled H, represents hadronization of the scattered quark (and any surrounding partons
which dress this quark) into hadrons, which are collectively labelled as X; note that the
remnant partons from the incoming proton also hadronize, and are part of X.

In inelastic scattering, it is conventional to define the variable Q* = —¢* = — (k' — k)? as
the negative square of the 4-momentum transfer (for the sake of keeping signs of momenta
consistent, we assume without loss of generality that the photon is emitted by the electron
and absorbed by the quark). Assuming the respective energies £ and E’ of the incoming

and outgoing electrons are much higher than the electron mass, then
2 20
Q° =~ 4FFE'sin 2 (1.3)

where 6 is the scattering angle of the outgoing electron. This equation justifies the sign

convention, since Q% > 0.
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Figure 1.5: Diagram of Deep Inelastic Scattering (DIS), the process e p — e~ X; see text
for details.

Another variable typically used in inelastic scattering is called Bjorken-z, typically de-

noted simply as x, and is named after QCD pioneer James Bjorken. It is defined as

QQ

= 1.4
Y= 5pg (1.4)

and it is dimensionless and Lorentz-invariant. To gain intuition of what this variable rep-
resents, let us boost the proton to a frame in which it is moving extremely fast (i.e., with
energy E, >> m,), where we may neglect any transverse motion of the partons; this is called
the infinite momentum frame (IMF). Consequently, the invariant mass m, of the quark is
negligible when compared to the momenta: we may assume m? = {*P? ~ 0 in the IMF.
The invariant mass of the struck quark is m] = (P + q)* ~ —Q? + 26Pg, which is also
approximately zero in this frame. Solving for £ reveals that £ = z, therefore Bjorken-x for
a given parton can be interpreted as the fraction of the proton momentum carried by that
parton, in the IMF.

One can, of course, choose not to neglect the transverse momenta of the partons within
the proton. This is the study of the transverse structure of the proton and is another focus of
polarized proton scattering at RHIC. For the analysis presented in this thesis, we can safely
ignore the transverse structure, since this analysis is based on the collision of longitudinally
polarized protons. In the following sections, the additional complexity that arises from
considering transverse parton motion will be mentioned, but not emphasized, as it is outside

the scope of this dissertation.
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Figure 1.6: Diagram of proton-proton scattering, emphasizing the process pp — 7°X; see
text for details.

1.3.2 Parton Distribution Functions

The kinematic variables Q? and z are also defined in pp scattering in the same way. Figure
1.6 illustrates the collision of two protons p; and p, and the production of a 7% from the
hadronization is emphasized. The protons have momenta P; and P,, and a gluon from p;
with x = x; scatters with a quark from py with x = x5. The momentum transfer, carried by
a quark with momentum ¢, is Q?> = —¢®>. A 7° is produced in the hadronization initialized
by the scattered quark; that quark momentum is p’, while the 7°, which is said to have
fragmented from the quark, carries a momentum fraction z of p'.

Figure 1.6 represents only one interaction that could occur in a pp collision: it exemplifies
a qg — qg QCD subprocess. In DIS the interaction is typically via photon exchange, and of
the partons, only the quarks can interact with the photon; the DIS experiment is therefore
sensitive to the quarks more than the gluons. Note that it is also possible for the virtual
photon to have enough energy to fluctuate into a quark4-antiquark pair and then interact
with the proton; a weak interaction can also occur, in particular the exchange of a Z boson.
In pp scattering, however, the subprocess is dominantly a QCD interaction, which probes
quarks and gluons, and there are many more types of QCD subprocesses which will be
discussed in a following section.

The selection of the gluon in p; is modelled by a probability density distribution, g(z1, Q?),
and the selection of the quark in p is given by ¢(z2, @?). These probability density distribu-
tions are called Parton Distribution Functions (PDFs) and are defined as a function of = for

each type of parton, for fixed values of Q?>. PDFs represent probability density distributions
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for partons with a given x for an interaction scale (momentum transfer) of @*; a PDF can be
interpreted as a number density, where the integral of a PDF over the range a <z < b at a
fixed Q? gives the number of partons in that x range at that . Note that it is common to
denote PDFs by the notation used for the parton, for example, the up quark PDF is written
u(z, Q?) and the down antiquark PDF is d(x, Q?).

With the definition of PDFs in hand, we may now define how the proton consists of 2 u

quarks and 1 d quark via the following sum rules:

/ o (@ Q) —a (0.0%)] — 2. (15)
/Oldac (2,08 —d(.0Y)] — 1. (1.6
/Oldx [s (2,Q%) —5(2,Q%)] = 0. (1.7)

Clearly if the proton consisted of only valence quarks, there would be no @ or d quarks
and equations 1.6 and 1.7 count how many valence quarks there are. Now suppose a
quark+antiquark pair is produced within the proton: the quark and antiquark will have
the same flavor, so that their contributions to the integrands in the above sum rules would
cancel. Thus these integrands, which are called valence distributions, are basically the PDF's
of the valence quarks. Regarding the strange quarks, they are entirely sea quarks, therefore
the number of s quarks exactly equals the number of 5 antiquarks.

The PDFs are drawn as blobs in figure 1.6 and illustrate the choice of a particular parton
with a momentum z P (in the IMF). Conserving momentum in this blob means that the sum
of all of the parton momenta must equal the proton momentum. Since f(x)dx represents the
probability of finding a parton f with momentum between xP and (z+dx) P, the momentum

conservation is expressed as
1
S / dz 2P f(z) = P, (1.8)
retaagr”?
which gives us the momentum sum rule:

Z de xf(z) = 1. (1.9)

fefaagr”°

Summing over the quarks and antiquarks gives ~ 0.5, which means the other half of the

proton momentum is carried by the gluons.
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Figure 1.7: Parton distribution functions from the CTEQ-TEA global analysis [34]. The left
panel shows zf(z) vs. = at Q = 2 GeV and the right panel shows that at @ = 100 GeV.
Note that the gluon distribution xg(z) is scaled down by a factor of 1/5.

The shape of the PDFs as a function of  and Q? can be determined from an analysis
of data provided from various scattering experiments, including DIS and pp scattering, by
combining them together in a global analysis. Figure 1.7 shows the PDFs determined from
the CTEQ-TEA global analysis [34]; the plots are of zf(x) vs. z for a fixed @ = 2 GeV (left)
and Q = 100 GeV (right). Note that, given the momentum sum rule, zf(z)dz represents
the fraction of P carried by partons f, each having momenta between xP and (z + dx)P.

The high-x region is dominated by the valence v and d quarks. The valence quark
distributions, u(x) —a(z) and d(z) —d(z), are large relative to the sea quark distributions at
low Q2. At high Q? however, the valence quark distributions are reduced relative to the sea
quark distributions, which are enhanced; this is because as Q? increases, the appearances of
sea quark4antiquark pairs also increase.

At low z, the sea quarks and antiquarks and especially the gluons dominate (note that
xg(x) is scaled by a factor of 1/5 in figure 1.7). It is not known how these distributions
behave as x — 0; surely at some point there ought be so many gluons in the proton that the
gluon self-interactions would cause g(z) to stop increasing so fast. This predicted levelling-
off of the gluon distribution at low x is called saturation, and has not been observed in
experiment. The fact that there are so many gluons at low x begs one to question how

much these low-x gluons contribute to the proton spin. This is exactly the question that the
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measurement presented in this dissertation is aiming to help answer.

1.3.3 Polarized Parton Distribution Functions

We may now introduce how the spin of the proton is modelled, beginning with a discussion
of the polarized parton distribution functions. For recent, introductory reviews of this topic
and on proton spin in general, see [35] and [36].

The PDFs we have been discussing so far are unpolarized, in the sense that they do not
take into account the spin of the parton or the proton. The polarized PDF for a parton f is
defined as

Af(z, Q%) = [fE(2, Q%) + 2 (2, Q)] = [fS (2. Q%) + f2(2.Q%)] , (1.10)

where the unpolarized PDFs, f(z,Q?), are decomposed into the four terms dependent on
proton spin, given by the double arrow (<, =), and on parton f spin, given by the single
arrow («—, —). In words, the polarized PDF is the PDF with the parton and proton spins
aligned, minus the PDF with the parton and proton spins anti-aligned. If the value of Af is
positive (negative), the parton f spin tends to be aligned (anti-aligned) with the proton spin.
In order to measure polarized PDFs, one needs to perform an experiment where polarized
protons are involved, such as the scattering of polarized electrons on a polarized hydrogen
target, in a process called polarized DIS, or in the scattering of two polarized protons, as is
done at RHIC.

The up and down quark and antiquark polarized PDFs are shown in figure 1.8, where
two global analyses are compared: DSSV08 [5] and NNPDFpoll.1 [13]. The up quarks are
aligned with the proton spin at high x, while the down quarks are anti-aligned. The low-x up
and down quarks contribute very little to the proton spin. Figure 1.9 shows the strange quark
and gluon polarized PDFs. For the strange quark, the global analyses disagree, especially on
the sign of As at high z. Finally, regarding the gluons, both analyses agree on positive Ag at
high x, but as = decreases, Ag becomes rather unconstrained, especially in the NNPDFpoll.1
analysis.

The polarized gluon distribution is better constrained by the DSSV08 analysis, however
there exists an updated version of this global analysis, called DSSV14 [14] and presented in
figure 1.10. In this figure, the solid red line is the new DSSV14 fit, and the black dashed line
is the DSSV0S fit (the blue dashed line is the DSSV* fit, another fit prior to DSSV14). Note
that the uncertainties shown in the DSSV14 fit differ from those shown in DSSV08 in figure
1.9; in DSSV14 the dashed lines surrounding the best fit are alternative fit results that are
within the 90% confidence level limit. At high z, these alternative fits agree that the gluon
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tends to have its spin aligned along with the proton. For x < 0.05, the fit becomes rather
unconstrained. The measurement presented in this thesis aims to push sensitivity to Ag(z)
down to values of  ~ 0.001, helping constrain the contribution of the numerous soft gluons
to the overall proton spin.

The integral over z of a parton’s polarized PDF (with Q? fixed) measures the contribution

of that parton’s spin to the proton spin. The quark contribution is

AR = ) /dfo(:v,Qz). (1.11)

fefaa”0

According to NNPDF, the quark contribution is AX(10 GeV?) = 0.23+0.15, determined by
integrating over x € [1073,1] [13].

The gluon spin contribution to the proton spin is

AG(Q*) = /01 dzAg(z, Q). (1.12)

Figure 1.11 shows the current understanding of AG. The horizontal axis is the integral of
Ag(x) over the range x € [0.05, 1], while the vertical axis is the integral over [0.001,0.05]. The
points represent AG values, where the red circle is for the DSSV14 fit. The corresponding
90% confidence level fit result is given by the blue hatched region. The DSSV0S fit is given
by the black triangle, with its 90% confidence level region given by the green solid region.
The DSSV14 is a clear improvement over DSSV0S, since for the first time at high x, the
gluon spin contribution is definitively positive: AG ~ 0.2. The low-z region, however, is still

unconstrained, and even the sign of AG is not yet known.

1.3.4 Spin Sum Rules

Before continuing with the description of the pp scattering model, it useful to pause here and
consider the meaning of these polarized PDFs in the context of the proton spin. Polarized
PDFs are used in the spin sum rules, which aim to explain how the contributions from the
quark and gluon orbital and spin angular momenta sum together to form the total spin 1/2
of the proton. AY and AG represent the quark and gluon spins’ contribution to the proton
spin, while their orbital angular momenta are denoted by [, and [,.

Summing all contributions together gives the proton spin S, = 1/2 as

Sy = AS/2+ AG + 1, + 1, (1.13)
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Figure 1.11: AG constraints for low-z vs. high-x ranges. See text for details. From the
DSSV14 global analysis [14].

which is the Jaffe-Manohar spin sum rule [11]. The quark contribution, measured over a
wide range of x, is constrained near AY ~ 0.24, at Q%> = 10 GeV? [5, 6, 7, 8, 9]. On the
other hand, AG is coming into focus, as was discussed in the previous section. The orbital
angular momenta terms have yet to be measured, and there is ongoing discussion on how to
do so; see, for example, [37].

The Jaffe-Manohar spin sum rule is valid only in the IMF, with a particular gauge [38].
The decomposition of the gluon angular momentum into spin and orbital components cannot
be done in a gauge invariant manner, despite claims of this decomposition being possible for
photons in laser optics experiments [39]. An alternative formulation is the Ji spin sum rule
40],

Sp=AY/2+ L, + J,, (1.14)

where J, = AG+1,+ J,or combines the gluon spin and orbital angular momentum, along with
a potential angular momentum term Jpo, and Ly = [, — Jpor. Although these two spin sum
rules basically say the same thing, Ji’s rule has the advantage that each of the three terms

is frame-independent and gauge invariant. For a review of proton spin and decompositions
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of angular momentum in general, see [1].

To understand the frame-independence issue regarding the gluons, consider the two pri-
mary types of gluons: Coulomb gluons and radiation gluons. A quark at rest is surrounded
by a color field, a gluon Coulomb field, analogous to the electric field around a stationary
charge. A moving quark will radiate gluons, but in the IMF of the proton, the QCD ana-
logues of electric and magnetic fields are contracted onto the plane transverse to the quark
momentum. The longitudinal components of the quark’s color field, the so-called longitu-
dinal gluons, are suppressed in the IMF, and only the radiative gluons are present; this
assumption is called the Weizsacker-Williams approximation.

In this approximation, AG is a physical observable representing the contribution of the
gluon helicity to the proton helicity; however, to make a frame-independent (and gauge
invariant) spin sum rule, one must also consider the Coulomb gluons, which contribute to
the orbital angular momentum. This idea motivated Ji to combine AG and [, into one
frame-independent term, J,, which in the IMF decomposes as AG + [, + Jpor. It may be
possible to probe J; and L, or the parton orbital angular momenta in general, via a process
called Deeply Virtual Compton Scattering (DVCS), which could be realized at the Electron
Ion Collider (EIC), a proposed polarized synchrotron collider [32].

1.3.5 Parton Scattering: the QCD Subprocess

In pp scattering, a strong interaction subprocess occurs when one parton within one proton
scatters off another parton within the other. There are many ways this can proceed, as illus-
trated in figure 1.12, which shows some of the tree-level Feynman diagrams for various QCD
2 — 2 processes. They are organized into groups of processes, with each row representing
one group. Note that when the quark lines are colored, flavor is to be taken into account: if
two quark lines have the same (different) colors, then they must have the same (different)
flavors. Interaction q¢ — ¢gq in row B can be uu — uu or dd — dd, for example, but not
ud — ud (which would be categorized in row C, since ¢ # ¢').

For studying the parton spin dependence of the scattering cross section, it is useful to
define the parton level spin asymmetry. For a particular parton scattering process, labelled 7,
the differential cross section is written do” /d K, where K denotes a set of kinematic variables.
This cross section for two partons with helcities h; and hs is the sum over the four possible
initial parton helicity states (hi,hs) € {(+,4),(+,—),(—,+),(—, —)}, where the + signs

denote positive and negative helicity. Letting d}, ;,,/dK denote the differential cross section
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Figure 1.12: Tree-level QCD 2 — 2 Diagrams. Note that most u-channel diagrams are not
drawn. If a quark line is colored, then the flavor of the quark matters, in the sense that
different (same) colors means different (same) flavors. The letters A through E correspond
to the processes indicated by the legend in figure 1.13.
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for the process r with the specified helicities, the polarized cross section is

dNGT 1 T(den, deT N\ [(déh_  doT,
K _Z[<dK+dK)_(dK+dK ‘ (1.15)

The parton spin asymmetry for r is the ratio of the polarized cross section to the total cross

section: ) . R X .
g AA0T (AL doT) — (dor +do) (L16)
LE™der — (déh, +dom )+ (dé'_ +dé" ) '

To interpret this quantity, consider the following three cases: (1) when a}; = 0 the process
r does not at all depend on the helicities of the incoming partons, (2) when a};, = 1 the
process only occurs if the incoming parton helicities are the same, and (3) when a}, = —1
the incoming parton helicities must be opposite. As a technical note, since the quarks
have mass one could always boost to a frame moving faster than the quark, causing the
helicity to change sign; technically we are referring to quark chiralities in ary, however in
the approximation of quark mass being much smaller than the energies involved, this detail
does not matter much.

Plots of ar;, as a function of the cosine of the center-of-mass frame scattering angle are
shown in figure 1.13. This is a lowest-order perturbative QCD calculation [41, 42]. The
QCD subprocesses in this figure are labelled by letters A through E and correspond to the
Feynman diagram groups drawn in figure 1.12. Regarding the scattering angle, cosf = —1
corresponds to a center-of-mass scattering angle of 7, that is, the momenta of the outgoing
partons are opposite the momenta of the incoming partons in this frame. At cosf = 0, the
outgoing partons scatter at 90° and at cos = 1 the partons “pass through” each other and
do not deflect.

All of these parton-level asymmetries are positive, except for the processes in group F,
where ar;, = —1. For all of the F processes, the incoming parton helicities must be opposite.
To understand why this is so, consider the quark-quark-gluon vertex. If a left-handed quark
emits or absorbs a gluon, the quark will remain left-handed; by changing the time-ordering
of this vertex such that we now have quark-antiquark annihilation into a gluon, the left-
handed outgoing quark becomes a right-handed incoming antiquark, and annihilates with
the left-handed quark. As a consequence, all of the g — X processes in E can only occur
if the helicities (chiralities) of the ¢ and ¢ are opposite; furthermore, since gg — ¢q is the
time-reversal of q¢ — gg, it also has the same ay; of —1 for all scattering angles.

The process gg — gg (group A) has maximal ar; at 6§ = 7/2, as does qq¢ — qq (B),
which has a lower asymmetry than gg — gg; both of these processes have their asymmetries

go to zero as 6 approaches 0 or 7. Group C has a maximum ary of 1 at § = 7 and decreases
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Figure 1.13: Parton-level double spin asymmetry ar;, vs. cosine of the center-of-mass scat-
tering angle, for various subprocesses. From [43].

toward 0 as 6 decreases toward 0. The analysis presented in this dissertation is primarily
sensitive to high-x quarks scattering off low-z gluons, as will be described below, thus group
C'is the most relevant for this analysis. Regarding process D, the s-channel diagram clearly
has ar;, = —1, following the discussion of group E processes; however, the ¢t and u-channels
also contribute, which have asymmetries similar to group C'. The result is therefore similar
to group C, but is relatively diminished by the s-channel contribution.

The analysis presented in this dissertation uses data from the Forward Meson Spectrom-
eter (FMS), which is positioned to detect forward? 7°s, which scattered from pp collisions at
relatively small angles. For the FMS, 7% with lab frame scattering angles between approx-
imately 1.5° and 9.5° will be observed; more precisely, the 7’s’ decay products, which are

most-likely pairs of photons, will deposit energy in the FMS.

2 Other regions of interest include the central (midrapidity) region, for scattering angles around 90°, and
the intermediate (rapidity) region, which lies between the central and forward regions. At smaller scattering
angles than the forward region is the region where diffractive effects may appear, such as the observation of
one or both of the protons after they have collided; this is the region of ultra-peripheral collisions.
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Figure 1.14: Fractional contributions of QCD subprocesses to forward 7 production, as a
function of 7% energy. Quark-gluon scattering is dominant, followed by gluon-gluon scatter-
ing, et al. From [44]; see also [45].

In the forward region, the longitudinal component of the 7° momentum will be a sig-
nificant fraction xr of the proton momentum; this fraction is called Feynman-z, and xp is
typically greater than 0.1 in the forward region. A 7° with such an zp likely originated from
the scattering of a mid-to-high-z quark in the proton that was heading toward the FMS. For
this quark to scatter at such forward angles, it likely struck a soft, low-z parton within the
other proton. Since at low x the gluons vastly dominate the parton density, the most likely
observed parton scattering subprocess for the 7% seen in the FMS is the asymmetric hard ¢
+ soft g collision.

Figure 1.14 shows the fractional contributions to the 7° production cross section for
center-of-mass energy /s = 200 GeV; this is for the same aforementioned forward region
(pseudorapidity n = 3.3, see section 2.2 for definition of n). The fractions are plotted as
a function of pion energy, which is within the FMS acceptance. Although the analysis
presented in this thesis is of pp scattering at a higher center-of-mass energy of /s = 510
GeV, the same general idea holds: the dominant subprocess we are sensitive to is quark-gluon
scattering.

Figure 1.15 shows results of a PYTHIA simulation of the values of x; and x5 reached
for % produced within the FMS kinematic acceptance. Parton 1 is the forward-going (i.e.,
toward the FMS) parton, thus xs is likely that of the soft gluon. Details of the simulation
may be found in [15].
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Figure 1.15: Monte Carlo (PYTHIA) simulations of z; and x5 from /s = 510 GeV proton-
proton collisions, constrained to 7°s produced within the acceptance applicable to this A’LrOL
analysis. The forward direction (i.e., toward the FMS) is given by parton 1.

1.3.6 Fragmentation Functions

The final piece to discuss in the pp scattering model, drawn back in figure 1.6, is the frag-
mentation function. It is generally denoted D} (z)dz, which represents the probability that a
scattered quark ¢ with momentum p’ will hadronize to a hadron A with momentum between
zp' and (z + dz)p’. The fragmentation functions are symmetric with respect to charge con-
jugation and isospin symmetry (which is the replacement u <> d); for example, the charged

pions’ fragmentation functions have the following equivalences:
Dy (2) = D (2) = Dj (2) = Dj (2)- (1.17)
The neutral pion fragmentation function is the same for up and down quarks and antiquarks,
0 0 0 0
D; (2) = Dj (2) = D] (2) = D} (2), (1.18)

but is different for strange quarks, with D™ (z) = D" (z).

The fragmentation function for 7%, as a function of z, are plotted in figure 1.16; various
models are shown and their descriptions can be found in [46] and references therein. In all
cases, the pion will typically carry ~ 10% of the fragmenting quark’s momentum, where the
rest of the quark momentum is likely distributed among other hadrons into which it frag-
mented. A spray of hadrons within a cone, which likely originated from a single fragmenting
parton, is called a jet and is itself a valid object worthy of study, but is beyond the scope of

this dissertation.
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Figure 1.16: 7% fragmentation functions as a function of fraction of fragmenting quark
momentum. Left panel is for up and down (anti)quarks and right panel is for strange
(anti)quarks. From [46].

1.3.7 Factorization in pp Scattering

We have now discussed all the components of pp scattering in figure 1.6. The two (polarized)
parton distribution functions represent the initial partons which will scatter, followed by the
hard QCD scattering subprocess; finally one of the outgoing partons will hadronize and a
resulting 7° will be observed. These four components of pp scattering are all assumed to
occur separately enough in spacetime such that none of them interferes with any of the others.
Furthermore, none of them depends on transverse parton dynamics, which is the collinear
approximation and assumes that all parton momenta are parallel to the proton momentum
(by not assuming the collinear approximation, one studies the transverse structure of the
proton, which an interesting topic on its own).

Since the PDFs, QCD subprocess, and fragmentation occur separately enough in space-
time, the overall amplitude for the pp — 7°X scattering process is factorized into the con-
volution of two PDFs, a QCD subprocess amplitude, and a fragmentation function (see, for
example, [47]). The hard scattering is separable from the PDFs, since the partons within a
proton are assumed to be spacelike-separated from each other, up until the point of collision
[48]. For an appropriate set K of kinematic variables, the factorized differential pp scattering

cross section for ¥ production is (following [43]):

do.ppﬁﬂoX

Z / dridxedz fi(z1) folza)X

f1:f2.fs (1.19)
dglif2= X

X T (l’lpl; l'2p27p7r0/z) D}r;(z)
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This, of course, is defined at a particular scale Q?. The analogous polarized cross section is

Ao X 5

1
e = dridrodz Afi(w1) Afa(xs)X

fiofafs”0 (1.20)
dAG 2= X

which convolves the polarized PDFs with the polarized QCD subprocess cross section, along
with the usual fragmentation function.

This dissertation presents a measurement of the longitudinal double-spin asymmetry for
7° production, denoted AT, which may now be defined in terms of the factorized cross

sections:

0

i} dAamH“OX/dK thf%fg AfL @ Afy, ® [da-flfzﬁst’d?IJfQ%ﬁX ® D}r;
LL — - - - X p )
doPr=mX JdK S gy 1 ® fo ® doSiBo1sX @ DY

(1.21)

where the ® symbol denotes convolution. As discussed, the shapes of all of the probability
density distributions and hard scattering cross sections (and asymmetries) are fairly well-
known, except for the polarized gluon PDF, especially at low x. Therefore, a measurement
of Ay is sensitive to Ag(x), and AG, given the current knowledge of everything else.

Of course, the ¥ is not the only observable we could use to measure A ; one can measure
it with any particle or jet, or combination thereof. One important property of the PDFs, hard
scattering, and fragmentation functions, is that they are thought to be universal, meaning
that they are valid for all scattering processes. This is not completely true, however, and
still remains to be fully tested; there is some evidence of universality violation in a class of
spin asymmetries called transverse single spin asymmetries [49], however for a global analysis

aimed at extracting Ag(x), universality is accepted as true.

1.4 Spin Asymmetries

Having illustrated the spin asymmetry Aj; from the perspective of pp scattering and fac-
torization, we will now discuss its measurement, along with some other asymmetries. Some

references for proton spin and asymmetries in general are [35, 36, 50, 51, 52].

1.4.1 How to Measure a Spin Asymmetry: A;.

In order to measure a spin asymmetry, in particular A7, , it is easier to measure the 7° yields

for each of the initial proton spin states, that is, the number of detected 7%. Define the
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luminosity L as the detected event rate dN/dt divided by the interaction cross section o

L) = W/ (1.22)

g

Luminosity is dependent on the parameters of the colliding beams, and measures the ob-
served event rate with respect to the probability of interaction (cross section); the higher
the luminosity, the more events one will see, for a particular cross section.

After a period of data-taking between times t; and t5, the total integrated luminosity is

Lt = / " L (1.23)
t1

and it is measured in units of inverse cross section, typically inverse picobarns (denoted
pb™!, where 1 b = 1072® m?). Integrated luminosity gives one an idea of how much data
was taken, given a particular cross section for the type of events observed: the number of
events is N = oL;,;. Detectors are not perfect however, and have their own efficiencies, due
to many causes, such as calibration and acceptance subtleties. Letting €2 denote the overall
detector efficiency, the number of events is actually N = Qo L.

The A7, measurement takes place in a collider, which sends bunches of ~ 10 protons
head-on at each other. Not all of the protons within each bunch will have the desired spin,

motivating one to define the polarization P for each beam:

Ny —n_

P=— "
Ny +n_

(1.24)
n. is the number of protons in the beam which have spins aligned to the desired polarization,
and n_ is the number which are anti-aligned (see, for example, chapter 12 of [53]). The value
of P ranges from —1 to +1, but we typically only use the positive values, quoting the number
as a percentage. For example, a beam polarization of 50% means that n, = 3n_.

Without accounting for polarization, one measures the raw asymmetry, written

N (044 +0--) — (04— +04)
(044 +0-2)+ (04— +0-4)

, (1.25)

where the differential cross sections have been integrated over appropriate kinematic ranges
corresponding to the acceptance of the detector. The measured asymmetry is then A;; =
err/PpPy, where Pg and Py are the two beams’ polarizations.

We can write the cross sections in terms of particle yields, keeping in mind that those,
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along with the integrated luminosities, are dependent on the proton helicities hy and ho:

Nh1h2

. 1.26
Qthh2 ( )

Ohihy =

The double-spin asymmetry becomes

b Ny N (L + L) = (N + Noy) [ (Ly- + Ly
- PePy (Nyy + N_) [ (Lyy + L)+ (Nyo + Noy) [ (Lym + Ly

Arp (1.27)
where the efficiency factors have cancelled. To simplify this expression, we define the relative

luminosity R3 as
Ly +L

Ry = .
ST L.+ L,

(1.28)

The suffix “3” on the relative luminosity is a STAR notation convention, where 8 other
standard relative luminosities can be defined for other spin asymmetries (see appendix B).
Finally, in terms of the measurable particle yields, relative luminosity, and beam polar-

izations, the asymmetry is written

1 (N + N )= Ry (No + N_y)
PpPy (Nyy + N__) + Ry (Ny— + N_y)

Arr (1.29)
A measurement of Ay therefore requires three coincident measurements: yields (e.g., of 7%s)
for each incoming proton spin combination, relative luminosities, and beam polarizations.
All three of these quantities are time-dependent, and we determine the mazimum likelihood

value of Ay over the entire data set, as will be described later in section 6.3.

1.4.2 Single-Spin Asymmetries

Up until this point we have been focusing on double-spin asymmetries. A single-spin asym-
metry, written Ay, is an asymmetry which concerns the spin of only one beam. Letting o},
denote the cross section given proton 1 had the initial spin h, the raw single spin asymmetry
is
g = X" 9= (1.30)
oy t+o_
and Ay = e /P, with P the polarization of the corresponding beam.
Unlike the double-spin asymmetry, A; changes sign under a parity transformation, since
helicity also changes sign. A nonzero measurement of Ay is therefore indicative of a preference
of one scenario over its parity-transformed scenario: this is parity violation. Since the strong

and electromagnetic interactions do not violate parity, a nonzero Ay, could only occur in an
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observable involving a weak interaction subprocess, which can violate parity. Since the W
and W~ bosons couple to the u and d quarks and antiquarks in different ways, observing the
leptonic decay channels W* — e* + v gives two Ay values (positive and negative leptons),
which are sensitive to sea quark polarized PDFs [54, 55].

In the Aﬂ measurement presented in this thesis, we expect Ay, = 0 because 7° production
is dominantly from a strong interaction subprocess; nonetheless, confirming Ay = 0 in this
observable is a useful diagnostic. There are several other asymmetries one could measure
as diagnostics; see appendix B for a comprehensive list. All of them are confirmed to be

consistent with zero in this analysis.

1.4.3 Transverse Spin Asymmetries

Polarizing the protons along the direction of their momenta is of course not the only pos-
sibility; one can collide protons with their spins aligned on an axis perpendicular to their
momenta, typically the vertical axis. The single and double-spin asymmetries are defined
the same, with the replacement of positive and negative helicities with spin up (1) and spin
down ().

The projection of a produced particle’s momentum vector onto the plane transverse to the
beam is called its transverse momentum vector pr, and on this transverse plane, pr makes
an angle with respect to the horizontal axis, called the azimuth and denoted ¢. Because
the transverse spin asymmetry is defined with respect to a particular transverse axis, the

asymmetry is dependent on the azimuth of the observable.

1.4.3.1 Transverse Single-Spin Asymmetries

The transverse single-spin asymmetry, denoted Ay and sometimes also called analyzing

power, is defined via

1 Ny(¢) — RN,(9)
P N,() + BN, (9)

where R is the appropriate relative luminosity (R; or Ry in STAR notation) and B accounts

= B + Ay cos ¢, (1.31)

for an overall offset caused by the relative luminosity (if R =1 then B = 0).
One can exploit a symmetry given by rotations around the beam axis: a spin-up proton
scattering to the left is the same as a spin-down proton scattering to the right. Following

[56], the relative luminosity factors cancel, and the asymmetry can be measured via the
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cross-ratio formula:

1y NN NPT 3 RN ) - VRONG T
P INENE 4 INENE P /NUON(6+7) + /N(9)Nt (6 + ) ’

where one only needs the particle yields and their azimuths.

Measurements of Ay have revealed unexpectedly large asymmetries since the late 1970s
[57] (see also [35]); such large asymmetries have also been seen in the FMS, where the
asymmetry is higher for more-isolated 7°s [58]. The exact physical origin of such large

asymmetries still remains a debated mystery, however.

1.4.3.2 Transverse Double-Spin Asymmetries

The transverse double-spin asymmetry can also be defined, however it is modulated by

cos(29):

1 [Nip(¢) + Ny (@)] — Ry [N1y (@) + N3 ()]
Py Py [Ny1(¢) + Ny (6)] + Rs [Ny (¢) + Nip(9)]

= Ay + Aprcos(29). (1.33)

Both Ay and Apr can be measured, but one cannot exploit rotational symmetry, which
necessitates a simultaneous measurement of the relative luminosity. These asymmetries are
not discussed nearly as much in the literature, however they could be sensitive to the analogue
of polarized PDF's in the transverse polarized case, the transversity PDFs [50, 59]. In this
AEOL analysis, Ay, and A7y will make an appearance again during the discussion of systematic

uncertainties due to a possible nonzero transverse component of beam polarizations.

1.5 Recent Measurements of AZOL

This measurement of A7, in the forward direction is not the first time it has been mea-
sured with these 70 kinematics; it is therefore useful to survey recent measurements of this
asymmetry in order to give our measurement appropriate context. A measurement of AZOL
corresponding to the same forward region as our new measurement is shown in figure 1.17
[60]. The asymmetry is plotted versus Feynman-z, and since y/s = 200 GeV, the 7% energy
is given by zz x 100 GeV. These data were taken from predecessors of the FMS: the Forward
Pion Detector (FPD) and the FPD++, which can be thought of as smaller versions of the
FMS. The data agree with the theoretical prediction, the curve labelled by GRSV Std, and

are consistent with zero. The analysis presented in this dissertation extends this analysis
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Figure 1.17: Ay for forward 7% versus Feynman-xz; the vertical error bars are statistical,
and the GRSV Std model Ay (xp) curve is also plotted. From [60].

to a higher /s of 510 GeV, with much greater 7° statistics using a detector with a larger
kinematic acceptance.

Proceeding toward larger scattering angles into the intermediate rapidity region, figure
1.18 shows Ay, for 7% produced between roughly 15° and 45° (pseudorapidity 0.8 < n < 2)
[61]. Tt is plotted versus m¥ transverse momentum and is also from /s = 200 GeV collisions.
The data (and theory models) are consistent with zero in this region as well. Note that while
the gqg subprocess still dominates for this kinematic region, followed by the gg subprocess
(see [44]), the more-central regions do not probe as low of z as the forward region does, since
hard, mid-to-high-z parton scattering becomes the dominant subprocess. Ay; measured
for production at larger scattering angles, or lower pseudorapidities, is therefore sensitive
to gluon polarization at higher z. For example, for dijets produced at 0.8 < n < 1.8, the
sensitivity of Az to Ag(x) extends down to x ~ 0.01 for /s = 200 GeV collisions [62]; for
the typical higher collision energy of 510 GeV at RHIC, the x range can be multiplied by
200/510, since in 2 — 2 dijet kinematics, x of either parton is inversely proportional to \/s.

In the central (midrapidity) region, where scattering angles are around 90°, non-zero A7LFOL
is observed, as shown in figure 1.19 [63]. Scattering angles for these 7°s are within 90° 4+ 20°
(In] < 0.35). Data from /s = 200 and 510 GeV are shown and agree with the theory models
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Figure 1.18: Ay, for intermediate rapidity 7’s versus transverse momentum; from [61].

(and approximately with each other); this measurement is sensitive to gluon polarization
down to & ~ 0.01. The asymmetry is plotted versus zr, corresponding to pr via x7/s/2.
The measurement of a positive Ay, for pions in the central region is therefore an indication
of a positive Ag(z) at high x. Large, positive Ar; values have also been observed in central
region inclusive jets and dijets at STAR, for example, at /s = 200 GeV, which is sensitive
to Ag(z) for x > 0.05 [64, 65]; analyses of v/s = 510 GeV data are ongoing [66].
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Chapter 2

Experimental Apparatus

2.1 The Relativistic Heavy Ion Collider

The measurement of Ay presented in this dissertation is from proton-proton collisions pro-
vided by the Relativistic Heavy Ion Collider (RHIC), located at Brookhaven National Labo-
ratory, on Long Island about 60 miles east of New York City. It is currently the world’s only
(and first) polarized synchrotron collider, where the polarized proton beams collide head-on;
all spin particle physics experiments prior to RHIC were fixed target experiments, where the
target and/or the incoming particle beam was/were polarized. RHIC is capable of reaching
center-of-mass energies up to ~ 510 GeV for pp scattering (i.e., up to 255 GeV per nucleon),
but as its name suggests, RHIC is also capable of colliding heavier nuclei, such as gold or
aluminum. Since the focus of this dissertation is on the proton spin, we will not discuss
heavy ion collisions, which are a probe of some of the collective properties of QCD, such as
the quark gluon plasma. For further information on the design of RHIC, see [67].

RHIC accelerates bunches of polarized protons, where each bunch contains about 10'°
protons. Typically there are 102 bunches circulating in each synchrotron ring, where in one
ring they circulate clockwise and in the other counterclockwise. At certain parts of RHIC,
the bunches are allowed to collide, and this collision of proton bunches is called a bunch
crossing. RHIC has a bunch crossing rate of approximately 9.38 MHz, and typically one
proton-proton collision occurs per bunch crossing.

Only the protons can be polarized at RHIC, and since a synchrotron accelerates charged
particles using a vertical magnetic field, the proton polarization prefers to be aligned or
anti-aligned vertically, i.e., the proton bunches are polarized transversely. Thomas preces-
sion, which is a relativistic effect related to boosts and rotations [68], causes the proton
spins to precess about the vertical axis; this effect, along with imperfections in the guiding
magnetic fields, present challenges in maintaining optimal polarization during proton beam
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acceleration and storage.

Let B, and éll denote the transverse and longitudinal components of the synchrotron
guiding magnetic field, S denote the proton spin, with charge e and mass m,, moving with
velocity ¥, and define the Lorentz factor v = (1 — 112)_1/ ?. Given the anomalous magnetic
moment GG of the proton as G =~ 1.793, the time-dependence of the proton spin vector is
given by the Thomas-BMT equation [69]:

—

dS e — — —

On the other hand, using the proton momentum P = ym,¥ and the Lorentz force law, we
have

d_’\ —
Vo © FxB,. (2.2)

dt Tmp
Comparing equation 2.1 to equation 2.2, assuming B) = 0, reveals that the spin of the proton
precesses Gy times per full revolution within the synchrotron. This quantity G~ is called
the spin tune, where if Gy = 1 for example, then the spin precesses twice as fast as the orbit
around the ring.

Any accelerator will have imperfections or defects in the guiding magnetic fields. Suppose
there is a defect that perturbs a passing proton’s spin so that it slightly rotates in a clockwise
direction about the beam axis. Each time a particular bunch of polarized protons passes
through this perturbation, a larger fraction of these protons becomes depolarized: such a
perturbation is called a depolarizing resonance. These resonances are more likely to occur
when the spin tune is an integer value, where the spin precession traces out the exact same
path during each revolution (assuming no guiding field defects). At RHIC these resonances
occur roughly every 0.5 GeV energy step during the acceleration, and pose a challenge to
maintaining proton beam polarization up to high energies of 255 GeV.

In order to mitigate the effect of depolarization resonances, RHIC employs devices called
Siberian snakes [70], which have the net effect of rotating the spin axis about the vertical
precession axis by 180° for each revolution; note that this net effect is for integer spin tunes,
however for non-integer spin tunes, the effect generalizes. Figure 2.1 shows a diagram of a
RHIC ring in grey, with two Siberian snakes S; and S5 at the bottom and top. A single
Siberian snake is composed of four helical dipole magnets, which effectively rotate the spin
180° about a specific axis.

In the figure, snake S causes the spin to rotate about an axis in the horizontal plane,
pointing 45° to the outside of the RHIC ring, as indicated by the green arrow. Snake S,

causes the spin to rotate about an axis pointing 45° to the inside of the ring. The figure
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Figure 2.1: Siberian snakes’ effect example. See text for details.

shows an example of how a particular proton’s spin precesses and flips through the ring and
snakes, as the proton travels in the counter-clockwise direction. We begin with a spin-up
proton, where its spin vector is represented by the blue vector at position 1; the precession
cones are drawn, and at position 1, the proton’s spin is pointing forward and toward the

inside of the ring. We now step through this example, which assumes a spin tune of 1:

e Position 1: initial state, proton is spin-up, with spin vector pointing forward and toward
the inside of the ring; this is the state just before entering snake Sy (the diagram is not

to scale, for clarity’s sake)

e Position 2: just after passing through S, the proton emerges as spin-down, and now

points backward and toward the outside of the ring

e Position 3: the proton has now gone through half of a revolution, which means it
precesses 180° about the vertical axis (in its frame); thus the proton is now pointing

forward and toward the inside

e Position 4: after passing through S;, the proton is now spin-up, with spin vector

pointing forward and toward the inside

e Position 5: after another half revolution, the proton is spin-up, with spin vector point-
ing backward and toward the outside, as indicated by the magenta dashed arrow.
Notice that this spin vector is equivalent to the original spin vector, rotated by 180°

about the vertical axis.
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Therefore the second time the proton passes through any position, it has the spin vector
pointing the opposite direction, but is still in the same spin-up or spin-down state. Con-
sequently, oscillations of the spin direction are induced by depolarization-causing perturba-
tions, rather than total depolarization. Siberian snakes are a key ingredient in being able to
maintain polarized proton beams in a synchrotron collider.

In order to achieve longitudinal polarization of the protons, which is needed to measure
Apr or Ay, the proton bunch polarizations must be rotated to the longitudinal axis just
prior to collision, and rotated back again thereafter. In all RHIC experimental halls, that is
where the observed collisions occur, there are spin rotators positioned such that the beams
will pass through them just before entering and after exiting the collision area. The spin
rotators are built similarly to the Siberian snakes, in that they are also composed of four
helical dipole magnets, but configured such that a spin up (down) proton will have its spin
rotated to be aligned (anti-aligned) with its momentum. Polarimetry detectors within each
experimental hall measure the transverse components of the polarizations of the colliding
proton beams; verifying these transverse components of the beam polarizations are close to
zero for supposed longitudinally polarized collisions is an important systematics check for
longitudinal spin asymmetry measurements.

Figure 2.2 shows a schematic of RHIC. Protons are initially accelerated by a linear
accelerator (LINAC) in the bottom left corner, and proceed into a booster, where they are
further accelerated and subsequently injected into the Alternating Gradient Synchrotron
(AGS). The AGS was the former primary synchrotron collider at BNL, and now serves as
another booster for RHIC. After accelerating in the AGS, the protons enter the AGS-to-
RHIC transfer line and are injected into RHIC such that they circulate in a clockwise (blue
curves) or a counterclockwise (yellow curves) direction; scientists at RHIC refer to these two

4

beams as the “blue beam” and the “yellow beam.”

It is useful to identify components of the RHIC ring by using the numbers on an analog
clock as a sort of coordinate system. Letting 12 o’clock be at the top of the RHIC diagram,
Siberian snakes are located at 3 o’clock and 9 o’clock; the snakes at 3 o’clock (9 o’clock)
rotate the spin about an axis that points 45° to the outside (inside) of the RHIC rings,
and together they cancel out depolarizing resonances up to a maximum operating energy
of 255 GeV. Throughout the rings there are 6 possible places where the beams can collide,
located at the even-numbered clock-face hours. The STAR experiment is the experimental
hall situated at the 6 o’clock position and is where this ATL“OL measurement was conducted.
The PHENIX experiment is located at 8 o’clock and provides complementary data to STAR.
Four spin rotators, two for each beam, are shown in the diagram, just outside of STAR and

of PHENIX. Other experiments have been conducted at the other possible intersections,
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Figure 2.2: RHIC schematic. See text for details. From [71].

such as BRAHMS at 2 o’clock. Finally, polarimeters situated at 12 o’clock are used to track
the proton beam polarizations, independently of any experimental hall’s local polarimetry

measurement.

2.2 The STAR Experiment

The name STAR refers to not only the entire experimental hall at the 6 o’clock collision
region, but also to what the acronym stands for, the Solenoidal Tracker at RHIC, which is
drawn in figure 2.3, along with the FMS. In the figure, proton p; is contained in the blue
beam and proton ps is in the yellow beam; these protons (bunches) collide at the center of
STAR and produce a 7° which quickly decays into two photons that are observed in the
FMS.

Several other particles are produced in typical pp collisions, which are observable in the
many other detector systems in the STAR experimental hall. Figure 2.4 shows a top view of
the STAR experimental hall, along with some of the detectors and a 1 meter distance scale.
For an overview of the main detectors in STAR, along with those in PHENIX| see [72]. This
section will briefly describe the detectors labelled in the figure.
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Figure 2.3: Diagram of STAR along with the FMS. Longitudinally polarized proton p,
collides with polarized proton p, in the center of STAR and produces a 7°, which quickly
decays to a photon pair (red dotted lines) which is observed in the FMS.
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< >
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Figure 2.4: Top view of STAR experimental hall; see text for description of the labelled
detectors.
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In order to describe the detectors’ acceptances, we typically use two parameters: azimuth
and pseudorapidity. Defining cylindrical coordinates where the cylinder axis is along the
proton beam, the polar angle about the beam axis is the azimuthal angle, ¢. Most detectors
in STAR cover the full azimuthal range of 0 < ¢ < 27. The other parameter, pseudorapidity
7 is related to the scattering angle 0, defined as:

o). e

A scattering angle of 90° corresponds to n = 0, § = 45° corresponds to n = 0.88, and n — oo

as # — 0°. Negative n corresponds to backward scattering angles.

The detectors shown in figure 2.4, along with their n ranges, are:

e TPC — Time Projection Chamber: this is the main tracking detector. It is a cylindrical
chamber filled with a gaseous mix of 90% argon with 10% methane. At the center where
the particles collide is a negatively charged plane, called the cathode. At the outer
endcaps of the chamber are two positively charged anode planes. A charged particle
which is produced from a collision will ionize the gas, leaving behind a path of free
electrons which then drift toward one of the anode planes; the anodes are segmented
such that the electron positions and timings will be measured as they hit the anode.
Each original charged particle track can thus be reconstructed, forming a 3-dimensional
picture of all charged tracks which came out of the collision. Furthermore, the TPC
is surrounded by the STAR magnet, which is a solenoid that generates a relatively
uniform magnetic field along the proton beam direction. The STAR magnet causes
particle tracks to curve, and the radius of curvature is directly related to the particle’s

momentum.

e BEMC - Barrel Electromagnetic Calorimeter: this detector surrounds the cylindrical
TPC and is sensitive to photons, electrons, positrons, and other particles which decay
electromagnetically, such as pions. After a particle passes through the TPC, it passes
through the BEMC; for charged particles observed in both detectors, the TPC provides
tracking and momentum measurement while the BEMC provides complementary en-
ergy measurement (calorimetry). The BEMC covers the central (midrapidity, || < 1)

region.

e EEMC — Endcap Electromagnetic Calorimeter: another calorimeter is positioned on
one of the STAR magnet pole tips, where the pole tips are “caps” positioned on the
ends of the STAR solenoidal barrel that help keep the solenoidal magnetic fringe fields

46



from straying too far outside the STAR magnet. The EEMC is also sensitive to elec-
tromagnetic decays, covers the intermediate (1 < n < 2) region, and is on the same
side of STAR as the FMS.

BBC — Beam Beam Counter: there are two BBCs placed on either side of STAR, and
they are composed of hexagonal scintillator tiles. They are connected to the scaler
system, which is used for tracking collision rates and luminosities; the scaler system
is used for measuring the relative luminosity and will be described later. The BBCs

occupy the forward and backward regions (2.2 < |n| < 5) [73].

VPD — Vertex Position Detector: this is another scintillator based detector, used for
measuring the vertex position; the interaction point of the collision can vary up to 100
cm, and the VPD helps track this for every event. Like the BBC, there are two VPDs on
either side of STAR, and both are also connected to the scaler system. The VPD detects
particles at even more forward scattering angles than the FMS (4.24 < |n| < 5.1).
Using time differences between the two VPDs, the vertex position can be determined;

for /s = 510 GeV pp collisions, the resolution on the vertex position is ~ 2.4 cm [74].

ZDC — Zero Degree Calorimeter: as its name suggests, this detector is situated in the
very forward region, primarily sensitive to neutrons scattering at angles of § < 4 mrad
[75]. This detector is not only also connected to the scaler system, but also serves as a
local polarimeter for STAR, providing a measurement of the local beam polarizations

which complement those from the RHIC polarimeters at 12 o’clock.

FMS — Forward Meson Spectrometer: Finally we mention the FMS, which is the
primary detector used in the A’,ﬁ measurement. It covers the forward (2.5 < n < 4)

region and the detector is described in detail in the following section.

2.3 The Forward Meson Spectrometer

The FMS is an electromagnetic calorimeter, composed of 1,264 lead-glass cells, each with

a photomultiplier tube (PMT) optically coupled to the back end. It is situated at a pseu-

dorapidity range of approximately 2.5 < n < 4 and the cells are stacked in a square array

spanning an octagonal region of size 2 m, approximately 7.2 m from the nominal collision

point. Figure 2.5 shows the transverse geometry of the FMS, along with rings of constant

1. The black lines indicate divisions between sections of the FMS which are considered for

the trigger, and the grey lines divide the individual square-shaped cells. Grey-colored cells,

which are along the outer edges of the FMS, are not considered in the trigger system logic,
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Figure 2.5: FMS geometry schematic; see text for legend.

but their data are still read-out. The green square indicates the boundary between the outer
large cells, measuring 5.8 cm x 5.8 cm x 60 cm each [76], and the inner small cells, mea-
suring 3.8 cm X 3.8 em x 45 cm each [77]. Finally, the cyan square represents a hole in the

center through which the RHIC beam passes.

2.3.1 Electromagnetic Showers in the FMS

The primary observable in the FMS is the decay of the neutral pion into two photons:
7% — 7. Cross sections of the neutral pion within the FPD, a smaller, predecessor version
of the FMS, can be found in [78]. The 7° is a pseudoscalar meson with quark composition
7% = (Juw) — |dd)) /v/2. Its fundamental properties [21] are:

e Primary decay modes: vy (98.82%), ete™ (1.17%), and others with branching ratios
less than 6 x 1074
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Mass: 135 MeV

Spin: S =0

Charge: @ =0

Parity: P = —1

Lifetime: 7= 8.5 x 10717 g

Since the primary observables in the FMS are photon pairs from 7° decays, consider
a single photon incident on a Pb-glass cell; at STAR the photon energies are typically
15-30 GeV. As the incident photon passes near a heavy Pb nucleus (or another heavy
nucleus in the glass), it will pair-produce an electron-positron pair. The nucleus will absorb
the necessary momentum in order to properly conserve momentum, since while in the rest
frame of the electron-positron pair the net momentum is zero, there is no rest frame of the
photon where its momentum is zero; instead the photon scatters off the electromagnetic
field of a nucleus, which provides the necessary momentum absorption. This pair production
probability increases as a function of approximately Z2, where Z is the atomic number of
the nucleus (82 for Pb).

Electrons and positrons which have been pair-produced then pass by more heavy nuclei in
the glass and re-radiate photons via the bremsstrahlung process: the electrons and positrons
interact with the electromagnetic field surrounding the heavy nuclei and are deflected, radi-
ating the energy lost as photons. These bremsstrahlung photons can, in turn, pair-produce
as well, thereby repeating the cycle. This cascade of electrons, positrons, and photons is
called an electromagnetic shower, and is shown schematically for a single FMS cell in figure
2.6. See [79] for more details on electromagnetic showers, which is also a good reference for
detectors in general.

When the electron or positron energy is low enough, the dominant energy loss mechanism
switches from bremsstrahlung to ionization, which for a Pb recoil nucleus, happens around
10 MeV. In order for photons to pair produce, the energy must be at least twice the electron
or positron mass, M.+ ~ 0.51 MeV; however, photon energy loss becomes dominated by
Compton scattering by about 10 MeV. Therefore, when the electromagnetic shower particles
have energies near the critical 10 MeV, the shower terminates. In the longitudinal profile
of the shower, this region of shower termination has the largest number of particles, and is
referred to as shower maz.

Both the large and small FMS cells are 18-19 radiation lengths long, where a radiation
length is defined as roughly 7/9 of the mean free path of a photon before pair-production,
or the distance an electron or positron travels before losing a fraction 1/e of its energy due

49



Pb-Glass PMT

Figure 2.6: Diagram of an electromagnetic shower in a single FMS cell; note that in reality
there are significantly many more photons, electrons, and positrons, and that the shower
itself spreads into adjacent cells as well.

to bremsstrahlung. The longitudinal length of the Pb-glass cells is sufficient for most of the
electromagnetic shower to develop; some of the energy does, however, leak into neighboring
cells.

While the electromagnetic shower is developing, the electrons and positrons are moving
faster than the speed of light can in the Pb-glass, which has index of refraction n ~ 1.65.
They therefore radiate Cherenkov radiation in the blue-to-ultraviolet region of the electro-
magnetic spectrum. This Cherenkov radiation (and other photons of similar energy) is within
the spectral sensitivity range of the PMTs.

When a photon of sufficient energy is incident on the front face photo-cathode of a PMT,
the photo-electric effect will cause electrons to be emitted from its surface. These photo-
electrons are attracted to an electrode in the PMT (under vacuum), and upon interacting
with it, cause secondary emission of more electrons, which in turn are attracted to another
electrode. These electrodes, called dynodes, are arranged such that each subsequent dynode
is at a higher electric potential. After ~ 12 dynodes, the original photo-electric signal is
amplified enough to be measured as an electric current; the time integral of the overall
current signal generated from the part of the electromagnetic shower which is sampled by

the PMT can then be directly related to the incident photon energy.

2.3.2 Pion Event Reconstruction Summary

Neutral pions are identified as two nearby electromagnetic showers, initiated by two decay

photons from the 7°. The invariant mass of the two photons is a function of the energies of

the photons and their decay opening angle; these parameters are measurable by analyzing
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the electromagnetic shower relative positions and energy depositions, therefore the original
7% mass can be reconstructed from energy deposition measurements in clusters of FMS cells.

The invariant mass M, of a two photon decay seen in the FMS is determined by

E,,D,
My, ~ =20 1 - 22 (2.4)

where, given F; and Ej as the photon energies, E.,, = I + Es is the total energy, D, is the
transverse distance between the detected photon pair, R, is the distance between the FMS
and the interaction point, and Z,, = |Ey — Es| /E., is the energy imbalance. For further
details on 7° decay kinematics and the derivation of equation 2.4, see section 3.2 or appendix
A.

The identification of photon events in the FMS begins with the observation of a distribu-
tion of energy, where typically ~ 80% of the photon energy is deposited into a single cell and
the remaining ~ 20% is deposited within the adjacent cells. Note that the cells are optically
isolated from one another by 25 um of aluminized Mylar. The distribution of energy in the
cells which are considered (along with factoring in a low-energy noise cutoff) is compared to
a shower shape, which models the fraction of energy deposited as a function of transverse
distance from the location where the incident photon initiated the shower. If the energy
distribution is similar to the expectation from the shower shape model, the photon is then
considered valid; its point of entry in the FMS is accurate to within 1/10th of a cell width.
See section 3.4.2 for more details.

Looking more carefully at equation 2.4, one sees that the energy dependence of the
opening angle « of the photons is approximately

M

el 2.5
o (2:5)

o~

:

Thus higher energy s have smaller opening angles. Within the large cells, two-photon
clusters begin to merge for energies above approximately 50 GeV, whereas within small
cells, they merge above approximately 80 GeV. This cluster merging turns out to be one of
the major obstacles of ¥ reconstruction, as it is non-trivial to distinguish between a single
photon cluster and a two-photon cluster. More on this will be discussed in sections 3.4.3
and 3.4.5.

2.3.3 FMS Trigger

The RHIC bunch crossing rate is approximately 9.38 MHz, that is, there is a possible collision
at STAR every 107 ns. Since detector data-taking times are typically on the time scale of
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milliseconds, a fast trigger system is implemented to quickly cull collision observations which
appear to be suitable for physics analyses. Multiple trigger levels are in place, such that each
level must “accept” the event before passing it onto the next. Each successive level is capable
of analyzing more information about the event than the previous level, but it is also more
time-consuming to analyze more information. Every level will either reject the event or pass
it on to the next level for further consideration. If the highest trigger level accepts the event,
then the data from the detectors involved in the trigger are saved to disk. This section
will explain the STAR trigger system, published in [80] with updates summarized in [81],
followed by an explanation of the FMS triggers used in this analysis.

2.3.3.1 General Trigger Logic and Data Flow

Raw data from all detectors used in the trigger are first sent into trigger level 0, which is able
to make a decision whether or not to keep the event within 1.5 us. For all detector subsystems
used as triggering detectors, level 0 contains a tree of Data Storage and Manipulation (DSM)
boards, which are capable of performing fast bitwise operations. The first layer of the DSM
tree takes multiple inputs from the associated detector(s), performs mathematical operations
to compress the amount of information needed, and then latches a set of output bits; this
layer of the DSM tree is capable of passing information in time for the next bunch crossing.
Other operations which occur include pedestal subtraction and gain normalization. Each
DSM layer has less output bits than input bits, such that the final layer of the DSM tree
simply outputs a single bit associated with each trigger. All trigger bits are then passed into
the Trigger Control Unit (TCU).

The TCU is given information as to whether or not the detector is live, i.e., not recovering
from dead-time due to slower digitization (analog-to-digital conversion, as described in the
next section), detector recovery, etc. It also is capable of prescaling a trigger, this is, given
a prescale factor p, it will accept only a fraction 1/p of the events; this prescale scales with
the desired trigger rate, instantaneous luminosity, and with the overall RHIC clock rate. If
a trigger is accepted, it is issued by the TCU to the rest of the trigger system and the next
level trigger processing occurs.

The next trigger level trigger is actually level 2; a trigger level 1 was designed and tested,
but eventually was abandoned. Level 2 takes ~10 ms to complete and includes jet, dijet,
J/1, upsilon, ultra-peripheral collision triggers, etc. By the time trigger level 2 makes a
decision, the digitized data arrive at the Data Acquisition (DAQ) system; if level 2 decides
to reject the event, the data are simply deleted at the DAQ level.

If level 2 accepts the event, trigger level 3 processing begins, which takes ~100 ms,

the scale of time needed to “build” each event in the DAQ system. Level 3 includes track

52



reconstruction in the central calorimeter, vertex finding, etc. Like level 2, if level 3 decides
to reject the event, it is simply deleted from the DAQ system. By the time level 3 decides to
accept the event, the event will be built and ready to be packaged with all other events in
the data-taking period in order to be sent to the High Performance Storage System (HPSS)
for long-term storage.

The RHIC data-taking period for the presented A7, measurement is RHIC Runs 12 and
13, which occurred in 2012 and 2013, respectively. During these Runs, STAR was able to
acquire data at a rate of about 1 kHz, with 300400 Hz of the bandwidth dedicated to the
FMS. Improvements to the trigger and DAQ systems are always underway between RHIC
Runs; DAQ rates in the 2017 run were as high as 6 kHz overall.

2.3.3.2 FMS DSM Tree

The FMS triggering information is first handled by four QT crates, where the acronym QT
stands for charge (Q) from time (T) integration of current. The current which is integrated
comes from the PMTSs; the resultant charge is digitized to a 12-bit integer ranging from 0 to
4,095, denoted as number of ADC (Analog-to-Digital Conversion) counts. The time interval
over which the integrals of the PMT signals are taken is phase-locked to the RHIC bunch
crossing rate and long enough to contain the typical PMT pulse widths. Each of the four
QT crates is associated with a single quadrant of the FMS; the trigger logic explained below
is replicated for each crate.

Each QT crate contains 11 QT boards, 10 of which are used in the FMS trigger; all
FMS channels are mapped into the QT boards. Each QT board contains 4 cards, called
QTS cards, with 8 inputs each. PMT signals are directly connected to the QT8 card inputs
through a patch panel, which provides a mapping “dictionary” between the FMS channels
and the trigger system.

Figure 2.7 shows a diagram of the FMS mapping into the QT system. The bold black
lines separate channels which are mapped into QT boards, which are labelled with a letter
from A to J. Within each QT board, the stripes separated by dashed lines denote QTS cards
and are labeled with a number from 0 to 3 for each QT board. Note that the outermost rows
and columns as well as 3 cells in each corner are not in the trigger and are colored grey in
the diagram; their PMT signals are still sent to the 11th QT board for digitization, however.

The output of the QT boards is sent into the DSM tree, as shown in figure 2.8; each QT
board outputs to the DSM tree 32 bits, composed of 5 bits representing a truncated ADC
sum from each QT8 card, plus 12 bits encoding the ADC and channel number of the cell
with the highest ADC, called the High Tower (HT).

These 32-bits from all 40 QT boards are then sent into layer 0 of the DSM tree, which,
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Figure 2.7: Assignment of FMS channels to QT boards (labelled by letters A-J, divided by
solid black lines) and to QT8 cards within each board (labelled by numbers 0-3, divided
by dotted black lines). Red lines divide quadrants (i.e., QT crates) and green lines divide
regions within each quadrant associated to DSM layer 0. Grey cells along the outer edges
are not in the trigger.

for each quadrant, consists of 3 DSM boards: one associated with QT boards A-D, another
with E-H, and the third with I-J. Layer 0 DSM boards sum together QT8 ADC sums in

various combinations of 4 adjacent QT8 stripes:
e sum over all QT8 cards of each QT board individually:
— sumA, sumB, sumC, sumD, sumE, sumF, sumG, sumH, suml, sumJ
e sums split between adjacent QT boards (4 adjacent QT8 cards):

— sumBC = B2 + B3 + C0 + C1
— sumCD = C2 + C3 + DO + D1
— sumEF = E2 + E3 + FO + F1
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Figure 2.8: FMS DSM tree. Analog data enter the QT boards at the top of the diagram,
where 11 boards are housed per QT crate (QT1-QT4). 10 QT boards in each quadrant output
logic data to DSM layer 0 (FM001-FMO012), which output to layer 1 (FM101-FM103), then
finally to layer 2 (FP201), whose output is a 16-bit word sent to the TCU. All connectors
between boards transmit a 32-bit logic signal.

— sumGH = G2 + G3 + HO + H1
—sumlJ =12 + 13 + JO + J1

This board sum technique is essentially a very fast but very crude, low-level cluster finding
algorithm. Layer 0 also compares the HT ADC to two thresholds and ORs the results
together. In total, the 12 layer 0 DSM boards each output 32 bits encoding the QT8 sums
and the HT threshold comparisons.

The 12 x 32-bit trigger data stream from layer 0 is then sent to 3 layer 1 DSM boards:
one for the south large cells, one for the north large cells, and one for all the small cells. The

HT threshold bits are ORed together from all four quadrants and compared to thresholds,
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forming the HT trigger. Sums of QT8 sums within FMS sectors are also taken and compared
to cluster thresholds, forming the large and small board sum triggers and the basis of the
jet patch trigger. The sector sums are then latched for output as well as their comparisons
to cluster thresholds. In total, 32 bits are output from the small cells and 64 bits from the
large cells (32 bits for both north and south).

The layer 2 DSM board is responsible for combining all the data into a final 16-bit
output trigger word. In this layer, quadrant sums are combined in various ways to form 6
overlapping Jet Patch (JP) sums, shown in figure 2.9. Other high-level triggers can also be
defined here, such as the dijet trigger (not used in this analysis). The final 16-bit trigger
word is composed of comparisons of ADC sums to various thresholds: 2 HT bits, 2 small cell
board sum bits, 3 large cell board sum bits, 3 jet patch bits, and the dijet bit. Since layer 2
is the last DSM in the tree, these bits are forwarded to the TCU. These comparisons make
up 11 bits, where the other 5 bits of the 16-bit word were not used in this analysis or were
reserved for coincidences with other detectors.

The FMS data are not manipulated by any higher level triggers. If the event is ultimately
determined to be valid, the digitized data are written out to the trigger files, as well as the
trigger word which was sent to the TCU and the prescaled (and dead-time corrected) trigger
word from trigger level 2, called the L2 sum. These trigger words are then used in data
analysis to filter events of interest.

An additional trigger that comes from the FMS but is not particularly used in overall
trigger decisions is the FMS LED trigger. In front of every channel of the FMS is the output
of a fiber optic cable, which is connected to an LED flasher system, configured to flash at 1
Hz. Looking at FMS LED events helps track time-dependence of the gain of the PMTs as
well as radiation damage in the Pb-glass. The LED trigger is configured on an independent
DSM board, which is used for other miscellaneous triggers in STAR.

2.3.3.3 FMS Trigger Set

In total, 9 FMS triggers were defined in RHIC Runs 12 and 13:
e Jet Patch (JP) Triggers

- JP1
— JP2 (take-all)

e Large Board Sum (LgBS) Triggers
~ LgBSO
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Figure 2.9: The 6 regions (colored) of the FMS which are summed together as jet patch
sums; the top and bottom sectors in the right-hand figure are not included as jet patches.

— LgBS1 (take-all)

Small Board Sum (SmBS) Triggers

— SmBS0
— SmBS1 (take-all)

High Tower (HT) Trigger (take-all)

Dijet (DJ) Trigger (take-all)

LED Trigger (take-all)

The take-all triggers are those which are not prescaled, i.e., p = 1. The fact that there are
two JP, SmBS, and LgBS triggers is because two thresholds are used: the take-all triggers
have higher ADC sum thresholds than their associated prescaled triggers.

In the data files, for every event the ADC counts and timing for every channel are
available, as well as the trigger word which was sent into the TCU, denoted 1astDSM, and
the trigger word after prescaling, denoted L2sum, since it is determined at trigger level 2.
In order to filter events with specific triggers, naturally the L2sum variable is preferable;
this variable is composed of two 32-bit integers forming a 64-bit trigger mask. There was
a software bug present in 2012 and 2013, however, in which the lower 32 bits of L2sum was
simply copied into the upper 32 bits; only the lower 32 bits are correct. Fortunately, the only
triggers which were defined in the upper 32-bit half were take-all triggers, and hence one

can instead use the 1astDSM trigger words for those triggers, since their prescale factors are
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unity. Table 2.1 shows a summary of the triggers and which trigger bits define them. L2sum
is given as a hexadecimal trigger mask, representing a single bit out of the 64 bits (divided
into upper and lower 32 bits), whereas lastDSM is given as which DSM output channel the
trigger bit occupies. The right-most column states which trigger bit mask is ultimately used

in order to filter events in analysis.

. L2sum L2sum lastDSM Which trigger
Trigger high bitmask | low bitmask | bit Take-all? bit mask tgog use
HT 0x0 0x1000000 0 no L2sum
SmBSO0 | 0x0 0x400000 2 no L2sum
SmBS1 | 0x2000 0x0 3 yes lastDSM
LgBS0 | 0x0 0x800000 5 no L2sum
LgBS1 | 0x1000 0x0 6 yes lastDSM
JP1 0x0 0x2000000 9 no L2sum
JP2 0x800 0x0 10 yes lastDSM
Dijet 0x8000 0x0 11 yes lastDSM

Table 2.1: Trigger bit locations in the last DSM (FP201) 16-bit output word and the 32+32-
bit trigger bitmask from trigger level 2. The state of whether or not each trigger is take-all
is also shown, along with which trigger bit mask is ultimatley used in analysis.

For this AEOL analysis, we have chosen the following combination of trigger bits: the
overall OR of SmBS0, SmBS1, LgBS0, LgBS1, JP1, and JP2. This was chosen to avoid the
Dijet and HT triggers, which are not as well-understood as the others, while at the same
time maximizing the statistics analyzed. In terms of bit masks, this trigger combination
corresponds to an L2sum bit mask of 0x2c00000 on the lower 32 bits for the prescaled
triggers, ORed with the OR of bits 3, 6, and 10 on the 1astDSM output word for the take-all
triggers. In this analysis, this combination of triggers is denoted as “FMSOR.”

Figure 2.10 shows the overlap of the triggers, including FMSOR, for candidate 7° events

O event selection later). The overlap is given as a matrix, where each entry is the

(more on 7
number of events satisfying both the trigger on the horizontal axis and that on the vertical
axis. The diagonal then represents the overall distribution of triggers. The overlap between
SmBS and LgBS is quite small, as expected, while the overlap between the BS and JP
triggers is significant. The HT trigger (written in the figure as HT0) has very low statistics,

as does the dijet trigger, and neither of these are used in the A’,{(Z analysis.
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T FMS trigger overlap matrix

Dijet 107
P2
10°
IP1
10°
LgBS1
10*
LgBSO
3
SmBS1 10
SmBSO 102
HTO
10
FMSOR
FMSOR HTO SmBSO SmBS1 LgBSO LgBS1 JP1 P2 Dijet 1
T FMS trigger overlap matrix
Dijet
P2
IP1
LgBS1
LgBS0
SmBS1
SmBSO
HTO
FMSOR

FMSOR HTO SmBS0 SmBS1 LgBSO LgBS1 JP1 JpP2 Dijet

Figure 2.10: Trigger overlap matrix for Run 12 (top) and Run 13 (bottom); color scale is
logarithmic and corresponds to the number of times the trigger on one axis is coincident
with the trigger on the other axis.
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2.3.4 Radiation Damage

Having discussed the FMS trigger in detail, we now turn to a pathology in the FMS detector
that is responsible for causing a reduction of the overall trigger rate as a function of time:
radiation damage in Pb-glass. The electromagnetic radiation which passes through the Pb-
glass is ionizing radiation, which can strip electrons from atoms within the glass, ionizing
them. While the stripped electrons may be able to ionize additional atoms, these electrons
will likely find their way back to the valence shell of some other ion within the lattice; the
net result is that some ions become more positively charged, while others become more
negatively charged, which does not affect calorimetry overall. This effect is not all that
happens, however.

Some electrons (as well as holes) will end up elsewhere such as in an anionic vacancy, or

“misplaced” electrons

in/associated with some other type of crystallographic defect. These
are called color centers or F-centers (where F stands for farbe, German for color), and for
Pb-glass, they absorb photons mostly in the visible part of the spectrum. The accumulation
of F-centers causes the glass to begin darkening, which reduces detector efficiency [82]. The
overall optical absorption spectrum is rather broad, because it represents a superposition
of all of the F-centers’ absorption bands, which could be at multiple different wavelengths.
This formation of F-centers is typical of irradiated glass in general; for a discussion of this
for lead glass fibers, see [83].

In all RHIC Runs up to Run 13, the FMS accumulated radiation damage, causing an
overall monotonic decrease in the trigger rates within each Run. After Run 13, the Pb-glass
cells were unstacked, and since the F-center accumulation is proportional to the electromag-
netic shower density, a relative darkening or “browning” of the glass, proportional to the
longitudinal shower profile, was observed. More damage was seen in cells closer to the beam
line than in those farther away, because of the higher amount of irradiation there.

The purpose of unstacking the FMS was to photobleach the cells: exposing the glass
to radiation within the ultraviolet (UV) region was found to reverse the radiation damage.
UV radiation likely excites trapped electrons, which subsequently could find their way back
to the valence shell of some ions. Consequently, the number of F-centers decreases and
the glass becomes clear again. The exact mechanism of bleaching depends on the material
being bleached and the types of F-centers which form; see for example [84, 85, 86]. Thermal
bleaching could have also been done, which involves slowly heating the glass to a high
temperature then slowly cooling it, which basically anneals it; however, given the fragility
of Pb-glass in general, we chose photobleaching instead. Both thermal bleaching and UV
photobleaching have proven effective at curing radiation damage in Pb-glass [87]. During
the summer of 2013, all cells of the FMS were exposed to 48 hours of direct sunlight. After
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photobleaching, the cells were much more transparent and cured. The FMS was subsequently
re-stacked in 2014, and refurbished for use in Run 15 in 2015 and beyond.

During Run 15, the higher luminosity was found to cause the Pb-glass to accumulate
radiation damage more rapidly than before. Since unstacking the FMS, exposing all cells to
sunlight, and re-stacking the glass is a very labor-intensive task, we sought an alternative
solution: photobleaching by a UV-emitting light that we could install in front of the FMS.
Several sample radiation-damaged cells were exposed to various sources of UV radiation,
ranging from tanning bed lights, bug lights, UV lasers, to UV-LEDs. It turned out that the
most effective and practical bleaching method came from UV-LEDs, which were shown to
fully cure the glass within approximately 48 hours.

The optimal wavelength was determined to be 375 nm, given our choices of UV-LEDs,
and an array of roughly 1,000 such UV-LEDs was built. Because of design limitations, the
array had to be built in small modules and then be connected together after installation;
furthermore, the UV-LEDs needed to be cooled. All LEDs were mounted on aluminum plates
that were embedded with copper pipes carrying cooling water. The entire array was installed
facing the front face of the Pb-glass, with higher LED densities closer to the higher-radiation
region near the beam pipe. This UV-LED array was built in 2016, installed prior to Run
17, and ultimately turned out to be a very successful method to keep the radiation damage
minimal during the entire Run. More details on the UV-LED system, as well as on the 2013
sunlight photobleaching, can be found in appendix L.

2.4 The Scaler Systems

A scaler system is basically a counting system: if, for example, the ZDC sees enough hits
above a given threshold, the associated scaler counter will increment by one count, called
a scale count. The BBC, VPD, and ZDC are all connected to the scaler boards, which are
able to increment their counters at the same rate as the bunch crossing rate of 9.38 MHz.
The data from these scaler boards are essential in determining the relative luminosity, in
coincidence with particle yields, in order to measure a spin asymmetry.

For each bunch crossing, there is a 24-bit! readout of the scaler detectors, where each bit
corresponds to a particular counter or number. For some of the bits, if a particular signal,
such as the sum of ADC counts from the cells in the VPD, is above a certain threshold,
the corresponding scaler bit will be set to 1, otherwise it will be set to 0. Other scaler bits
correspond to coincidence signals, which occur when two signals are above their thresholds

and occur within a certain time window. For example, if both of the VPDs on either side of

'In Run 12 it was 24-bit, but for Run 13 and beyond it has been 32 bits
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STAR each see a large enough signal with a small time difference between the two, the VPD
coincidence bit will be set to 1; in fact, the time difference between the two signals can be
used to measure the vertex position of the collision.

The lower 17 bits of the 24-bit readout correspond to such above-threshold and coinci-
dence signals. The upper 7 bits correspond to the bunch crossing number, a number between
0 and 119 that corresponds to one of the 120 bunches in one beam crossing with another
in the other beam. Since the requested spin of each bunch is known, the incoming spins
of the protons are known for every bunch crossing (but with a polarization, of course), and
recording the bunch crossing number provides a way of associating the scale counts with
particular proton collision spin combinations.

The 24-bit readout is the input to the scaler boards, which are composed of 224 address-
able 5 byte memory cells [88]. Every possible combination of the 24 readout bits corresponds
to a particular memory cell on a scaler board: the 24-bit readout is simply an input address
on the scaler board. When this address is called, the 5 byte number stored in the cor-
responding memory cell is incremented by one. This memory is sometimes referred to as
histogramming memory, and in theory, the scaler boards are capable of histogramming the
data at the bunch crossing rate for up to 24 hours.

Most often these scaler boards are used during the data-taking period for monitoring
collision rates and background. The RHIC beams are held in the synchrotron rings for
8 hour periods called fills, after which the beams are dumped and new ones are injected.
During each fill, collisions are occurring which remove protons from the beam, causing the
actual collision rate to decrease with respect to the constant bunch crossing rate. Such time-
dependent rates can be monitored by, for example, coincidence rates of the ZDC, since a
coincidence bit will likely only be true if there was a collision.

In the AEOL analysis, the scaler board data are used for measuring the relative luminosity
and will be discussed in chapter 4. Since the bunch crossing number is recorded along each
event’s scaler detector readouts, the number of scale counts for each of the spin combinations
can be recorded. Since these counts are directly proportional to the luminosities for each of
the spin combinations, ratios of these counts directly measure the relative luminosities. The
BBC, ZDC, and VPD can each be used to independently measure the relative luminosity,

and comparisons between them provide an estimate of its uncertainty.

2.5 Polarimetry

To measure any spin asymmetry, the polarization P of the colliding particle(s) must be

known, since a spin asymmetry A is related to the raw, measured asymmetry ¢ via A = ¢/P.
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The 12 o’clock interaction region houses the RHIC polarimeters: the hydrogen gas jet (H-jet)
and the proton-carbon (pC) polarimeters. See [89] for a summary of polarimetry at RHIC,
and the references therein.

The H-jet polarimeter consists of a vertical jet of longitudinally polarized hydrogen gas.
Since the proton beams are transversely polarized while they pass through the polarimetry
region, the spins of the beam protons are aligned or anti-aligned with the spins of the target
jet protons. The H-jet polarization, piarget, is monitored by its own polarimeter. Elastic
collisions between the beam protons and H-jet protons are observed: arrays of silicon strip
detectors observe the scattered H-jet protons. The measurement of the transverse single spin
asymmetry for this process, AR~ is known well enough such that measurements of the
raw asymmetries Syapget aNd Epeam (between left-scattered and right-scattered protons) can

be used to extract the beam polarization Ppeam via

App—>pp _ Ebeam N Etarget 26
N T B Pt (2.6)
beam target

The H-jet polarimeter is a bit slow, taking a couple of days to obtain a statistical uncertainty
of ~ 5%, but it is useful for providing an absolute polarization measurement which is used
to normalize the pC polarimeter measurement.

The pC polarimeter is a fast polarimeter, taking only 30 seconds to provide a statisti-
cally significant measurement. It is therefore used multiple times a fill to track the time-
dependence of the overall depolarization. The polarimeter target is a thin carbon ribbon,
and recoil carbon nuclei are detected by six silicon strip detectors, arranged hexagonally
around the target. These detectors provide a measurement of the raw asymmetry e, and
combined with the known AR~ “ gives Pooam = —¢ JAR™P ©. For the A’LrOL measurement, the
pC polarimeter normalized measurements are used. These measurements, along with their
errors, are provided for every fill by the RHIC polarimetry group.

In addition to the RHIC polarimeters, the STAR and PHENIX experimental halls each
have their own local polarimetry. For STAR, polarimetry is typically measured by the ZDC
(see section 5.2); having a polarimeter near the collision region is useful for confirmation of,
for example, proper configuration of the spin rotators for longitudinally polarized collisions.
During RHIC runs with transversely polarized collisions, local polarimetry measurements

can be compared to those from the H-jet and pC polarimeters.
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Chapter 3
Event Selection

This chapter outlines the data selection procedure, which aims for a clean and well-understood
sample of 7% while maximizing the overall statistics. The data are from the RHIC Runs 12
and 13, taken in 2012 and 2013, from longitudinally polarized pp collisions with a center-of-
mass energy of /s = 510 GeV.

3.1 Data Set and Quality Assurance

We begin with a general description of the data set. The data are typically acquired in 30
minute intervals, called runs (or sometimes DAQ runs). These runs allow for the ability
to look at the overall data set for an entire RHIC Run (a RHIC Run will henceforth be
capitalized, to differentiate it from a 30-minute run) as a time series and cull out any runs
which had anomalies, such as abnormally high trigger rates or dead time.

A basic run Quality Assurance (QA) test was first used to filter runs which are reasonably

consistent with each other. For each trigger 7" in each run, the following quantity is computed:

_ _Nrepr
NMB‘/)MB’

fr (3.1)

where N is the number of triggers, p is the prescale factor of that trigger, and the subscript
M B is for a minimum bias trigger, given by the BBC, VPD, or ZDC; in this analysis, the
BBC is used as a minimum bias trigger. The numerator of fr is proportional to the T' trigger
rate, which decreases steadily within each fill simply due to the decrease in collision rates
during the fill. Dividing the trigger rate by a minimum-bias trigger’s rate takes this fill-
structure out of fr, and under ideal conditions, fr should be relatively constant throughout
a RHIC Run. Issues such as radiation damage, however, can cause fr to decrease over time;

moreover, changes in trigger thresholds can introduce steps up or down in fr. Ultimately
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fr is useful as a means to filter out “outlier” runs, which are those that could have had
abnormally high or low trigger rates, or other related pathologies.

The ratio fr is plotted in figures 3.1 and 3.2 as a function of a run index, in chronological
order. Any time there was a major change in the system, such as a threshold change, beam
condition change, etc., a vertical line was drawn; these vertical lines separate the trigger
data into epochs, defined as contiguous time periods over which the trigger conditions were
the same. Any epoch with red-colored points was marked as bad overall, such as all runs
before run index ~ 240 in Run 13, and all of the runs in a bad epoch are omitted from the
analysis.

Within each epoch, fr tends to decrease exponentially as a function of time. Since fr
is proportional to trigger rate, the FMS trigger rate as a whole is decaying. The culprit of
this decay is radiation damage within the Pb-glass cells. As the Pb-glass cells darken, the
amount of light which reaches the PMTs decreases, which in turn causes a reduction in the
trigger rates. Within each epoch, an exponential fit was performed, as shown by the red
curves in figures 3.1 and 3.2. In some epochs, the exponential fit was not as good as it could
have been, usually because there were too many outliers; however, all fits are good enough
overall for a reasonable outlier filter.

Figures 3.3 and 3.4 shows the value of f; normalized to the value given by the fit function
for each run. The run QA was then performed by visually selecting boundaries around the
normalized fr values in order to remove any outliers; runs within these boundaries pass the
QA test and are defined as “good.” These boundaries are drawn in the figures as horizontal
lines, and although this is more of a qualitative QA method, it is sufficient to cull a more
reasonable and consistent data set from the whole, serving as a decent starting point for

analysis.
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3.2 7Y Kinematics and FMS Acceptance

In order to specify the constraints on the 7% sample used in this analysis, let us begin with a
discussion of 7 kinematics. Consider a 7° with energy E which decays into two photons of
energies I/, and E_, and with a decay opening angle of a. These energy variables (E,, E_)
of the 2-photon system can be transformed into two variables (E,Z), associated with the

7% the total energy E = E, + E_ and the energy imbalance

E.—E_

7 =
E

(3.2)

The subscripts “+” and “—” were chosen so that £, = F(1+ Z)/2, with F, > E_. The

invariant mass, M, depends on the photon energies and opening angle as
M=2. E+E,-sm%:E-\/1—Z2-sm%. (3.3)

For further details on 7% decay kinematics, see appendix A.

In addition to the 7° E, Z, and «, two angles are also needed to fully describe the 7°
momentum p: the azimuthal angle ¢ and the scattering angle . Referring to figure 3.5,
let the positive z axis be along the proton beam, pointing toward the FMS, and the y axis
point upward, with the origin centered at the nominal proton-proton interaction point. The
azimuth ¢ is defined as the angle between the positive x axis and transverse momentum vector
pr, which is the projection of the momentum vector p on the xy plane. The scattering angle
0, defined as the angle between p and the positive 2z axis, is more commonly given in terms
of the pseudorapidity 7, defined in equation 2.3. In practical data analysis, the variables
used to classify 7° kinematics are {E, Z, M, pr,n, ¢}.

The FMS is situated about 7.2 m from the nominal interaction point, and occupies
about a 2 m x 2 m transverse size; it spans a pseudorapidity range of 2.5 < n < 4.2 over
full azimuth. Note that the outer boundary of the FMS is octagonal and that the inner
boundary is square; thus the n boundary rings listed here are only approximate bounds of
the FMS geometry boundaries. Given typical values of /s of 200 and 510 GeV as well as
trigger thresholds and reconstruction limitations, typical energy and momentum ranges of
7% are 10 < E < 100 GeV and 2 < pr < 10 GeV. An upper limit on Z is also typically
employed, in order to omit high-energy photons which could have been mis-identified as a
7% a typical constraint is Z < 0.8. All of these kinematic limits provide an estimate of the

overall FMS acceptance for 7¥s.
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Figure 3.5: Scattering coordinates notation.

3.3 Inner and Outer Pseudorapidity Regions

Before discussing specific kinematic cuts that define the 7% sample, it is worth mentioning
that the A’L’OL analysis is separated into two 7 regions which approximately separate the large
cells and the small cells. Figure 3.6 shows the distribution of 2-photon invariant mass plotted
versus their pseudorapidity (of their parent 7%, n-meson, etc.). The outer black vertical lines
represent overall ) cuts of 2.65 and 3.9. The events selected here have all of the nominal 7°
kinematic cuts (omitting the mass cut), which will be discussed later in this chapter.
Although the FMS is composed of large cells and small cells taken together, one must keep
in mind that the large cells and small cells behave differently, due to their PMT differences,
glass cell size and composition differences, and different relative amounts of radiation damage.
They are therefore calibrated a bit differently, and the two corresponding pseudorapidity
regions can be discerned from figure 3.6. Looking at Run 12, n = 3.15 was chosen as an
appropriate boundary, and was also applied to Run 13, since the two Runs need to have
the same 7 constraints in order to merge them into one AEOL analysis. Furthermore, for Run
13, the small cells were too heavily damaged from radiation and were consequently omitted

from the analysis. Therefore, the event selection is broken down in the following manner:

e Outer region: 2.65 < n < 3.15 — mostly large cells — analyzed Runs 12 and 13

e Inner region: 3.15 <7 < 3.9 — mostly small cells — analyzed Run 12 only

Figure 3.7 shows a schematic of the FMS with the above pseudorapidity cuts.
Note that the most dominant part of the mass distribution shown in figure 3.6 is higher
than the expected 7° peak at 0.135 GeV; this is because there is an energy-dependent effect
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Figure 3.6: 2-photon invariant mass vs. pseudorapidity for Run 12 (top) and Run 13 (bot-
tom), given reasonable 7° kinematic cuts, without a mass cut. Outer black vertical lines
represent overall ) cuts, and the inner magenta vertical line represents the inner/outer re-
gions’ boundary.
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Figure 3.7: FMS schematic and pseudorapidity boundaries.

in the 7° reconstruction, which causes the reconstructed mass to rise as a function of energy.

This effect will be discussed in detail later.

3.4 Event Reconstruction

We now turn to how 7°

events are reconstructed from photon hits. This section describes
the photon-finding and clustering algorithms, and how 7% candidates are selected from the

results.

3.4.1 Trigger Matching

Events which satisfy an FMS trigger are those which have clusters of cells with nonzero ADC
counts; for example, a single photon that hits the center of one FMS cell will deposit ~ 80%
of its energy in that cell and the remaining ~ 20% in the surrounding cells. Essentially, the

trigger will fire if one of these clusters will cause a subsequent ADC sum (in a higher DSM
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layer) to be above threshold, so it does not matter which cluster or set of clusters actually
fired the trigger: the clusters are basically “ORed” together.

A given trigger, either Board Sum (BS) or Jet Patch (JP), is defined in a geometric
segmentation of the FMS, as in figures 2.7 (BS) and 2.9 (JP). The segmentation divides the
FMS into “patches” where, for example, in figure 2.7 each letter corresponds to a single BS
patch; note that patches in general can overlap with each other, so that any cluster is very
likely fully contained in some patch.

Each patch contains some number of cells, and for a given event, each cell will report
an ADC count. The sums of the cells’ ADC counts in a given patch is called the “patch
sum”. Depending on the trigger algorithm, these patches could then be further combined
into “patches of patches”, which then have their sums (of sums). This combination of sums
forms the tree structure of the DSM tree (see figure 2.8). The last layer of the DSM tree
contains the final set of ADC sums which are then compared to thresholds (defined during
data-taking), each of which returns a boolean 1 for sum above threshold or a 0 otherwise.
The key point here is that the OR of all of these booleans is taken: so as long as at least
one of the patches had something trigger-worthy in it, the overall trigger is satisfied. This
OR result then defines the output trigger Level 0 bit (one for each trigger), defined as 1 if
the trigger fired and 0 if not.

These output trigger bits, which are the output of trigger Level 0, go through the TCU
and prescaling etc., resulting with the Level 2 output trigger bits. It is these level 2 output
bits which we use to filter for FMS-triggered events.

Event reconstruction is done on all trigger events, and one can of course impose a re-
striction on FMS triggers only. Kinematic cutoffs (minimum E and pr) are applied, which
approximately match what was defined in the original trigger thresholds, but since the trig-
ger threshold applies in ADC' space and then ADC counts for each cells are converted to
E (and pr), the actual trigger threshold gets smeared in E (or pr) space. The E or pr
threshold is smeared by the fact that there is a variation on the cell gains throughout the
whole detector, where a gain is defined as the proportionality between ADC counts and E.
In particular, the FMS is calibrated such that the target gains are a function of 7. In the
reconstruction algorithm, we apply a soft energy cutoff as well as a pr > 1.5 GeV cut so
that only clusters which very likely satisfied the trigger DSM algorithm are considered. In
the A’LrOL analysis, tighter constraints on pr and E are made, ensuring that all of the photon

pairs considered for 7’s candidates are above trigger thresholds and satisfied the trigger.
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3.4.2 Shower Shapes

In order to reconstruct the transverse (z,y) position of a photon which hit the FMS, we
fit the corresponding cluster of cell energies to a model of the transverse distribution of the
electromagnetic shower: the shower shape. Consider a point source of light at a distance b
from a plane. Let (z,y) represent the coordinates of a point on the plane, where (0,0) is
the point that is a distance b from the source. If the point source emits photons uniformly,
the probability density distribution f(z,y;b) of photons hitting the plane follows a Cauchy

distribution: 1 b
b)) = — . 4
f(l'7 Y; ) 2 (b2 :1:2 y2)3/2 (3 )

If the plane were to be segmented into squares, each with side length d, one can determine the

fraction of light seen in each square. Consider a square which is centered about a point (., y.)
with boundaries that range from (z. — d/2, y. — d/2) at one corner to (z.+ d/2, y.+ d/2)
at the opposite. To evaluate the total fraction of photons hitting this square, one uses the

cumulative distribution function of f(x,y;b):
z oy
)= [ [ dsags @.a:0) -
1

T Yy ry
arctan (—) + arctan (—) + arctan
b b b\/0% + 22 + 12

The total fraction of light (which would hit the plane) that is detected in this square is then

_1.r (3.5)

4 27

d d d d
Clzerve) (xc+2’yc+2’b) <x 2’yc+2’b)

d d d d
_F<xc+§7yc_§ab>+F($c_§7yc_§ab>7 (36>

where the four terms correspond to the four corners of the square.
The shower shape model which is employed in FMS photon reconstruction is a linear

combination of Cauchy distributions,

N

f2<x7y) = Zaif<x7y;bi>7 (37>

i=1

and the aforementioned detector squares correspond to individual FMS cells. To maintain
normalization, ), a; = 1 is enforced. A fit was performed by [90] with N = 3 terms; this

used the equivalent of FMS small cells with d = 4 cm and the resulting fit parameters are
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given in table 3.1. The third term is a bit strange, given ag < 0, but the fit algorithm did
not impose positivity of the a; parameters; nonetheless the fit was found to be sufficient for

position reconstruction.

i e [ b
1 0.8 | 0.8 cm
21 03 |]02cm
3| —0.1]7.6cm

Table 3.1: Fit parameters of the shower shape model described in [90]

The geometrical interpretation of b; as a longitudinal source distance was also never
enforced in the fit. It is suspected that this variable could help correct for asymmetric
shower shapes which occur with high incident angle photons; however, such attempts only
resolve photons which, given the FMS geometry, are up to a conservative maximum of 0.5
cm away from the symmetric shower shape photon reconstructed positions, which use the
parameterization in table 3.1. Furthermore, the reconstructed position is much more sensitive
to the z plane upon which the photon trajectory is projected: for an angle of incidence of
5° (large cells region), projecting to the front of the FMS at 720 ¢cm would give a position
that is almost 4 cm different from a position determined by projecting to the maximum of
the longitudinal shower, which is typically at 735 cm.

The effect of incident angle corrections is very small in the context of other uncertainties
which contribute to the Aﬂ measurement and they are therefore not implemented in this
analysis. Instead, the parameterization in table 3.1 is used. For further details on shower
shapes as well as incident angle correction attempts, see appendix E.

Figure 3.8 shows a sample shower shape for small cells, in 1-dimension. At z. = 0, the
photon was deposited in the exact center of the cell: this cell will get roughly 80% of the
energy deposition, according to the vertical axis of the figure. As z. approaches the size of
the small cells, £3.8 cm, the amount of energy deposited in the cell which the photon hit
decreases. At x. = 5 cm, for example, the photon actually hit the next adjacent cell, and

only a few percent of the photon’s energy was deposited in the cell centered at (z., y.).

3.4.3 Distinguishing Between 1-photon and 2-photon Clusters

At high energies, it becomes difficult to distinguish 2-photon clusters from 1-photon clusters,
because the opening angle of 2 photons from a 1 — 2 body decay decreases as a function
of energy. In order to distinguish 1-photon clusters from 2-photon clusters, a principal

components analysis is performed. The goal is to establish a sense of the “width” of the
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Figure 3.8: Sample shower shape in 1 dimension. The vertical axis is G(z.), the fraction of
light a cell C' would see, had the photon stuck the FMS at a transverse distance of z. from
the center of cell C'; the horizontal axis is x. in units of centimeters. The histogrammed
data are from simulation and the dashed line is the shower shape G(z.) for FMS small cells.
From [91].

cluster, along the direction of maximum width, i.e., along the direction of the first principal
component. For more details, see [92, 56, 91]; the implementation of this method is sketched
here. Also note that the cluster merging complicates the shower shape model a bit, but is
not too difficult to resolve; see the aforementioned references.

Let ¢ represent the ith cell in a given cluster, with energy FE;, centered at transverse
position (z;,y;). Consider the following weighted centroid of the distribution, given a € {z,y}

as indexing x-position or y-position:

(z%) = % (3.8)

The sums run over all cells in the cluster, and the weights w; are defined as w; = log (E; + E,),
where Ey = 0.5 GeV. According to [92], this choice of Ey is arbitrary and is designed to

mitigate 1-2 ADC count fluctuations, assuming a typical resolution of 0.2 GeV/count. With

this centroid in hand, we calculate the covariance matrix elements o%:

ab a,.b a b
0" = (zizy) — (2“)(z"). (3.9)
The eigenvalues of the covariance matrix correspond to eigenvectors which point along the
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two principal axes of the cluster. The higher eigenvalue corresponds to the eigenvector which
points along the direction of maximum width (log- E-weighted variance) of the cluster; this

eigenvalue measures this width. The two eigenvalues are

1
Ao =3 [“m o £y (07 — o) 44 (g7’ (3.10)

. . . 2 _ 2 . .
and we define the principal variances o, = Ay and o;;, = A_. The eigenvectors are

o — oW £ \/(U” — ow)® + 4 (o)

207y

Vi =

1 (3.11)

2

max*

and the variance along V. is equivalent to o

The variable o,,.x, plotted as a function of cluster energy, reveals two bands: one which
is mostly 1-photon clusters and another which is mostly 2-photon clusters. See [92] for more
details on how cuts on o,,,, are used to separate the 1-photon clusters from the 2-photon

clusters. Basically, if o,y is large enough, it is likely a 2-photon cluster.

3.4.4 Clustering Algorithm

Given a list of photons for an event, the next step is to start to look for photon pairs in
order to begin identifying 7° candidates; the most trivial way to do this for an event with
n photons is to consider all of the (;) possible pairs, however in practice it is more efficient
to bias pair-finding toward proximal photons. The pair-finding is performed by a type of
clustering algorithm, which organizes all photons into groups of photons, called cone-clusters,
limited in size by isolation cones. The isolation cone technique uses a cone of a fixed radius,
defining the maximum size of a cone-cluster. If the isolation cone radius is very high, only
highly isolated 7%s will be identified; on the other hand, if the isolation cone radius is too
low, splitting of photon pairs between adjacent cone-clusters becomes an issue. Ideally, for
an inclusive analysis one wants a cone radius which is low enough such that 7’s of any level
of isolation are found, but high enough such that 7% are unlikely to have their photons split
between adjacent cone-clusters. An example of a 35 mrad cone with respect to the FMS
size is shown in figure 3.9; this particular cone size turned out to be the most optimal choice
in providing an inclusive-like sample of 7%, when compared to several other isolation cone
radii.

The cone-clustering algorithm begins by sorting all photons in the event in descending

order of energy. An isolation cone is drawn around the first, highest-E photon, centered
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on its trajectory; this photon begins the first cone-cluster. Each subsequent photon on the
sorted list is then compared to the current list of cone-clusters, and if the photon is within
an isolation cone radius of any cone-cluster on that list, then it is added to that cone-cluster;
that cone-cluster’s isolation cone is then re-centered on the cone-cluster energy centroid.
On the other hand, if the photon is not within any defined cone-cluster, a new cone-cluster
is started for that photon. The algorithm proceeds until all of the photons (with energy
greater than a soft energy cutoff) of the event are organized into cone-clusters. Finally, the
cone-clusters themselves are sorted by energy and stored in a data tree for that event, along
with their kinematics.

Given the sorted list of cone-clusters, one can then begin to search for 7%. Only cone-
clusters with at least two photons are candidates for containing a 7%; of these cone-clusters,
the highest energy pair in the highest energy cone-cluster of each event was found to give the
cleanest sample of 7 candidates. For an inclusive measurement, one wants the maximum 7°
mass signal with the minimum background; furthermore, given the clustering algorithm, one
must be mindful of cases where the photon pairs are split between adjacent cone-clusters,
which cause combinatorial losses of ms. Various samples of photon pairs were compared
using a variety of isolation cone sizes, minimum photon energy cutoffs, and minimum pair
transverse momentum cutoffs. Looking at the highest energy photon pair in the highest
energy cone-cluster of each event, an isolation cone of 35 mrad (figure 3.9), a minimum
photon energy of 3 GeV, and a minimum photon pair pr of 1.5 GeV provided the best
inclusive-surrogate sample, when compared to all other tested samples. Combinatorial losses
due to pair-splitting between adjacent cone-clusters are limited to 2%. This sample of photon
pairs is the closest we are able to get to a “true” inclusive sample of 7% and is the sample

used for the A7) analysis.

3.4.5 Energy Dependence of the Mass

Once pairs of photons have been selected, one may begin to look at their invariant masses;
the determination of invariant mass depends on the photon energies as well as their opening
angle, as was shown in section 3.2. The fit algorithm for fitting clusters of energy deposits in
the FMS to a shower shape has a tendency to overestimate the decay photon opening angle,
a, at higher pair energies. Figure 3.10 shows an example of this effect, where the monochrome
histogram is of a vs. E. The red lines in this figure indicate constant M contours (7° mass
contour is solid) for fixed values Z = 0 (left), Z = 0.44 (middle), and Z = 0.8; while the «
vs. E data in these three figures are the same, the position of the M («, E) contours still has

a dependence on Z, thus M contours for three values of Z are shown. The data histograms
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Figure 3.9: Sample 35 mrad isolation cone projected onto the FMS; the vertex of the cone
is situated at the nominal interaction point.

contain data in the range 0 < Z < 0.8 in all three plots and show that o decreases as a
function of E, however the decrease is not as rapid as the contours indicate it should be.
These data show a clear overestimation of the value of o, which worsens as the E increases.

Figure 3.11 shows the pair invariant mass, M, as a function of E; contours of constant
« are plotted, again for three values of Z. These contours show that for a specific value
of @ and Z, the mass increases monotonically with respect to the energy. Since the value
of v is not falling rapidly enough with respect to E, the data tend toward following these
a contours, rather than remaining flat on a line of constant M. In other words, we see a
monotonic increase in the reconstructed M as a function of E, directly associated with the
overestimation of « as E increases.

To compensate for this overestimate of «, one could implement an a-dependent dependent
correction; this correction could be done in such a way that the E-dependence on the mass
would become flat. Instead, however, we decided to simply implement an E-dependent mass

cut scheme, as will be discussed in section 3.7.3.

3.5 Gain Corrections

This section outlines the corrections to the gains of each FMS cell, where gain is defined as the
proportionality between ADC counts and energy. While the voltages of each FMS cell were
adjusted during data-taking so that specific gains are achieved which set the reconstructed

7 mass peaks to be around the proper 7°

mass, additional corrections to the gains can
be made after the data acquisition period. These corrections arise from radiation damage

effects, as well as from a nonlinearity in the response of the FMS PMTs.
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Figure 3.10: Pair opening angle o vs. pair energy E, where Run 12 data are shown in
monochrome. The red lines are contours of constant mass M, given a value of Z = 0 (left),
Z = 0.44 (middle), and Z = 0.8 (right); the ideal 7° mass contour is drawn solidly.
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Figure 3.11: Pair mass M vs. pair energy F, where Run 12 data are shown in monochrome.
The red lines are contours of constant opening angle «, given a value of Z = 0 (left), Z = 0.44
(middle), and Z = 0.8 (right).

3.5.1 Time-Dependent Corrections — The LED Flasher System

The radiation damage caused a time-dependent degradation in the overall PMT response.
Furthermore, the PMT responses had a tendency to vary in time during all Runs before Run
15, due to malfunctioning Zener diodes in the PMT bases. These time-dependent variations
in PMT responses are corrected for by making use of data collected from the FMS LED
flasher system.

The LED flasher system used in Runs 12 and 13 was composed of a set of LEDs pulsing
at 1 Hz, where the LED light outputs were directed into a tree of fiber optic cables such
that each cell had a fiber optic LED light output directed at its transverse center. Although
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there was an independent STAR trigger used for the LED system, it was more practical
to pick the LED events from the overall trigger data by looking for events which had very
high ADC sums (over all cells). Since the LED flasher system pulses light into all channels
simultaneously, the resultant ADC sum from any LED pulse is much higher than the typical
ADC sums seen during usual data taking, and the LED events are therefore very easy to
identify.

The time-dependent variations in gain of all of the PMTs can be tracked by looking at
the time-dependence of the ADC distributions seen from LED events. This tracking gives
one the ability to correct for these effects, by simply introducing a time-dependent gain

correction, which tracks the variations and mostly corrects for them.

3.5.2 Nonlinear Energy-Dependent Response Correction

Another piece of the gain correction comes from a nonlinear dependence on energy of the
PMT response. This effect is mostly due to the dependence of the electromagnetic shower
shape on the depth, z, in the Pb-glass cells; for example, the effective z-position of the
shower maximum depends on incident energy and on incident angle. This dependence is
the source of different effective attenuation lengths, which in turn causes a nonlinearity in
the relationship between the energy measured by the PMT, the “observed energy,” and the
energy of the incident photon, the “true energy.” In order to correct for this behavior, an

additional nonlinear energy-dependent gain correction is applied.

3.5.2.1 Nonlinear Gain Correction Model

To model the nonlinearity, we first take a closer look at the monotonically increasing de-
pendence of the reconstructed pion mass on the energy. The left panel of figure 3.12 shows
reconstructed 7% masses as a function of one of the photon energies in green, in comparison
to n-mesons in black. These data are from Run 15, however, the dependence is similar in
Runs 12 and 13; data from Run 15 is shown here since the n-meson signal was much cleaner
than in Runs 12 and 13. One observes a slow rise in M at low E, relatively flat M at
mid-range F, and a slow rise of M at higher FE.

The right panel of figure 3.12 shows a ratio of the reconstructed M to the ideal meson M,
as a function of the two-photon opening angle, a. The low-F n-mesons, with o ~ 40 mrad,
barely fit into the FMS acceptance, causing a cutoff at high a due to geometry. The low-FE
7% have a lot of background under the mass peak, however, they are produced with values
of a similar to those in high-E n — v~ decays; this region of event overlap is approximately

a € [20, 30] mrad and shows a mis-match of reconstructed mass to meson masses. Modelling
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Figure 3.12: Left: reconstructed mass versus energy of one photon (E;) for 7’s in green and
n-mesons in black; in the bracketed region, the energy of the other photon is ~ 12 GeV.
Right: ratio of reconstructed mass to true meson mass versus two-photon opening angle.

the nonlinearities observed in the E-dependence of M could help improve this a-dependence
matching.

The high-F 7%s show a steep rise in the mass ratio as a decreases; this effect is from
the aforementioned opening angle overestimation as the photon clusters merge closer and
closer. This effect is correctable by dividing the mass by an a-dependent factor, but such
a correction is not implemented in this analysis. Instead, an energy-dependent (and time-
dependent) mass cut compensates for this by tracking the 7° mass peak location and width
in bins of energy.

The E-dependence of the M in figure 3.12 motivates the following nonlinear E-dependent
gain correction. Define this correction as g(F;) = E,/FE;, where E, is the observed energy
and E; is the “true” energy, defined as the corrected energy. The gain correction g(E;) is

modelled as a piecewise linear function over three energy regions {A, B, C'}:

ga(E) =1— (N—KMep— (K —E;)ea VYV E <K}
9(E) =4 gp(E) =1— (N — E))ep V K} <E <KZ. (312
go(By)=1— (N—-K{)ep— (Kf —E))ec vV E > Kf

The parameter N is the normalization energy point, since g(/N) = 1 and is a fixed value in
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Figure 3.13: Left: reconstructed mass versus energy of one photon (E;) for 7°s in green and
n-mesons in black; in the bracketed region, the energy of the other photon is ~ 12 GeV.
Right: ratio of reconstructed mass to true meson mass versus two-photon opening angle.
This figure is a repeat of figure 3.12, but with the nonlinear E-dependent gain correction
implemented.

region B. It can be thought of as 1/2 the 7 mass calibration anchor energy, that is, the
energy at which the calibration is performed, which is needed so that the E-dependence of
the mass does not impact calibration. The factor 1/2 originates from assuming that most 7%
decay to 2 equal-FE photons; this assumption is not exactly true since the energy imbalance,
Z, is not always 0 and does not average out to 0 either, but this assumption is a sufficient
starting anchor point for this g(E;) model. The energies {K/!, K} are boundaries between
the energy regions; they are subscripted by ¢ to indicate that these “crossover” energy points
represent region boundaries in Fy-space, as opposed to boundaries in E,-space. Finally, the
parameters {€4,ep,ec} are slopes of g(E;) in each of the three energy regions.

The effect of an example correction of the form of equation 3.12 is plotted in figure 3.13,
which shows the same plots as figure 3.12, but now with the new gain correction implemented.
The E-dependence of the mass has flattened out a bit; furthermore, the matching of low-FE
7% with high-E n-mesons has significantly improved. Figure 3.13 is, again, from Run 15
data, but the effect is the same in Runs 12 and 13.

The parameters of equation 3.12 were refined using a Geant4 simulation of the FMS. By
analyzing the photon yield at the photo-cathodes as a function of thrown incident photon

energy, the fit parameters given in table 3.2 were obtained. This parameterization is plotted
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Figure 3.14: Nonlinear energy-dependent gain correction model for large cells (left) and small
cells (right). Colors red, green, and blue indicate energy regions A, B, and C, respectively.
The solid line is the day-0 model, with baseline radiation damage, and the dashed line is the
day-300 model, the modified form of g(E;) after 300 days worth of radiation damage.

as the solid line in figure 3.14. Region A, the low energy region, has a high slope which
corresponds to the rising mass at low energy as seen in figure 3.12; this is the aforementioned
overlap region, where high-a 7°s overlap with low-av 7-mesons. On the other hand, regions
B and C' have flatter F-dependences.

N

| Cells Type | | K} | KPP | ea | es | ec |
Large Cells || 12.5 GeV | 8.6 GeV | 20.1 GeV | 0.015 | 0.0082 | 0.0023
Small Cells | 20 GeV | 10.2 GeV | 34.1 GeV | 0.020 | 0.0048 | 0.0020

Table 3.2: Values of parameters in g(E;) model, equation 3.12.

3.5.2.2 Including Radiation Damage

We now turn to considering the effect of radiation damage on this gain correction. The
longitudinal dependence of the radiation damage when considered along with the shower
shape is the origin of additional nonlinearity in the gain correction, which cannot be factored
out directly. As a starting point, we attempt to model the radiation damage accumulation
as a function of time. The amount of accumulated radiation damage is proportional to
the number of F-centers which have formed, where F-centers are electrons which occupy
anionic vacancies in the glass. Assuming the rate of F-center formation is proportional to
the number of unfilled anionic vacancies, the rate of radiation damage accumulation decreases
linearly with respect to the amount of accumulated radiation damage. Therefore the time-

dependence of a general variable R, which characterizes the amount of radiation damage,
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evolves with respect to time ¢ as

U MRu— RO = R(1) = R — (R~ Ro)e ™, (3.13)

where Ry = R(0), Re = limy_,o, R(t), and A = 1/7 with 7 the time constant.

To evaluate effects of radiation damage, another simulation was performed. The radiation
damage longitudinal profile was assumed to match the typical energy deposition longitudi-
nal profiles, which was obtained from minimum-bias PYTHIA events thrown at a model
FMS with undamaged, clear Pb-glass. Under this assumption, for any specified amount of
radiation damage, the radiation damage in the glass can be simulated by a modification of
the attenuation coefficients. The photon yield as a function of thrown photon energy was
assessed for a range of days’ worth of radiation damage accumulation and it showed that
the relative strength of the nonlinear gain correction increases as a function of accumulated
radiation damage.

The simulation was performed for photons thrown at the large cells in an 7 range of
3.1+0.05 and at the small cells in an 7 range of 3.9+ 0.05; these values of n are approximate
maximum values of n for the large cells and small cells and they represent the regions of
highest radiation damage for each cell type. For each simulated day, the photon yield as a
function of energy was fit with the g(F) model in equation 3.12, with fixed crossover energies
and constrained to unity at the anchor point energies. For all three energy regions, the slopes
of the fits were observed to evolve similarly in time; consequently, a time-dependent model
of the effect of radiation damage on the nonlinear gain correction can be captured simply by
a “slope factor”, which multiplies all slopes in g(F). This slope factor was ultimately chosen
as the variable R(t), with time-dependence given in equation 3.13.

The slope factor, R(t), was evaluated for one (small range around a) value of n for large
cells and another for small cells, but it can be extrapolated to apply to all pseudorapidities.
Cells closer to the beam line will receive more radiation damage than those farther away.
This n-dependence can be folded in to the time constant as follows: first assume that at
pseudorapidity 79 the amount of radiation damage was At days’ worth. The cells with
pseudorapidity n < 7y therefore experienced less than At days’ worth of damage. Now let
the time constant be 75 at the value of n = 1o, and let 7y be where the g(F) fits were
performed. For n < 7y, the radiation damage is expected to be less, and consequently the

time constant should be longer. Therefore, we assume
A = A(n) = Age Mot (3.14)

where \g, hg, and h; are fit parameters and are constrained by A(19) = Ag. Their explicit
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values were determined by looking at ratios in flasher LED amplitudes as a function of 7.
Finally, the full radiation damage parameterization is given table 3.3. Figure 3.15 shows
the plot of the n-dependence of the factor A(n)/Ag, which is unity at the chosen fit points
no, and decreases with decreasing 7. Figure 3.16 shows the behavior of R(t) as a function of
days worth of radiation damage (using Run 15 luminosities); it is plotted for various values

of . The value of R(t) increases with respect to ¢ and also with respect to 7.

[ Cells Type || Roo | Ro [ o [day ][ ho | b |
Large Cells | 4.46 | 1.0 0.0028 7.37 | 2.38
Small Cells | 3.44 | 1.0 0.0022 7441191

Table 3.3: Values of parameters used in radiation damage extension of g(E) model.

The radiation damage accumulation rate was assumed to be a 0.5% degradation per day
for the large cells and a 1.5% degradation per day for small cells; these values are specific to
Run 15, but it is straightforward to translate a Run 15 day’s worth of radiation damage to
a Run 12 or 13 day’s worth. Runs 12 and 13 had approximate delivered luminosities of 4.0
pb~! per day (during the analyzed data period) and Run 15 had about 2.4 pb™' per day.
Furthermore, the beam energy for Run 15 was 100 GeV, whereas that for Runs 12 and 13 was
255 GeV; the ratio of these beam energies accounts for different amounts of radiation damage
delivered per unit luminosity between Runs 12413 and Run 15. Therefore, one Run 12 or 13
day corresponds to an estimate of (1 Run 12+13 Day) x(4.0/2.4) x (255 GeV /100 GeV) = 4.2
Run 15 days’ worth of radiation damage.

Ultimately, the effects of two forms of the nonlinear gain correction are evaluated. Let
g°(E;) represent the “day-0" model, that is, the state of the g(E;) before additional radiation
damage accumulated. This ¢°(E;) was plotted as the solid line in figure 3.14 (and since
t = 0, it does not depend on 7n). A model after D days’ worth of radiation damage was
also considered, called the “day-D” model and denoted ¢g”(E,). For each run in the A7,
data set, D was set to the number of days of running after the beginning of Run 12, times
the aforementioned 4.2 Run 15 days per Run 12413 day factor; the maximum value of D
analyzed was 281. In figure 3.14, the ¢°°°(E;) model is plotted as the dashed line, given the

pseudorapidities of 2.9 and 3.5 for the large and small cells, respectively.

3.5.2.3 Application of the Correction

In order to make use of g(F;), one must obtain E;(F,) by solving the quadratic equation
E,=FE;-g(E;). Letting I € {A, B,C} denote a region, the physically relevant solution is

E\(E,) = Qi [~0:(0) + A/ E, £ g1 (07 (3.15)
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Figure 3.15: Pseudorapidity factor A(n)/A¢ in equation
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and the crossover energy points in E,-space are K! = K! - g(K!). Figure 3.17 shows the
true (thrown) energy as a function of the observed energy, as given by equation 3.15. The
fractional difference between the day-0 and day-300 corrected energies can be up to 5%.

In order to assess the impact this gain correction has on 7¥s for the AEOL analysis, the

shift in pr must be measured, since we ultimately measure A’LrOL as a function of pr. The
VE} — M
coshn '

where E; = Fy,(E1,)+ Es,(Es,) is the corrected total energy and M; = M,/+/g(E\1,)g(Es,) is
the corrected mass. The corrected Z is also straightforward to compute. Both the corrected n

shifted pr, defined as pp,, is

pPr, = (3].6)

and ¢ are obtained via the sum of the corrected 4-momenta of the photons, but the fractional
changes in these values are small.

Given the day-0 and day-D models’ corrected pr values, figures 3.18 and 3.19 respectively
show the fractional change in pr, defined as Apr = (pr, — pr,) /pr, versus the original pr, .
The day-0 model on average reduces pr by about 3-8% whereas the day-D model reduces it
by about 5-10%.
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Figure 3.18: Fractional change in pr, denoted Apr, vs pr, for outer region (left) and inner
region (right); this is for the day-0 model.
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Figure 3.19: Same as figure 3.18, but for day-D.
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3.6 Hot Tower Masking

After full pion reconstruction was executed, there were some specific, small areas of the FMS
geometry (or of kinematics distributions) that had several more events than other regions.
Occasionally during the data-taking period, a single PMT gain would change such that it
would be dominantly firing the trigger. Such a pathology is called a hot tower and during
data-taking, monitoring tools enabled detector operators to find and suppress hot towers,
but not all could be suppressed in a timely manner.

Hot towers primarily appear as sharp peaks in the photon (or pion) position distributions.
They can also sometimes appear as single isolated spikes in F, pr, or even in M distributions.
Runs which have a spike in any of these three distributions were excluded from the A7,
analysis. The majority of all the data, however, have a few such spikes in the photon
position distributions, which needs a more careful treatment.

The omission of cells or regions around cells which were hot is called hot tower masking,
and must be done before photon reconstruction. The decision to implement hot tower mask-
ing occurred long after the data were reconstructed, however, and given that reconstruction
is a rather long, CPU-intensive process, we decided to simply mask out hot spots in the
photon position distributions instead. Pions that have photons too close to any hot spot are
removed from the analysis.

Figure 3.20 illustrates the hot spot search algorithm, which takes a photon position
distribution and iteratively searches for hot spots; this is done for each runset, which is a set
of 5-10 subsequent runs, all of which are in the same fill. Some of the hot spot peaks are
much higher than others, so the algorithm begins at the highest peak and scans downward.
Starting from the highest peak, it is first checked for certain criteria which define a hot spot;
if the criteria are satisfied, then this peak is added to the list of hot spots. Whether or not
this peak is added to the list of hot spots, it and its small local neighborhood are deleted
from the position distribution so that the next highest distribution bin the algorithm finds
is not some “foothill” of any peak which was already analyzed. Furthermore, subsequent
candidate hot spots must be sufficiently far from any other hot spots already on the list of
hot spots.

For each candidate hot spot, defined as the position distribution’s current highest bin,

the following metrics are computed:
e ¢ is the number of hot spots added to the list
e H is the number of entries in the hot spot’s tallest bin

e P is the number of entries in a 3 bins x 3 bins neighborhood centered around the
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Figure 3.20: Hot spot search algorithm; a sample removal of a hot spot candidate’s peak bin
and its 8 adjacent bins (i.e., the patch) is shown at the bottom of the figure.

tallest bin; this neighborhood is called the patch

e A is the average number of events over all the nonzero bins in the entire position

distribution

® O, 18 the maximum eigenvalue of the moment matrix of the patch and is defined

analogously to the o, used in single and 2-photon cluster separation.

Using these metrics, several criteria are defined. First, ¢ should be limited and be no
higher than some value i,,.,, so that only a few hot spots are considered; removing too many
causes the algorithm to start identifying local maxima of the usual noise in the position
distributions. The sharpness of the peak is roughly given by the ratio of H to P; if it is too

low, then the hot spot candidate peak is rather wide and likely not from a single isolated

2

. and if this value is

hot tower. Another characterization of the peak width is given by o
too high, then the candidate hot spot is too wide; H/P and o2, are approximately anti-
correlated with each other. Finally, the value of H above the overall distribution average A
should be rather high, that is, the peak should be at least [H/A]_ . times taller than the
distribution average. This last criterion is one which, if satisfied, overrides all the aforemen-
tioned criteria; it is rarely satisfied for ¢ > 5. The full criterion for a hot spot candidate to
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be accepted as a hot spot is the boolean

(i <imax AND H/P>[H/P] . AND o3, < [0%.].. ) OR H/A>[H/A]

min max max

(3.17)

max °

The values have been tuned to the data and the effects of the algorithm on the hot spot
candidate’s distributions of 02, and H/P versus i are shown in figures 3.21-3.23. For all
three data sets, Run 12 outer region, Run 12 inner region, and Run 13 outer region, the

values used in equation 3.17 are given in table 3.4.

’ Data Sector H T max \ |H/P] .. \ 102 ) s \ [H/A] .. ‘
Run 12 Outer 6 0.3 0.8 20
Run 12 Inner 5 0.4 0.8 15
Run 13 Outer 7 0.4 0.7 20

Table 3.4: Values of parameters use to set limits on which hot spots are removed.

After a list of hot spots is generated for all runsets in the dataset, a masking algorithm
is applied on all candidate 7% in the A’it}d analysis. Basically, if either photon which makes
the 7 is too close to a hot tower, its parent 7° is omitted from the analysis; here “too close”
is defined as within a square of side-length 3 x [cell width] centered around any hot spot.

This 7° masking procedure is summarized in figure 3.24.
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Figure 3.21: For Run 12 outer region, distributions of hot spot candidate o2, versus ¢ (top)

and H/P versus ¢ (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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Run 12 Inner Region Hot Spot Removal
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Figure 3.22: For Run 12 inner region, distributions of hot spot candidate o2 versus i (top)

and H/P versus ¢ (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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Run 13 Outer Region Hot Spot Removal
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Figure 3.23: For Run 13 outer region, distributions of hot spot candidate o2, versus ¢ (top)

and H/P versus ¢ (bottom) before hot spots are removed (left figures) compared to after hot
spot masking (right figures).
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A

Figure 3.24: Hot spot 7’-masking algorithm.

3.7 Pion Event Selection

Finally, we specify the set of kinematic cuts used to define the analyzed 7% sample for the

0
A7, measurement.

3.7.1 General Kinematic Cuts

The set of cuts used to identify 7’s are:
e Highest energy pair in the highest energy cone-cluster in the event
e Pseudorapidity:

— Outer Region: n € [2.65,3.15]
— Inner Region: n € [3.15,3.9]

e Energy:

— Outer Region: E € [30,70] GeV
— Inner Region: E € [30,100] GeV

e Transverse Momentum: pr greater than time-dependent threshold (details below); the

upper limit of pr is restricted by the lower limit on n and the upper limit on

— Outer Region: pr € [pifesh 9.8] GeV
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— Inner Region: pr € [pifrest 8.6 GeV
e Energy Imbalance: Z € [0,0.8)

e Energy-and-time-dependent Mass Cut (details below)

3.7.2 pr Threshold Cut

Because of the ever-increasing radiation damage during Runs 12 and 13, several side effects
occurred. One of the most noticeable ones in the 7% kinematics is a slow increase in the
overall pr distribution and threshold. In order to maintain an appropriate lower bound on
the 7° pr, a time-dependent pp threshold cut was implemented. Each DAQ run’s 7° pp
distribution was first fit to a Gaussian in order to approximate the rise and fall in pr just
above the nominal threshold. The pr lower bound was then selected as the pr value at which
the distribution is 2/3 of the Gaussian fit height, on the low side of the pr distribution. This
algorithm provided a consistent py cut for all runs analyzed.

Figures 3.25-3.27 show pr distributions on the vertical axis versus run on the horizontal
axis, for all runs analyzed in A’EOL; each run’s distribution is normalized by its integral and
the runs are plotted in chronological order. The black line indicates the pr lower cutoff
as determined by the fits and the magenta dots indicate the distribution means. Both the
distribution means and the pr lower cutoffs increase as a function of time. Sometimes a
step up or down in the distributions is observed, for example in the Run 12 outer region
around run index 100; these steps are indicative of trigger threshold adjustments during the

data-taking period.
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Figure 3.25: 7% pr normalized distribution vs internal run index for Run 12 outer 7 region.

FMSOR 10 p_Vs. internal run index

-
e 0.07
0.06
0.05

i [0 { il IIII IIIIHII’I'1|I B ull;l
il I|I|| {1 I g Illl IIIIlI IIII II ““I III I ullIII ¥ : 0.04

R S o o ; o 0.03

0.02

0.01

50 100 150 200 250 300 350 400 450
internal run index

Figure 3.26: 7° pr normalized distribution vs internal run index for Run 12 inner 7 region.
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Figure 3.27: 7% pr normalized distribution vs internal run index for Run 13 outer 7 region.

3.7.3 Mass Cut

Recall from section 3.4.5 that the source of the energy dependence of the mass is that the
fit algorithm for clusters has a tendency to overestimate the decay photon opening angle,
a. Instead of implementing an a-dependent energy correction, the 2-photon sample, which
satisfies all ¥ cuts except for the mass cuts, is divided into bins of energy. The invariant
mass distribution of 2-photon events within each bin is fit with a skewed Gaussian; this is
done on a runset-by-runset basis. The skewed Gaussian is used to determine a value which
approximates the 7° peak maximum, that is, the approximate mode of the mass distribution
had it been smoothed; using the fit to determine the peak maximum provides more of a
stable maximum than the distribution maximum itself would.

Starting from the maximum of the fit, the lower and upper bounds of the mass window
are established by tracing down each side of the skewed Gaussian function until its value
is such that the fit function is a fraction f of the value of the distribution maximum; the
fraction f = 0.2 is used for the lower bound and f = 0.3 for the upper bound, for both inner
and outer regions. Alternate mass cut determination algorithms were attempted, such as
using the fit parameters to determine the skewed Gaussian mean and standard deviation,
however, the implemented algorithm provides more of a stable result than other attempts
did. The choices of how far one slides on either side were determined empirically and provide

a reasonable set of cuts for all £ bins, both n regions, for all runsets throughout Runs 12
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and 13.

Figures 3.28 and 3.29 show a sample runset’s mass distributions for each energy bin,
for the outer region and inner region respectively. The energy bins, plotted in order from
left-to-right, top-to-bottom, are: [30,40), [40,50), [50,60), [60,70), [70,85), [85,100) GeV,
where the last two bins are only plotted for the inner region. The overall mass cuts used
in the AEOL analysis as a function of a chronological runset index are provided in figures
3.30-3.32. The fit maxima are plotted as the points and their error bars represent the full
mass window of 7% considered for A7) .

A sideband region is also obtained using these mass cuts and fits. This sideband region
is a sample of background events between the 7% and n-meson mass peaks, which is used to
determine a background Ay, and later subtracted out of the full A}i The upper bound of
the 7° mass window is used as the lower bound of this sideband region. The sideband upper
bound is set such that the width of the sideband region is equal to the width of the region
between the fit maximum and the 7% mass window upper bound; this definition is sufficient
to keep the sideband region from crossing into the n-meson mass peak around 0.55 GeV.
Like the 7° mass windows, these sidebands are defined on a runset-by-runset basis for each
FE bin.
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Figure 3.28: Sample 2-photon mass distributions for the outer region for various F bins (given
in text); tall green lines indicate 7% mass cuts, in between which is a blue line indicating the
distribution maximum as approximated by the fit (red curve). The short cyan line is the

upper bound of the sideband region.
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Figure 3.29: Sample 2-photon mass distributions for the inner region for various E bins
(given in text).
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Figure 3.30: 7% mass windows vs. runset
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Figure 3.31: 7% mass windows vs. runset
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3.7.4 Kinematics Distributions

Now that all of the 7° cuts have been discussed, the resulting 7 dataset’s kinematic distri-
butions are presented. Figure 3.33 shows the 7 pr vs. E plane. In this plane, bands are
visible, which follow lines of constant pseudorapidity. The data in this plot are bounded by
two diagonal lines given by the pseudorapidity bounds, a lowest time-dependent py threshold
minimum, and lower and upper E bounds. The data peaks within a pr range of 3.5-6 GeV
for the outer region and 2.5-4.5 GeV for the inner region.

The position-space distributions of reconstructed m° trajectories are plotted in figure
3.34. There are some relatively “warm” areas of the detector, which are small regions which
have more than average 7° hits. These areas have survived the hot spot masking algorithm,
which served to remove the worst-case hot spots; removing these additional warm areas does
not meaningfully impact the AZOL results. In some cases, hot spots persisted for most or all
of the A7) dataset, and appear as holes in these distributions.

In Run 13, there was a problem with the upper-left quadrant of the detector; figure 3.34
shows that there is much less data there. This was because trigger crate QT3 malfunctioned
shortly after the beginning of the data-taking period and was subsequently disabled for the
remainder of the data-taking period. Fortunately, AEOL is not dependent on azimuth and is
thus not affected by this issue.

Figure 3.35 shows the Z-distributions, without the Z < 0.8 cut applied. The absolute
) = Bin] /B
In the photon reconstruction algorithm, there is a soft-energy cutoff demanding that the
photon energy be at least E). = 6 GeV. The values of E™ are 70 GeV and 100 GeV for

min max
the outer and inner regions, as discussed. Therefore, 7., is 0.83 for the outer region and

max min

upper limit on Z is determined by the energy cuts: Z,.x = [(E”O - E

0.88 for the inner region. The Z < 0.8 cut impacts the inner region more than the outer
region.

Figures 3.36 and 3.37 show the full AEOL pion pp distributions as well as the binning used
for the A7) calculation, indicated by the tall vertical black lines. The AT calculation occurs
for four pr bins over the two 7 regions, separately, integrating over the other kinematic
variables (see section 6.1 for numerical bin boundary values). The py binning has been
chosen to roughly equalize the pion yields within each bin, rounded to the nearest sensible
number. Each bin has a red cross-shaped marker: its horizontal position indicates the pr bin
means and its horizontal extent indicates the bin RMS values. The overall lower bounds are
given by the pr threshold cuts and the overall upper bounds are constrained by kinematics:
PP R Ef{loax / cosh Nin. For the outer region, p7** = 9.8 GeV and for the inner region, 8.6
GeV. The minimum value of pr allowed by kinematics, pi® ~ Eg?n / cosh Nyax, is below the
pr thresholds over the entire dataset.
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Figure 3.33: 7° pr vs E for Run 12 outer region (top), Run 12 inner region (middle) and
Run 13 outer region (bottom).
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Figure 3.35: 7° Z distribution (Z < 0.8 cut not applied) for Run 12 outer region (top), Run
12 inner region (middle) and Run 13 outer region (bottom).
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Chapter 4
Relative Luminosity

The relative luminosity is a ratio of luminosities for production from one set of spin states
to another. For the longitudinal double-spin asymmetry, it is the ratio of luminosity from

same-helicity bunch crossings to that from opposite-helicity bunch crossings:

Ly 4L

Ry = .
ST L. 4+ L,

(4.1)
Other relative luminosity ratios may be formed, which correspond to different kinds of asym-
metries; see appendix B for the other combinations and associated details. This chapter
presents the R3 measurement as well as various diagnostics on its determination and consis-

tency.

4.1 Basic Computation Algorithm

The relative luminosity is typically measured by high-rate scaler detectors, which were de-
scribed in section 2.4. At STAR, the scaler detectors are the Beam-Beam Counter (BBC),
the Vertex Position Detector (VPD), and the Zero Degree Calorimeter (ZDC). Hits in the
scaler detectors, which satisfy certain conditions such as ADC > threshold, are read out for
every bunch crossing via the scaler boards. Since luminosity is proportional to yield, the
number of hits for each initial proton helicity combination h,h;, can then be taken as the
values of Ly, 5, in equation 4.1, since proportionality factors such as efficiency and acceptance
cancel in the ratio.

In both Runs 12 and 13, there was a designated luminosity scaler board used for such
analyses. In Run 12, scaler board number 12 read out 24-bit streams for every bunch
crossing, whereas in Run 13, board number 4 read out 32-bit streams. In both Runs, the

last 7 bits represent a bunch crossing number with possible values 0-127, where a value of
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0-119 represents a STAR bunch crossing. The proton beams at RHIC include 360 possible
RF (radio frequency) buckets, each of which can hold a proton bunch with ~ 10'° protons;
these buckets are timed with the RF cavities of RHIC, which accelerate the protons as they
pass through them. Typically only every third bucket is filled; furthermore, the last 9 of
these 120 buckets are left empty. This empty region in the fill pattern is called the abort gap,
and is very useful for many different purposes such as background studies and systematics,
along with verifying the alignment of spin patterns with the observed collisions.

At PHENIX, the abort gaps from each beam are aligned, so that the abort gap from one
beam “collides” with the abort gap of the other. At STAR, however, the abort gaps are not
aligned, since the relative cogging between the beams depends on position within the RHIC
rings. With the aforementioned crossing numbering, the abort gaps at STAR occupy bunch
crossings 31-39, corresponding to the yellow beam abort gap, and 111-119, corresponding
to the blue beam abort gap. Although the distinction between beam directions does not
matter much for a double-spin asymmetry measurement, it is worth noting that the blue
beam travels in the west direction, toward the FMS, while the yellow beam travels east, away
from the FMS.

Figure 4.1 shows a sample spin pattern (RHIC fill number 16567) for the blue beam on
the left and for the yellow beam on the right. The vertical axis is the bunch crossing number,
starting from the bottom at bunch crossing 0. If a shaded box is drawn on the left (right),
the bunch helicity is negative (positive), so for example, the blue beam pattern starts as
— — 4+ +. If a shaded box is drawn in the center, for example the last 9 bunches in the
blue beam, the bunch is empty. Finally, yellow boxes indicate the helicities were the same,
red indicates they were different, and cyan indicates no collision, i.e., an abort gap.

Besides bunch crossing number, the scaler bits also indicate whether a certain scaler
trigger fired. Most typically, for each scaler detector, there were two singles bits (one for the
east scaler, denoted by e, and one for the west, denoted by w) which fire if the corresponding
ADC counts are above a threshold, as well as one coincidence bit, denoted by z, which fires
if the east and west scaler ADC counts were both above threshold and occurred within a
short time window. These three bits were available for all three detector subsystems in both
Runs 12 and 13, except for the VPD z bit in Run 13.

The three scaler bits can be considered as one 3-bit unit, a triad, written as T" = 4x +
2w + e. In the most ideal setting, only one of four combinations of e, w,x should occur
in each bunch crossing for each scaler detector: (1) only e fires, (2) only w fires, (3) all
three e, w, z fire (since by definition, = only fires if both e and w fired), or (4) no bits fire.
The first three of these triads are called logical bit combinations (the fourth is trivially the

zero combination), as opposed to the other four possible triads, called illogical combinations,
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Blue Beam Yellow Beam

Figure 4.1: Example spin patterns for blue beam (left) and yellow beam (right). The vertical
axis is the STAR bunch crossing number, and the horizontal axis is the helicity (left for —,
right for +, and center for empty bunch).
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Run 12 Scaler Bit Combinations
Tlx!w!le BBC ZDC VPD
1((0]0 |1 e ° °
2101110 ° °
7111 (1] e o || o| o | 0| 0| o | @
30| 1|1 e| e o || o | o o || e | o °
4 (111010
511011 e ° °
61|10 ° ° °

Run 13 Scaler Bit Combinations
Tlx!wle BBC ZDC VPD
1 (0[]0 |1 e ° °
2110|110 ° °
TI1[1[1]e o | o e | n/a|n/a|n/a
3I0| 1|1 e e o || o | o ° ° ° °
4111010 n/a | n/a|n/a
5(1[0 (1] e . n/a | n/a|n/a
6 (1,110 . o n/a | n/a|n/a

Table 4.1: Scaler bit recombinations. The left most column “7T™ is the decimal representation
of the 7 combinations of the three scaler bits, x for coincidence, w and e for west and east
singles. The logical bit combinations, T € {1,2, 7}, are bits which are expected to fire, i.e.,
if the x bit fires, the e and w bits are also expected to fire; all other bit combinations are
called illogical combinations: T € {3,4,5,6}. The E, W and X scale counts are then defined
by ORing logical and illogical triads marked with e’s in each column. Note that in Run 13,
there was no VPD z-bit, so for example, VPDE is defined as T'=1 OR T = 3.

which should not occur in an ideal setting. An example illogical combination is x firing, but
not e or w.

The possible non-zero triads are given for Runs 12 and 13 in table 4.1. Triads T" € {1,2,7}
are logical bit combinations, whereas T € {3,4,5,6} are illogical. The seven triads are then
ORed together according to table 4.1 in order to form raw scale counts for each scaler
detector for east singles, west singles, and coincidences; these raw scale counts are denoted
with capital letters: E, W, and X, respectively. These ORs of triads follow from [93].

Figure 4.2 shows the relative number of scaler bit combinations which fired. More logical
triads occurred than illigocal triads, except for the case where w and e fired, but not =,
which is on the same order as the logical triads. From now on, only information on the ZDC

and VPD will be shown for brevity, as the BBC had rather inconsistent relative luminosity

114



Run 12 Scaler Bit Counts
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Figure 4.2: Scaler bit counts for ZDC (left) and VPD (right).

measurements with high systematic uncertainties.

4.2 Accidentals and Multiples Corrections

Figure 4.3 shows a schematic of the possible types of interactions which can cause scale
counts. The vertical black lines represent east and west scaler detectors, and the blue cones
represent particle production, which would fire the bits if they hit a detector. The top
row shows a normal single event and a normal coincidence event. The bottom row shows
a sample of an accidental coincidence of two separate interactions within the same bunch
crossing, and of an under-counted multiple interaction in one bunch crossing. Given this
viewpoint, the combined scaler counts E, W, and X need to be corrected for these cases

where there were accidental coincidences and under-countings of multiple interactions in a
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Single Coincidence

Accidental Multiple

Figure 4.3: Types of events seen in scalers, showing the form of accidental coincidences and
and multiple interactions, to be corrected for in analysis. The vertical black lines represent
scaler detectors (one for east and another for west) and the blue cones represent scaler
count-producing particle trajectories.

single bunch crossing. Two forms of the accidentals and multiples corrections are presented
in this section: the CDF corrections, developed by the Collider Detector at Fermilab (CDF)
collaboration [94], and the rate-safe corrections, developed by PHENIX [95] (also sometimes

called the pile-up correction method).

4.2.1 CDF Accidentals Correction

The CDF corrections are implemented by considering event probabilities. Let &g denote
the physical probability of an event which should fire scaler bit combination S € {E, W, X }.
Let Ps be the scale probability of scaler S, i.e., the probability that S actually fires. Note
that Ps = Ng/Ny:, where Ng is the number of times S fired and Ny, is the total number of
bunch crossings; Ng is a raw scale count, as opposed to a corrected scale count.

For the following argument, refer to figure 4.4. The scale probability Pg has contributions
from physical probabilities Zg and from Zx, but we do not want to include the contribution
where £ and X would physically occur, that is, we omit the contribution of Zr N Yy in
Pg. Similarly for Py, we include &2y, and &y, omitting Py N Px. For the coincidences,
Px naturally includes &y as well as the case &g N Py, but these two contributions are
not disjoint: the case P N Py N Py is therefore omitted. In summary, by looking at the

shaded regions of the Venn diagrams in figure 4.4, the scale probabilities may be written in
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Py Py

Figure 4.4: Scale probabilities as subsets of the union of physical process probabilities.

terms of the physical process probabilities as:

Pr = QEUWX\(WEHQX) & Pp+ Px — P Py, (42)
Py = QZWUWX\(QZWHQX) &S Py + Px — Py - Py, (43)
Px = ng(@Emgw)\(@Eﬂywﬂyx) -~ (44)

i :@X+L@E<@W_=@EL@W:@X

The physical process probabilities may then be written in terms of the scale probabilities

and subsequently in terms of the scale counts as

Ng — Nx
Py = —— = 4.5
§ Npw — Ny’ (45)
Nw — Nx
Py = —= 4.6
w Nbx — NE ) ( )
Nx — Ng Ny /Ny,
ﬁx _ X E W/ b (47)

Npw + Nx — Ng — Ny

These are the accidentals-corrected probabilities; multiplying them by Ny, gives the accidentals-

corrected scale counts.
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4.2.2 CDF Multiple Interactions Correction

In order to correct for multiple interactions in a bunch crossing, the distribution of k inter-

actions per bunch crossing, given A as the “true” number of interactions in a bunch crossing,

is modelled as a Poisson distribution:

e ANk
k!

P\ k) = (4.8)

The Poisson distribution is used since the bunch crossings occur at a constant rate and

independently of each other. The probability for no interactions in a bunch crossing is
PNk=0)=er=1-P(\k#0). (4.9)

Assuming that (A, k # 0) represents the accidentals-corrected probabilities in equations
4.5-4.7, which are independent of A\, the probability of no interactions provides access to the

“true” number of interactions per bunch crossing:
A=—In[l—-Z(k#0)]. (4.10)

The final CDF correction equations, which give the accidentals and multiples corrected

counts .45 in terms of the raw scale counts Ng, are therefore

Ng — Nx
= —N;, -1 1 - — 4.11
f/VE bx n( wa_NW)a ( )
Nw — Nx
My = —Np-In[1- , 412
v ' n( me—NE) (4.12)
Nx — NgNw /Ny,
Ny = —Np,-In[1-— . 4.13
. ’ n( Npw + Nx — Ng — Nw (4.13)

Figure 4.5 shows the fractional deviation of the CDF corrected counts plotted vs. the cor-
rected scale probability for coincidences. In other words, this is a plot of (N¢PF — Niew) /NGPE
vs. N¢PF/N,,, where the superscript CDF indicates CDF-corrected counts and the super-
script raw indicates the uncorrected counts. There is a strong dependence of this fractional
deviation on the scale probability, which can be interpreted as a dependence of the correction

on the rate.
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Run 12 CDF Corrections
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Figure 4.5: Fractional deviation of the CDF corrected counts vs. corrected scale probability
for the ZDC (left) and VPD (right). Run 13 (bottom plots) shows stronger scale probability
dependence than Run 12 (top plots).
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4.2.3 Rate-Safe Accidentals and Multiples Corrections

PHENIX has developed an alternative method for applying scaler counts corrections for
accidentals and multiples, called rate-safe counting (and sometimes also called the pile-up
correction). Details may be found in section 4.3 of [95]. This section contains a terse
description of the method and the final correction equations used; the full derivation has
been reproduced in appendix G.

Three “event classes” are considered: east single-sided (ESS), west single-sided (WSS),
and double-sided (DS). The average numbers of times these events occur in a bunch crossing
are denoted Ag, Ay, and A, respectively. Each event class has a detection probability of &
events, given by a Poisson distribution. These distributions factor in the E and W detector
efficiency x acceptance, denoted by e and ey .

One then considers the following three probabilities, in terms of event class probabilities

(which are subscripted with the event class acronyms):

e Zero hits in E-scaler:

P (kg =0) = Ppg (kg = 0) - Pggg (kg = 0) = ¢ +38) (4.14)

e Zero hits in W-scaler:

P (kw = 0) = Ppg (kw = 0) - Pygs (ky = 0) = e =wA+iw) (4.15)

e Zero hits in either detector:

P(kp=0,kw =0) = Pps (kg = 0,kw =0) - Pgss (kg =0) - Pwss (kw =0) =
— €5W5E/\_5W>\_5E>\_5W)\W_5E>\E
(4.16)
These probabilities are combined into one expression by considering the probability that
both detectors detect zero hits, given the condition that each of the single-sided detectors
each detected zero hits. This probability, denoted P*, is expressed as

P = = h Q= . 4.1
P iy =0) Py =0) e where EWER (4.17)

Taking the logarithm of each side and writing each probability of detecting zero hits as unity

minus the probability of detecting nonzero hits yields

1—Px

(1—-Pg)(1—Pw)|
120

QA=InP*=1In (4.18)




The probability of detecting a hit can be written as Ps = (Ng)/Ny,, where S € {E, W, X }.
Finally, the rate-safe corrected counts N,,. (times efficiency and acceptance 2, which is

factored out in any relative luminosity computation), is written as

1— <NX>/Nbx

W0rse = N 10 | T TN (1 — (N o))

(4.19)

Figure 4.6 shows the fractional deviation of the rate-safe corrected counts (times effi-
ciency and acceptance) plotted versus the ratio of this corrected number of counts to the
number of bunch crossings. Denoting the efficiency times acceptance as €2, this is a plot of
(QNFSC — Nigw) JQNBSC vs. QNFSC /N, where the superscript RSC' is for the rate-safe
corrected counts and the superscript raw is for the uncorrected number of counts. Compar-
ing this to figure 4.5 and interpreting the horizontal axis as a surrogate for the scale rate,
one sees that this correction method depends much less on rate, hence the nomenclature

“rate-safe correction method” is appropriate.

4.3 R3; Results

Figures 4.7 and 4.8 show the R3 values plotted vs. run index for the VPD for both Runs 12
and 13; measurements for the ZDC are in appendix F, figures F.1 and F.2. In each figure,
four plots are shown. The first three use the CDF corrections equations and are, in order
from top to bottom, Rj3 for E, for W, and for X. The fourth plot is R3 computed using the
rate-safe corrections method, which makes use of all three £, W, and X raw counts.

The red lines in these figures show a constant fit and the fit results are quoted in the
upper-right corner of each figure. The typical relative luminosity fluctuates between £4%
and remains approximately constant within each fill. Fluctuations up and down are from
fill-to-fill and are due to the injected spin pattern. In Run 13, the first few fills had bunch
crossings 69-70 empty, which caused the somewhat higher value of |1 — R3| up to about run
index 300. Note that the x? per degree of freedom for these fits is very high, because Rj is
not constant throughout the run; rather these fits indicate how well “balanced” the relative
luminosity was for the Run as a whole.

Statistical uncertainty bars are also plotted on these figures, although they are too small
to be seen at this scale; the uncertainty is typically < 1 x 107*. For the CDF corrections
method, the square root of the counts is used for the counts uncertainties; for the rate-safe

method, the counts uncertainties are derived in appendix G.
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Run 12 Rate-Safe Corrections
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Figure 4.6: Fractional deviation of the rate-safe corrected counts vs. the ratio of the rate-safe
counts (times efficiency and acceptance) to the number of bunch crossings for the ZDC (left)
and VPD (right). This is a comparison to figure 4.5.
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Run 12 VPD R; vs. Run Index
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Figure 4.7: R3 from VPD for Run 12; from top to bottom: CDF corrected E, CDF corrected
W, CDF corrected X, rate-safe corrected.
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Figure 4.8: R3 from VPD for Run 13.
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4.4 Rs3; Cross-Checks

The following cross-checks have been employed to test the consistency of the relative lu-
minosity measurement between the ZDC and VPD, and to compare the two corrections

methods:
e Rate-safe and CDF Rj comparison (figures 4.9 and 4.10)
e ZDC and VPD Rj3 comparison (figures 4.11 and 4.12)
e CDF-corrected E and W R3 comparison (figures F.3 and F.4)
e CDF-corrected E and X Rj3 comparison (figures F.5 and F.6)
e CDF-corrected W and X Rj3 comparison (figures F.7 and F.8)

Some figures which are a bit superfluous are in appendix F.

One important observation is that, although the difference between the R3 measurement
via the CDF corrections and the rate-safe corrections is rather small, the difference of the
R3 measurement between the ZDC and VPD is about half as big for the rate-safe method as
for the CDF corrections method (see figures 4.11 and 4.12, bottom plots). This observation
motivates a preference toward the use of the rate-safe corrections method since it provides
better consistency between the ZDC and VPD.

In all of the Run 13 cross-check figures, the fills around run index 800 tend to have
differences which are larger than normal. An effect called afterpulsing is the likely culprit.
The afterpulsing effect will be discussed more quantitatively in section 5.1.5, but can be
thought of as a “ringing” of the signal pulse which may contribute to signals in subsequent
bunch crossings. Consequently, the first few bunch crossings immediately following either
abort gap tend to have lower-than-average counts, since there is no afterpulse ringing spilling
into them; the number of counts in each subsequent bunch crossing quickly converges to the
average as the ringing piles up to a maximum. For these abnormal Run 13 fills, the first
bunch crossing coming out of each abort gap had about half of the average counts, and the
subsequent crossing had about 80% of the average; on the other hand, a typical fill’s first
post-abort-gap bunch crossing would have at least 95% of the average number of counts. We
concluded the afterpulsing in these abnormal fills was significant, and ultimately they have
been pruned from the A7) analysis.

Only runs which have “consistent” R3 measurements are allowed in the full AEOL analysis;
the cross-check figures are used to define the cuts for such consistent measurements. Fur-

thermore, the duration of the DAQ run, denoted by ¢, is compared to the ratio between the

125



total number of bunch crossings in the run and the bunch crossing rate; ideally ¢ should be
the same as this ratio, denoted by 7, however sometimes it could be a bit off, so we demand
t/T not be unreasonably high. The exact requirements for a consistent and good relative
luminosity measurement are shown in table 4.2, which contains maximum allowed values of
each metric given in the first column.

The BBC data have been included in some of these figures. Figures F.3-F.8 reveal that
the consistency between the BBCE, BBCW, and BBCX is very poor compared to that for
the ZDC and VPD. For reasons which will be discussed later, we have ultimately chosen to

use the VPD rate-safe Rs as the relative luminosity for the A7, measurement.

’ Comparison H Run 12 \ Run 13 ‘
| RYPPE _ RZDCE| 0.005 0.006
|RYPPW — REZDCW| 1 (.005 0.004
|RYPPX — RZDCX| 11 0.005 0.008
|RYPPE — RYPDWI T 0.003 0.005
|RYPPE — RYPDX| 11 0.002 0.006
|RYFPPW — RYFPDX| 1 0.003 0.004
| RZDCE _ REZDCW| 1 0.002 0.002
| REZDCE _ RZDCX| 0.004 0.008
| REDCW _ RZDCX| 1 0.004 0.007
| t/T | 14 | 18 |

Table 4.2: Upper limits for various metrics for a DAQ run’s R3 measurement to be self-
consistent; DAQ runs which do not satisfy all of these requirements are omitted from analysis.
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Run 12 Rpate-safe _ RODF yg Run Index
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Figure 4.9: Run 12 Rj3 from rate-safe corrections method minus Rz from CDF corrections
method vs. run index for BBC (top), ZDC (middle), and VPD (bottom).
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Figure 4.10: Run 13 Rj3 from rate-safe corrections method minus R3 from CDF corrections

method vs. run index for BBC (top), ZDC (middle), and VPD (bottom).
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Run 12 RZP€ — RYPD vs. Run Index
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Figure 4.11: Run 12 R3 from ZDC minus R3 from VPD vs. run index; in order from top to
bottom, the plots are for CDF corrected E, W, X, and rate-safe corrected.
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Run 13 RZP€ — RYPD vs. Run Index
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Figure 4.12: Run 13 R3 from ZDC minus R3 from VPD vs. run index; in order from top to
bottom, the plots are for CDF corrected E, W, X, and rate-safe corrected.
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4.5 Miscellaneous

Lastly, we mention a couple of additional details regarding the relative luminosity that do

not fit into any of the above discussions.

4.5.1 Anomalous Bunch Crossings

For every fill, the numbers of corrected (and uncorrected) scaler counts were plotted as
a function of bunch crossing number. Abort gaps were verified and any bunch crossings
that had an anomalously low number of counts were omitted from the relative luminosity
computation. Bunch crossings which had undefined spin were, by default, also omitted; this
includes abort gaps as well as bunch crossings 69 and 70 for the first few fills analyzed in
Run 13.

Furthermore, for Run 13 fills 17512-17520, the first two bunch crossings coming out of
each abort gaps had somewhat lower counts. These bunches were not filled with the normal
number of protons, according to the RHIC wall-current monitors, and were also removed
from analysis. Any other bunch crossings which had abnormally low luminosities were also
removed. Omitting bunch crossings from the relative luminosity analysis in turn omits their
FMS 7% from the Aﬂ analysis, while also greatly improving all of the aforementioned

consistency metrics.

4.5.2 N, vs. Bunch Crossing

When plotting the number of bunch crossings NV, as a function of bunch crossing number,
an unexpected sigmoid-type function is observed. See figure 4.13 for an example, where
for each bunch crossing, we plot the ratio of its Ny, to Ny, in bunch crossing zero. This
effect is negligibly small in the context of a relative luminosity analysis; it is on the order
of 2 x 107 and enters the relative luminosity analysis via the corrections equations (both
CDF and rate-safe). It was finally solved near the beginning of Run 15: the issue was in
the bunch counters as an “extra revolution tick reset.” After the fix, a typical plot shows a
spike at bunch crossing 0 coincident with the start up time for the DAQ run, as well as a
step of one count at the bunch crossing where the DAQ run ended. This issue is completely

negligible for Runs 12 and 13, however.
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Figure 4.13: Relative Ny, vs. bunch crossing number for an example run, showing the typical
sigmoid behavior.
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Chapter 5
Systematic Uncertainties

The overall uncertainty on A7LFOL and on pr, the kinematic variable in terms of which the A7LFOL
measurement is presented, must be assessed. This chapter presents systematic uncertainties
on A’,ﬁ which come from the relative luminosity and from a nonzero transverse component
in the polarization, followed by a determination of the overall systematic uncertainty on pr,

which comes from energy, position, and vertex uncertainties.

5.1 Relative Luminosity Systematic

The dominant systematic uncertainty on A’LrOL comes from the relative luminosity deter-

! Three schemes for determining this systematic have been explored: via direct

mination.
comparison between VPD and ZDC, via scaler asymmetries from bunch fitting, and via
scaler subsystem self-consistency through transverse single-spin asymmetries. Additionally,
Arp as determined using R3 from the VPD was compared to that from the ZDC.

Given the representation of Ay, in terms of yield and relative luminosity R3 as in equation

1.29, one can propagate the uncertainty of R3, denoted Ag,, to an uncertainty on Ayy:

2 _ (8ALL>2A2 _ ( 2(Nyy + N__)(Ni—+N_;) >2A2 (51)
ALL aRg R3 PBPY [(N++ +N,,) +R3 (NJF, + N,+)] R3" .

With the approximation N;,+N__ ~ R3 (N,_ 4+ N_,), the systematic uncertainty becomes

~ . 5.2
2 PgPy R;s (5:2)

I This is a shift systematic uncertainty, which could additively shift the AfUL values higher or lower. There

is also a scale systematic uncertainty from the polarization, which affects A’EUL multiplicatively and will be
discussed in section 6.2.1; however, since the measured AEOL values are close to zero, this scale systematic
does not matter as much as any shift systematic does.
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Distribution of R3(zdc) minus R3(vpd) via rate-safe corrections
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Figure 5.1: Run 12 rate-safe corrected R5PY — RYFP distribution with Gaussian fit.
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Figure 5.2: Run 13 rate-safe corrected RZPC — RYPP distribution with two Gaussian fits.

5.1.1 Direct VPD and ZDC Comparison: Ap, Method

One way to obtain a systematic uncertainty is to simply compare the R3 value obtained
from the ZDC to that obtained from the VPD: we simply define Ap, as RZPC — RYPD.
Figures 5.1 and 5.2 show the value of Ag, for Runs 12 and 13, respectively. For Run 12, the
RMS of the distribution is 2.0 x 10~* and the standard deviation according to the Gaussian
fit is 1.2 x 107*. Run 13, on the other hand, shows a bimodal distribution with standard
deviations 2.9 x 10~* for the lower peak and 3.3 x 10~* for the higher peak and an overall
RMS of 1.4 x 1073,

It turns out that the two separate Ag, peaks in Run 13 correspond to two different
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spin pattern sets (see section 5.1.3.2, figures 5.3 and 5.4 for the 8 overall spin patterns for
each Run). From the perspective of double-spin asymmetries, there were two classes of spin
patterns in each of Run 12 and 13. Denoting a same-helicity bunch crossing as “S” and
an opposite-helicity crossing as “O”, the double-spin pattern classes can be represented by
listing the double-spin states of the first 8 bunch crossings; we only need to list 8 because
the spin of bunch n is equal to that of bunch n mod 8, for each beam. The pattern classes
are listed in table 5.1.

Bunch Crossing # mod 8 |0 1 2 3 4 5 6 7
Run 12 Pattern Class A: S O O S O S S O
Run 12 Pattern Class B: O S S O S O O S
Run 13 Pattern Class A: S S S S O O O O
Run 13 Pattern Class B: O O O O S S S S

Table 5.1: Double-Spin Patterns, where “S” denotes same spins and “O” denotes opposite
spins.

The main difference between the Runs is that Run 12 alternates between “SOOS” and
“OSSO” whereas Run 13 alternates between “SSSS” and “O000.” The maximum number
of consecutive bunch crossings which have the same double-spin state “S” or “O” is 2 for
Run 12 and 4 for Run 13; consequently, any biases introduced by having multiple consecutive
bunch crossings with same double-spin state will be enhanced in Run 13 with respect to Run
12. This enhancement would only be seen, however, if there was some information from one
bunch crossing spilling over into subsequent bunch crossings. As will be discussed in section
5.1.5, afterpulsing in the scaler systems is a likely culprit and the bimodality of Ag, is a
consequence.

Equation 5.2 is used to convert Ag, into a systematic uncertainty on A7,. For the
polarization, the overall average luminosity-weighted polarization (see section 6.2) from runs
used in the A7, analysis was used: for Run 12 Pz = 0.54 and Py = 0.56 while for Run
13 Pg = Py = 0.57. The average VPD Rj3 values, used for the denominator of equation
5.2, 18 0.9967 for Run 12 and 1.002 for Run 13. For Run 12, we use the standard deviation
(0) from the Gaussian fit as an estimate of Ag,; for Run 13, the standard deviations (o,
and og) of the two Gaussian distributions are averaged together. The resulting systematic

uncertainties are:

1 1 A
o Run 12: Ay,, [Ag,] = > Pop UER:;;S) =21x 1074
1 1 A A 2
e Run 13: AALL [ARg] = 5 . PBPY . [UL( R3) ?_ROS-;%( RS)]/ —4.9x 10—4



5.1.2 Comparison of AZOL via VPD and ZDC: §4,, Method

Another idea to obtain a systematic on A7) is to compare the nominal values of A7, com-
puted using the relative luminosity from the VPD to those from the ZDC. Run 12 has a
04,,, defined as A7, with Rs from the ZDC minus A7, with Rs from the VPD, on the
order of 5-8x107° whereas Run 13 has a § 4,, on the order of 1.5 x 10~%. These differences
are much smaller than any other method used to determine systematic uncertainties from
relative luminosity.

The reason d4,, is smaller in comparison to the aforementioned systematic uncertainty
is because d4,, is sensitive to the mean of Ag,, not its standard deviation. To see this,
consider using the maximum likelihood method for determining a value of d4,,. Following
the same maximum likelihood method used for extracting Aﬂ (appendix K), the maximum

likely 64, is

5 . Zf\il 6ALLZ- /012
Apr — ZN 1/0_2 ) (53)
=1 %

where the sums run over DAQ runs and o; is the statistical uncertainty on the ith run’s 64, .

Working out the details, one finds that the numerator terms are da,, /o7 o< 1/Ag, and the
denominator terms are 1/0? o< 1/ A%S. Since the numerator terms are proportional to 1/Ag,
and Arg, is centered around zero, up to means of 1.8 x 107 in Run 12 and 9.6 x 10~ in Run 13,
the overall value of 64,, is expected to be within the same order of magnitude. Ultimately,

this 04,, method has been abandoned as a systematic uncertainty for this analysis.

5.1.3 Intrinsic Scaler Double-Spin Asymmetries: Ag,, Method

One can also evaluate systematic biases of A’EOL due to the relative luminosity measurement by
measuring a possible residual Ay in one scaler detector while using another scaler detector
to measure the relative luminosity. This method has been employed in various PHENIX
analyses, e.g, as in chapter 4 of [95]. This scaler asymmetry, denoted here as Sy, is extracted
using the bunch fitting technique, which is summarized below; more details are in appendix
H.

In order to relate Sy to a systematic uncertainty on A’LTOL, one must propagate uncer-
tainties on the number of counts in both scaler detectors used in extracting S;;. Referring

to the appendix of [33], the systematic uncertainty is simply

AALL ~ ASLL' (54)
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5.1.3.1 Bunch Fitting Algorithm

Consider Sy as an asymmetry in scaler subsystem S measured while using scaler system
M B for a “minimum-biased” relative luminosity measurement (it does not have to truly be

minimum-biased, it just needs to be another, independent scaler). It is written as

b1 (NgTHNT) - Ry (Ng NG
~ PgPy ° PpPy (Ni*+ Ng )+ RYE (NG + NgT)

Sir . (5.5)

Writing out the relative luminosity RY? in terms of yields in M B allows this asymmetry to

be expressed as

_ 1 (N NgT) [ (Vi + Nag) — (N~ + Ng™*) / (Niis + Nags)
PpPy (Ng" + Ng7) / (Niih + Nyp) + (NG~ + Ng™) / (N + Nyg)

S (5.6)
This is just an asymmetry of the ratios of scaler counts from S to M B; the raw asymmetry
can therefore be extracted by minimizing the x? of the following fit 2 to the ratio as a function

of bunch crossing number:
i
Ng
i
Niug

= C3 (1 + th ZY . 53) N (57)

where the superscripts 7 indicate a bunch crossing number, hp, hy € {—1,1} are the initial
proton helicities, and {cg, 3} are the fit parameters. The raw asymmetry e3 is then divided
by the polarization product to obtain S, while the fit parameter c3 is an overall scaling

proportional to the overall yield.

5.1.3.2 Scaler Asymmetry Measurement

Because ultimately the A{OL analysis uses the VPD relative luminosity measurement, this
section presents the VPD scaler asymmetry Sp; while treating the ZDC as a relative lumi-
nosity measurement; in the language of the bunch fitting algorithm this is a bunch fit to
the ratio VPD/ZDC yields. The rate-safe corrected data is presented here; it turns out that
with the CDF corrections applied, the Si distribution is more than twice as wide as the
distribution derived using rate-safe corrections.

The distribution of Sy, was analyzed for each spin pattern separately as well as for all
spin patterns for an overall distribution. For each Run, there were 4 different spin patterns

for each beam, numbered 1-4. Pattern 1 is the opposite of pattern 2, and pattern 3 is the

2This is another standard way to think about asymmetries. To see this, consider the raw double-spin
asymmetry e, = (Nyy + N__ — Ny_ — N_4) /N and solve for a particular helicity’s yield in the form of
Nighy = ¢(14+ hphyerr). Plugging in, for example hg = hy = +1, we get Nyy = 2¢Ny4 /N, so the
constant of proportionality is ¢ = N/2. See appendix D for more on thinking about asymmetries in this way.
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opposite of pattern 4. From these beam bunch patterns, 8 different combinations were used
to form the bunch crossing patterns, for example, bunch pattern 1 colliding with pattern
3. Figures 5.3 and 5.4 show the 8 different bunch crossing spin patterns used in Runs 12
and 13, respectively, where the colors are used in the Sy, distributions presented below.
The B and Y brackets represent the spin states of the first 8 bunch crossings, while the
numerical subscript represents which of the 4 bunch patterns are used. The double-spin
pattern classes in terms of Ss and Os is also given in parentheses; 4 bunch-crossing spin
patterns are contained in each class, as mentioned in table 5.1.

Figures 5.5 and 5.6 show the Sy distributions, where the overall distribution is in bold
and the distributions for each spin pattern are colored according to figures 5.3 and 5.4. Run
12 shows a single-mode distribution and all spin patterns agree; it is therefore fit with a
single Gaussian with normalization constant N, mean u, and standard deviation o. Run
13, on the other hand, shows a bimodal distribution, revealing that S is correlated to
spin pattern; this is the same correlation seen in the aforementioned Ag, distribution. This
distribution is fit to the sum of two Gaussian functions, where the parameters are given
subscripts L and R for left and right. Pattern class OOOOSSSS tends to have positive Spr,
(mean pup = 1.6 x 1073) while pattern class SSSSOOOO tends to have negative Sy (mean
pr = —1.6x1073). The widths of the two classes agree: o = 4.0x107% and og = 3.9x 1074

The ATLFOL systematic uncertainty is, according to equation 5.4, approximately equal to
Ag, .. Because Sy, is basically a double-spin asymmetry in the VPD, which could contribute
to the AEOL measurement, the absolute value of the mean Sy, is added to the standard
deviation (from the fit) as a conservative estimate for the overall Ay, ,. As in the Apg,
method, the two standard deviations from Run 13 are averaged together. The resulting

systematic uncertainties are:

e Run 12: AALL [ASLL] = O'(SLL) + |<SLL>| =19x 10

or (Ser) +or(Scr)

e Run 13: AALL [ASLL] = 5

+ ‘(SLLH =4.1x10"*
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Figure 5.3: Run 12 spin patterns legend.
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Figure 5.4: Run 13 spin patterns legend.
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Figure 5.5: Run 12 Sy, for VPD while treating ZDC as a relative luminosity measurement.
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Figure 5.6: Run 13 Sy for VPD while treating ZDC as a relative luminosity measurement.
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5.1.4 Scaler Self-Consistency via Ay Cross Ratio: Ap, Method

A completely alternative method to compute a systematic uncertainty from the relative
luminosity is to measure the transverse single-spin asymmetry Ay in a scaler detector by
two different methods: the cross-ratio method, which does not need a relative luminosity,
and the standard method (similar to measuring Ay ), which does need a relative luminosity.
The cross-ratio Ay can be compared to the Ay measured using the relative luminosity; a
difference between the measurements indicates how much the asymmetry is biased by the
relative luminosity.

The cross-ratio method (see, for example, [56]) exploits the following azimuthal symmetry
in order to cancel out the need for a relative luminosity measurement; this technique cannot
be done for any double-spin asymmetry. Let Ny be the 7¥ yield for incoming spin-up(down)
protons and let L4y be the luminosity. Let €2 be the product of efficiency and acceptance
for a detector. Now assume the detector is split left and right, and denote their yields,
luminosities, and acceptance times efficiency by a superscript L for left and R for right. The

assumed azimuthal symmetry is about a 180° rotation about the beam axis:

Np o NENE O NT
OLL, — Rz, U QL. T QRL

(5.8)

By writing out the expression for Ay for both the L and R halves of the detector and
uniting them via this symmetry, one can express Ay as the so-called cross-ratio, which is

independent of a relative luminosity:

(cross-ratio) _ 1 \/NTL N{t = \/N PN
N - p \/NTLNE—I—\/NTR]\QL’

where P is the polarization of the proton beam used to compute Ay.
A value of Ay can also be determined using the associated relative luminosity (R; for
the yellow beam and R, for the blue beam, as defined in appendix B). Denoting the relative

luminosity as r € { Ry, Ry}, consider the difference of the Ay values:

- 1 N:+—rN
Dy — A(cross—ratlo) ot Q 5.10
NN P Ny +rN, (5.10)
The uncertainty on r propagates as
0Dy 1 1 A,
Ap, = A === — 5.11
Dn ‘ or 2 P r (5.11)




The uncertainty on a measurement of Dy therefore is sensitive to a relative luminosity
uncertainty, A, /r; however, this r is a relative luminosity used for a single-spin asymmetry.
Since Ay is not sensitive to polarization, a measurement of Ap  is sensitive to how well the
relative luminosity is in general, and can be used for A;; as well, which just uses different
combinations of incoming spin-states than Ay does. To see this more a bit more clearly,

consider the statistical uncertainties on the relative luminosity (see appendix B); they are

g | o) e BV 4 (2t ) e )

1 (L +L) ’
Ay — (02 402 ) (Lo + Ly + (02 +02) (Lom + Loy’

i (L +Ly) 7
A — (02_+02 ) (Lor+ L)+ (02 +02 ) (Lo + L4y)?

’ (L + L) 7

where o, is the statistical error on L,. If the four luminosities are equal, then although
the relative luminosities would all be equal to one, their errors would be equal to each other.
Under this assumption, we would therefore have A, /r ~ Ag,/Rs.

Using the above assumption, equation 5.11 is similar to equation 5.2. If we assume the
polarization of each beam is the same, P, then comparing equation 5.11 and 5.2 reveals the
approximating relation

1
Aay, ~ 500, (5.12)

For extracting Ay, the VPD is used for a relative luminosity; therefore, Dy is measured
in the VPD. The yields which go into the computation of Dy were taken from the VPD
PMT scaler boards, which provide the azimuthal (and pseudorapidity) segmentation needed
to compute an Ay. The R, and R, relative luminosity values appropriate for east and west
were taken from the VPD rate-safe corrected counts. The ZDC-SMD detector, which has
hodoscope-like segmentation (described in section 5.2), was also used to extract a value of
Dy; the Dy distributions in the ZDC are much wider than those in the VPD, however. The
VPD is ultimately more self-consistent than the ZDC, and this is the primary reason the
VPD is used for the relative luminosity in the overall AEOL analysis.

In Run 12, the VPD PMTSs were not read-out in any scaler system; only the overall VPD
scaler counts were read-out. In Run 13, however, VPD PMT scaler counts were read-out,
and thus the focus of this self-consistency analysis is constrained to the Run 13 VPD. Figure
5.7 shows Dy distributions for the east and west VPD systems. The dependence of Dy on
spin patterns was also assessed by plotting the distributions for each spin pattern listed in
figure 5.4, where the pattern number here is defined as 10 times the blue pattern number
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Figure 5.7: Top row is east VPD Dy data and bottom row is west VPD. Left column: Dy
distribution; black is full distribution and the colors are for each spin pattern (legend in
figure 5.4). A Gaussian fit to the total distribution is also drawn. Right column: Dy vs.
spin pattern number; red crosses within each spin pattern indicate the pattern’s Dy means
and errors, and the red horizontal line is an overall fit to those means.

plus the yellow pattern number. In the east VPD, one can observe some mild correlation
with spin patterns; this correlation is not nearly as strong in the west VPD, however.

The RMS of the east VPD Dy is 3.9 x 10~ and for the west is 2.8 x 10~*. The standard
deviations from the Gaussian fits are 2.8 x 10™* and 1.9 x 10~ for the east and west, respec-
tively; the higher width in the east VPD is attributed to its mild spin pattern correlation.

From equation 5.12, in order to obtain a systematic on AIOL one needs to multiply by an
additional factor of 1/Pg or 1/Py; the correct factor is the polarization which is not already

east

multiplied in Dy, e.g., use Ap, /Pp for the east systematic since D' o< 1/Py. By using

standard deviation from the fit as Ap,,, we have
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AESt 28 x 1074

e East: Ay, [Apy] = Py 057 4.9 x 1074
APt 1.9 x 1074
o West: Ay, [Ap,] = Iny =g =33x 107

e Average over East and West: (Ay4,, [Dy]) = 4.1 x 107*

5.1.5 Correlations of Run 13 Apr, and S;; with Spin Patterns

The exact origin of the Run 13 dependence of Ag, and Sy, on spin patterns remains under
investigation. One possible cause of a correlation with spin patterns is scaler afterpulsing.
Afterpulsing was introduced in section 4.4, and to look for it, we consider bunch crossing
distributions, defined as the number of (rate-safe corrected) scaler counts for each bunch
crossing. We take a true bunch crossing distribution from scaler data and assume it is
the convolution of a scaler signal pulse with an ideal bunch crossing distribution (the ker-
nel). Applying a deconvolution algorithm reveals the true signal pulse shape, including any
afterpulsing.

Figure 5.8 shows bunch crossing distributions for all data in Run 13, normalized over all
bunch crossings. The two usual abort gaps appear in bunch crossings 31-39 and 111-119; the
nonzero number of counts in the abort gaps is likely from beam background, as well as some
residual afterpulsing. Furthermore, about 25% of the data had bunch crossings 69 and 70
empty, creating a divot in the distributions. The ideal bunch crossing distribution is drawn
in the bottom right panel of figure 5.8, and it assumes that each bunch crossing had a single
collision and the bunches were also filled ideally. This ideal bunch crossing distribution will
be referred to as the kernel distribution; its abort gaps have zero counts and its divot at
bunch crossings 69-70 is set at 75% of the typical filled bunch crossing.

The first few bunch crossings after each abort gap, denoted as the post-abort bunch
crossings, show a slow rise in the number of counts; this is much more evident in the BBC
than in the ZDC or VPD. Furthermore, the BBC shows a complementary fall-off of the
number of counts in the abort gaps (this is also seen in the ZDC and VPD, but there the
abort gap counts are down by a factor of 10,000 from the nominal number of counts). These
abort gap and post-abort features are also seen in and after the 69-70 divot.

The most likely reason for this post-abort gap bunch crossing behavior is claimed to be
afterpulsing somewhere in the scaler systems. In order to explore a possible afterpulsing
effect, first let the pulse seen by scaler phototubes be P(t), where ¢ represents time and can
be mapped to bunch crossing number b by multiplying by the bunch crossing rate (RHIC
clock frequency). Let the pulse shape be defined by a single pulse confined to one bunch
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Figure 5.8: Rate-safe corrected number of counts vs. bunch crossing number for the BBC
(top left), ZDC (top right), VPD (bottom left), and for an ideal scaler (bottom right). All
plots are normalized.

crossing, plus an afterpulse A(b):

1
B opV 2T

where op is sufficiently small for the pulse to be confined to within one bunch crossing.
Let K(b) be the kernel distribution as defined above; this is the distribution one would see

if P(t) were ideal and there was no afterpulsing. The number of scaler counts per bunch

P(b) eV 4 A(®D), (5.13)

crossing, denoted N (b), is then modelled as a convolution of the pulse shape and the kernel

distribution:
o0

N = (5 P)0) = [ a8 K@)PO - 5). (5.14)

—00
In an attempt to determine what might have been the original P(b) for a given N(b),
several different deconvolution algorithms were tried. Most of them returned similar results,

but with varying levels of noise and artifacts coming from noise in the N(b) data, from the
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assumption of K(b) and its comparison to the actual bunch filling quality, and from the
deconvolution algorithm itself. The algorithm which resulted with P(¢) shapes with the
least amount of noise was the Tikhonov regularization method in Mathematica; more details
can be found in the Mathematica documentation for the functions ListDeconvolve [96] and
ImageDeconvolve [97].

The deconvolved P(b) results are shown in figure 5.9 for each of the three scaler systems,
along with the deconvolved nominal pulse in order to test the algorithm. The horizontal
axis is bunch crossing number, but the pulse begins at bunch crossing number 60; this is
just a consequence of the deconvolution algorithm and hence the horizontal axis numbers
can be interpreted as the number of bunch crossings after the pulse, plus 60. Figure 5.10
shows a zoom in of the noise level on the deconvolved nominal pulse, which is at the 1%
level. Clearly the BBC shows some afterpulsing effect, since P(b) takes ~ 15 bunch crossings
to settle to zero; the ZDC and VPD pulses decay to zero after 1 or 2 bunch crossings. The
nominal pulse is as expected: a narrow pulse within bunch crossing 61, plus noise.

The bunch crossings with the least amount of afterpulsing effects are those which are
just after the abort gaps, since they feel little-to-no afterpulsing from the preceding abort
gap bunch crossings; however, these post-abort bunch crossings show a strong dependence
on how far they are from the previous abort gap end. After sufficiently many post-abort
gap bunch crossings, the afterpulsing effect is saturated and no more increase in the number
of scaler counts per bunch crossing is observed. Because we are searching for a dependence
on the relative luminosity systematics on spin patterns, we now turn our attention to spin
patterns in the post-abort gap regions.

Table 5.2 shows the absolute value of the difference in the number of S crossings (Ng)
and the number of O crossings (Np) within N, bunch crossings after each abort gap; note
that the spin pattern coming out of each abort gap is the same, since it is a pattern which
repeats every 8 bunch crossings and the post-abort regions begin at bunch crossing 0 and at
bunch crossing 40. In Run 12, the number of S crossings and O crossings balances out every
other bunch crossing. In Run 13, however, the number of S crossings exceeds the number of
O crossings by as much as 4 (and vice versa); if the observed afterpulsing effect occurs for
~ 4 bunch crossings, then we could see a bias in R3 values which correlates to spin pattern
classes A and B. For example, if the first four post-abort gap crossings are OOOOQO, then
we have less-than-nominal O scaler counts which would consequently bias R3 toward higher
values. If the effect is stronger in the ZDC with respect to the VPD (or vice versa), then
the difference in their R3 values becomes biased by spin pattern class; consequently so does
the AEOL systematic uncertainty from Rj3 uncertainty.

The above ideas can be tested by omitting the first few post-abort gap bunch crossings
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Figure 5.9: Deconvolved pulse P(b) vs. bunch crossing number for the BBC (top left), ZDC
(top right), VPD (bottom left), and for an ideal scaler (bottom right). The pulse is centered

at bunch crossing 61.
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Figure 5.10: Deconvolved nominal pulse P(b) vs. bunch crossing number, zoomed in to show
the noise.
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Ny | Run 12 Run 13
1 1 1
2 0 2
3 1 3
4 0 4
5) 1 3
6 0 2
7 1 1
8 0 0
9 1 1
10 0 2
11 1 3
12 0 4

Table 5.2: Double-spin state differences |Ng — No| within N, bunch crossings after an abort
gap.

and recomputing Ag,. Figure 5.11 shows the Gaussian fit results of Ag, distributions for
the omission of N,, post-abort gap bunch crossings, from 0 omitted up to 40. The blue
points indicate two Gaussian fits were used to fit two separate peaks and the green points
indicate one Gaussian fit to one peak. The open magenta points indicate a single Gaussian
fit to what may actually be two peaks, but the two peak fit was too difficult to implement.

The following features in this oscillation are observed:
e Nodes at approximately N,, € {4,12,20,28,36} and anti-nodes in between
e The largest splitting of the peaks is in the N,, = 0 case, that is, in the full data set

e Slight damping, which is likely due to afterpulsing saturating the number of scaler

counts
e The period is 8 bunch crossings, which is the same as that of the spin patterns

e The distance between any node and its nearest anti-node is 4, which is related to the

pattern of 4 “S” bunch crossings followed by 4 “O” bunch crossings
e The amplitude is anti-correlated with the value of |[Ng — Np| from table 5.2

As a complementary study, removal of NV, pre-abort gap bunch crossings was tested.
Figure 5.12 shows the result of the distribution fits. All distributions are bimodal, however,
there is still sinusoidal behavior of the distribution means, with respect to N,,. There is

no value of omitted NV, pre-abort gap bunch crossings for which the distributions merge;
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A R, Gaussian Fit Means vs. N, Omitted Post-Abort bXings
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Figure 5.11: Gaussian fit results for Ap, distributions as a function of number of omitted
post-abort gap bunch crossings, N,,. Blue: 2 peaks and 2 Gaussians; Green: 1 peak and 1
Gaussian; Open Magenta: possibly 2 peaks but 1 Gaussian.
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Figure 5.12: Gaussian fit results for Apg, distributions as a function of number of omitted
pre-abort gap bunch crossings, N,,. In this case, all distributions were bimodal.
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Figure 5.13: Raw ZDCE scaler asymmetry distributions with VPDX as relative luminosity;
Run 13. Each panel is for a different number of bunch crossings after each abort gap omitted
(0-5).

this property verifies that the observed bimodal structure is sensitive to only post-abort gap
bunch crossings.

This test of omitting post-abort gap bunch crossings was also performed on S, although
only up to N,, = 8. The results are similar and are given in figures 5.13-5.14; note that
although the ZDCE/VPDX raw asymmetry with CDF corrections is shown here, the general
result holds for the rate-safe corrected VPD/ZDC Sy, as well.
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Figure 5.14: Raw ZDCE scaler asymmetry distributions with VPDX as relative luminosity;
Run 13. Each panel is for a different number of bunch crossings after each abort gap omitted
(6-9).
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5.1.6 Summary of Relative Luminosity Systematics

Table 5.3 shows a summary of the systematic uncertainties on AEOL from relative luminosity.
While they are mostly consistent with each other, we have ultimately decided to use the
Ay, [Arg,] values in order to be conservative and because it is the method with the simplest

implementation and interpretation.

Method Run 12 Run 13

Ay, [Ag,] 21x107* |49 x 107
Aa,, [As,, ][ 1.9x107* | 4.1 x 107
Aya,, [Apy] || N/A 4.1 % 107%

Table 5.3: Summary of A7, systematic uncertainties from relative luminosity.

This systematic uncertainty is the dominant shift systematic uncertainty on A’LrOL It is
still smaller than the statistical uncertainty, however, which is on the order of 102 for this

analysis.

5.2 Polarization Transverse Component Systematic

While the protons are circulating through RHIC, a transverse polarization is maintained. In
order to achieve collisions with longitudinal polarizations, the spin rotators are used to rotate
the spin states from transverse to longitudinal when the protons enter the STAR hall, and
back to transverse when they exit. This spin rotation may be imperfect, however. A nonzero
transverse component of the polarization just before collision propagates as an additional
systematic to any Ay; measurement.

The ZDC has a hodoscopic scintillator layer with 8 horizontal slats and 7 vertical slats.
This layer is called the Shower Maximum Detector (SMD) layer of the ZDC, or ZDC-SMD
98, 99], and for Run 12 and 13 was used as the main local polarimeter at STAR. Transverse
single-spin asymmetries Ay measured during a longitudinally polarized data-taking period
can be compared to expected Ay values with transversely polarized collisions. The ratio
between these asymmetries for each beam, along with an estimate of the transverse double-
spin asymmetry, are all factors of the associated Ap; systematic. See appendix C for a
discussion of local polarimetry in general, along with a derivation of the A’L’OL systematic
uncertainty from residual transverse polarization; for a more in-depth discussion of local
polarimetry and asymmetries from a quantum mechanical point of view, see appendix D.

Let e7 and £, denote the raw transverse single-spin asymmetries, taken during transverse

(T') and longitudinal (L) data-taking periods, respectively. These asymmetries are measured

152



in the ZDC-SMD. Let Ayy be the transverse double spin asymmetry, measured for 7s in

the FMS and defined as a function of ¢, the pion azimuth, as
ANN = AZ + ATT COS 2@5 (515)

Ay is the overall offset double-spin asymmetry, and Ap7 is the amplitude of the azimuthal
modulation. Letting B and Y denote the blue and yellow beams, the systematic uncertainty

0 . . . .
on A7, due to residual transverse polarization is

L e €L
Ay, [P] = = g'ANN' (5.16)

Figures 5.15-5.17 show the ZDC-SMD raw transverse single-spin asymmetries, for each
beam, plotted versus a run index. Transverse period asymmetries e are from two transverse
fills’ worth of data taken at y/s = 510 GeV during the Run 12 longitudinal startup running
period; longitudinal period asymmetries €7, are from Runs 12 and 13 longitudinal. Constant
fit lines are shown, which indicate the maximum-likely values of these asymmetries and are
used in equation 5.16.

For the transverse double-spin asymmetry Aypy, both Ay and App can be measured
from Run 11 /s = 500 GeV transverse data, using a similar technique to extracting Ayy by
making use of a relative luminosity. The relative luminosity measurement for Run 11 is very
similar to that in Runs 12 and 13. The raw double spin asymmetry is then extracted for bins
in pr using the same Maximum Likelihood Method (MLM) as was used for Ayy; however,
this raw asymmetry must also be binned in azimuth. The azimuthal-dependence of the raw
asymmetry is then scaled by polarization and fit to the functional form Asx, + Apr cos2¢.

Regarding the systematic uncertainty on Ay, only Ay, matters since Apr vanishes upon
averaging over azimuth. Figure 5.18 shows the Ay, result, where vertical error bars are statis-
tical and horizontal error bars are the RMSs of the pr bins. The py binning and 1 boundaries
approximately match those in the AEOL analysis. Because the transverse polarization compo-
nent systematic is a sub-dominant systematic on A{OL, this rough estimate of Ay is sufficient;
a conservative upper bound of Ay < 0.008 is used.

Using the mean raw asymmetries from the 3 datasets in equation 5.16, the systematic

uncertainty from each Run is:

0.0023 0.0025

12: A Pl = : .0.008 = 1.7 x 107 1

Run A [P G055 ooag | 0008 =17 x 10 (5.17)
0.0020 0.0019

Run 13: A, [PL] = : .0.008=1.2x 107" 5.18

u au [P7] 0.055  0.048 % (5.18)
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Figure 5.15: Raw transverse single-spin asymmetries in the ZDC-SMD for fills 16570 and
16578, which had transversely polarized collisions at STAR during Run 12 (y/s = 510 GeV),
vs. an internal run index. The jump in asymmetries around run index 35 represents the
separation between the two fills. The top panel is for the blue beam and the bottom panel
is for the yellow beam.
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Figure 5.16: Raw transverse single-spin asymmetries in the ZDC-SMD for all fills during
Run 12 longitudinal data-taking, vs. an internal run index.
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Figure 5.17: Raw transverse single-spin asymmetries in the ZDC-SMD for all fills during
Run 13 longitudinal data-taking, vs. an internal run index.
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Figure 5.18: Transverse double-spin asymmetries Ay, from Run 11 transverse data, binned
in pr, for outer n region on the left and inner n region on the right. Vertical error bars are
statistical uncertainties and horizontal error bars are pr bin RMSs.
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In comparison to the relative luminosity systematic (~ 107*) and statistical uncertainties,
this is a rather small contribution to the overall AEOL uncertainty; it is an order of magnitude
smaller than the relative luminosity systematic and is basically negligible, but it is still

included in the final AT, measurement for completion.

5.3 pr Uncertainty

The final A7) values will be plotted as a function of 7° pp, thus an estimate of the overall
pr uncertainty for each pr bin must be assessed. This uncertainty has several contributions:
energy uncertainty, vertex uncertainty, position uncertainty, and other systematic uncertain-
ties arising from calibration studies. This section shows how the pr uncertainty is composed
of the different contributions, followed by a discussion of each.

Consider a 7% with 4-momentum

pro = (E, prcoso, prsing, prcotf), (5.19)

which represents a 7° scattered at polar angle  and azimuth ¢. Assume the longitudinal
momentum is approximately equal to the energy, i.e., pr ~ E tan@; this approximation is
acceptable for the forward n range which the FMS occupies. Now consider the 7% decay
photons hitting the FMS a transverse distance of h from the beam, as in figure 5.19 (i.e., h
is defined using the position of the centroid of the photons). Let R, be the distance between

the shower max plane and the nominal vertex, so that tanf = h/R,. Putting these relations

together,
Eh
pT(Ea ha Rz) ~ . (520)
R,
The uncertainties on £ and 6(h, R,) propagate as
UpT UE h URZ
~N— @ — 5.21

where the symbol “@” denotes quadrature summation: A @& B = /A2 + B2. Thus Opr
is linear with respect to pr. Energy resolution, nonlinear PMT response, and calibration
uncertainties give opg, position uncertainty gives oy, and vertex uncertainty gives opg, .

A more accurate determination of the pr uncertainty can be made by making use of
invariant mass and taking into account uncertainties on photon separation and energy im-
balance; however, extra terms which correct equation 5.21, arising from considering the two
photons’ kinematics, are negligibly small (see appendix J).

One could also consider correlation terms in the pr uncertainty. Because there are three
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shower max plane

nominal
vertex

Figure 5.19: Diagram of geometry used to determine pr uncertainty.

uncertainty terms in equation 5.21, there are three possible correlation terms: energy with
position, energy with vertex, and position with vertex. These terms are not included in the
final py uncertainty calculation, for reasons which will be discussed in section 5.3.4.

For every 7” which is used for determining A}ZOL, we know all quantities in equation 5.21
and consequently have a value of o, for each 7°. For each pr bin, we can assemble a
distribution of o, values and from there determine an overall p; uncertainty on each A7,
vs. pr point. The following sections will now discuss in detail the contributing uncertainties:

op, on, and og,.

5.3.1 Energy Uncertainty

The energy uncertainty can be broken into three contributions: energy resolution, nonlinear
response of the PMTs, and calibration uncertainty. By far the most dominant contribution
is from the nonlinear response and the calibration; furthermore, these contributions are
dominant in the overall pr uncertainty. Letting () represent the energy resolution, G' the
uncertainty from nonlinear response, and C the uncertainty from calibration, the energy
uncertainty is decomposed as

c_ 9 gaac (5.22)

E VE
5.3.1.1 Energy Resolution

The measured energy in a calorimeter is proportional to the number of particles in the

electromagnetic shower, denoted N, which follows a Poisson distribution. Since the mean
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value of N is equal to its variance 0%, we have

vV N 1
IN _ VI . (5.23)
N N VE
Thus energy resolution is typically quoted in terms of v E:
o8 _ Q. (5.24)

for @ € (0,1), which depends on the calorimeter material, setup, and energy measurement.
While the energy of a pion is the sum of energies of its decay photons, the energy

resolution of the pions is the same as that of the decay photons, because, given £ =) . E;,

2
o3 = Z (gg) oy = ZUQEz' = X:QQEz = Q’FE. (5.25)

An attempt to measure an estimated energy resolution for a single FMS cell was made

we have

at Fermilab, by making use of an electron beam which was being used for another test
experiment for STAR calorimetry, experiment T-1018 [100]. A single large FMS cell was
wrapped in mylar and coupled to a PMT (radius 1.4 cm, i.e., small cell sized), such that
the coupling could be easily adjusted; the original purpose of this test was to determine the
dependence of photo-electron yield and energy resolution on the optical coupling between
the PMT and the Pb-glass, with the goal to select an optimal coupling for a proposed
refurbishment of the FMS. The cell and coupled PMT were made light-tight, mounted on a
remotely-controllable stage, and the setup was moved into electron beams with energies of
8 GeV and 16 GeV. Data were then acquired for several different PMT-Pb-glass couplings,
in coincidence with several other monitoring detectors, such as a Cherenkov detector, beam
hodoscope, and scaler counters.

The criteria used for event selection included a hodoscope geometry cut, which ensured
centered electron incidence, as well as minimum ADC cuts on associated Cherenkov and
scintillator detectors. The momentum spread of the beam was measured to be about 1.8%,
however the cell’s energy resolution measurement was heavily dominated by light leakage
out of the sides of the cell; it would have been better to test a matrix of cells for an energy
resolution measurement. We have therefore chosen to be conservative and to not try to
deconvolve the “true” energy resolution from the beam momentum spread.

Because this test at Fermilab was not designed to measure the energy resolution and was
focused more on optical couplings, it is not a good measurement of the energy resolution

of the FMS; nonetheless, it is the only measurement available at the time of this analysis.
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Figure 5.20: op/FE vs. PMT-to-Pb-glass air gap length for two different e~ beams; data
from test conducted during beam time at Fermilab test experiment T-1018.

Additionally, it was only done for a large cell and no tests were performed with a small cell.
Fortunately, this pr systematic contribution is sub-dominant when compared to the G and
C terms in the overall energy uncertainty.

Figure 5.20 shows a plot of the measured energy resolution as a function of various air-
gap sizes between the Pb-glass and PMT; an air-gap size of 0.1 mm actually represents a
test where the PMT and the Pb-glass were coupled with optical grease. No substantial
dependence on optical coupling was observed in the energy resolution, therefore a fit to a
constant is shown in order to estimate a value of () ~ 0.2. The resolution is slightly better
for an air gap of 1-2 mm for the 8 GeV beam case, which motivated us to add air gaps
between the glass and the PMTs during the FMS refurbishment after Run 13; simulations
confirmed this idea.

This estimate of @ ~ 0.2 is likely an overestimate, given the light leakage out of the sides
of the cell as well as the momentum spread of the electron beam. Even at the estimated scale
of (), it represents a sub-dominant systematic uncertainty compared to the other contribu-
tions to the energy uncertainty. Furthermore, it is measuring an event-by-event smearing
of the energy, not a bias, and therefore gets averaged out in the overall A7LFOL measurement.

Ultimately it was decided to drop this contribution to the py systematic uncertainty.
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5.3.1.2 Calibration Anchor Point

The fit algorithm for 7% has a tendency to overestimate the 2-photon opening angle at higher
79 energies, as described in section 3.4.5. Because of this overestimation of opening angles,
the reconstructed invariant two-photon mass depends on the total energy: a monotonic
increase of the mass as a function of energy is observed. Calibration involves the adjustment
of PMT gains (during RHIC running periods) and gain corrections (after RHIC running)
to shift the 7° mass peaks to be as close as possible to the real 7% mass, uniformly over
all regions of the FMS. Since the mass has a dependence on energy, the calibration result
depends heavily on what range of 7 energies are selected to calibrate with; this choice of
energy range is known as the calibration anchor point.

The anchor point range was 28 + 10 GeV for the large cells and 40 + 10 GeV for the
small cells; most of the 7’s are found within these energy ranges. If a different calibration
anchor point energy were chosen, the overall calibration would shift. For relevant changes
in the anchor point, the overall energies could change up to about 5%, which represents
another possible systematic bias in pp. Therefore, a value of C' = 5% was adopted as a
contribution to the pr uncertainty, arising from the overall choice of calibration. This is the

most dominant contribution to the pr systematic uncertainty.

5.3.1.3 Nonlinear Response

The overall A’LTOL analysis is performed with an implementation of the day-0 nonlinear gain
g(E) correction applied (see section 3.5.2). The result is compared to a parallel analysis of the
data with the day-D corrections applied, as well as a control analysis with the corrections
disabled altogether. By comparing the p;y means, i.e., the plotted positions of the final
AEOL data points, for the day-0 case with the day-D case, the py systematic uncertainty
contribution G is determined. The value of G is interpreted as the additional shift in pr that
would incur had we taken into account the increased nonlinearity caused by the radiation
damage. The day-0 model is better understood as a basic nonlinear E-dependent gain
correction, whereas the day-D model as an extention to include radiation damage effects is
not as well-vetted; therefore, we have decided to assign the fractional difference between the

day-0 and day-D pr means as a value of G:
(") = (™)

day-0
<thy >

G:

(5.26)

Figure 5.21 shows a comparison of the day-0 pr distribution in blue to the day-D distri-

bution in red. The overall shape looks the same, hence the pr means do not change by much.
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Figure 5.21: Comparison of py distributions between day-0 in blue and day-D in red. The
day-D distribution has slightly more events, as explained in the text.

There are some additional events in the pr peak region from the day-D model compared
to the day-0 model; this is because all of the kinematics cuts apply to the g(F)-corrected
values (i.e., not the uncorrected, observed values), which differ between the day-D and day-0
models. Some events which satisfy kinematic cuts after day-D corrections may not satisfy
them after day-0 corrections. In fact, more events satisfy kinematic cuts for either day-0 or
day-D corrections than for the case where no nonlinear correction is applied; this is because,
in general, the g(F) corrections tend to reduce E and pr, and this reduction is stronger for
higher values of E and pr (see figures 3.18 and 3.19). More events near the upper limits
of the cuts are being brought down in £ and pr into the accepted kinematic region; fewer
events near the lower limits of the cuts are “falling” out of the accepted region. Thus overall,
applying g(FE) corrections tends to increase the overall number of events which pass all cuts.

Table 5.4 lists the py means for each pp bin in the A7, analysis for each of the three
parallel analyses. The value of G is also listed; this contribution to the overall pr systematic
uncertainty is very small. Note that the fractional differences in pr means from the control
analysis are not very high either; this indicates that the net effect of the g(E) correction on

the pr means is effectively washed out.
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| pr Bin | No g(E) | Day-0 g(E) | Day-D g(E) | G |

pihresh4. 35 3.91 3.91 3.89 -0.41%
Outer Region 4.35-5.15 4.73 4.73 4.73 -0.07%
5.15-6.15 5.62 5.62 5.62 -0.09%
6.15-pp™* 7.08 7.08 7.07 -0.06%
plreshi 95 2.50 2.50 2.50 0.17%
Inner Region 2.95-3.70 3.33 3.33 3.33 -0.04%
3.70-4.60 4.11 4.11 4.11 -0.01%
4.60-pp®* 5.37 5.37 5.36 -0.29%

Table 5.4: Mean pr values for each bin and for the cases of no g(E) correction, day-0
g(E), and day-D g¢(F); the pr systematic uncertainty contribution G is also given, which
compares day-0 g(E) to day-D g(E) pr means. Note that while not many significant figures
are printed in the table (because the pr uncertainty is already at least 5% from the calibration
uncertainty), the calculation of G used all available digits, verifying how little G contributes
to the overall py systematic uncertainty.

5.3.2 Position Uncertainty

Although position uncertainty is expected to be a sub-dominant contribution to the pr
uncertainty, it is nonetheless important to estimate its magnitude. Consider a single photon
cluster in the FMS. Let E; denote the energy of the ith tower in the cluster and let (x;, ;)
be the coordinates of that tower. Following [101], consider the photon position (Z,y) as

approximated by the energy-weighted mean of the towers:

Linib (5.27)

Derivatives of  with respect to each tower energy E; are (z; — Z) /E. Given that the energy

resolution is op, = Q*E;, the uncertainty on the centroid is

@

o2 = (5.28)
where 62 is the energy-weighted variance,
E; (z; — 7)°
Gli=Y" % (5.29)

Therefore the error on the photon position, approximated here by the cluster centroid, is
proportional to 1/ V'E, where the constant of proportionality will be henceforth denoted
W = Qao,.
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In addition to the photon centroid, the penetration of the photon into the glass before
the shower initializes must also be taken into account. If the photon has a polar angle
from the vertex, then the projection of one radiation length X to the front plane of the
FMS is Xysin#. This amount represents another possible uncertainty in the reconstructed
transverse position of the photon, especially if the incident angle is high.

A value for W was determined in the RADPHI calorimeter at Jefferson Lab [102], which
is an array of FMS small cells. This value can be extended to the large cells as well, by
multiplying by a factor 6 cm / 4 cm, which is the approximate ratio of large to small cell
transverse sizes. Radiation lengths were measured in other Pb-glass arrays which utilized
the same glass; see [76] for large cells and [77] for small cells. Values of W and X, are given
in table 5.5.

Large Cell Small Cell
W | 1.065 cm - GeV'? | 0.71 cm - GeV'/?
Xo | 3.2cm 2.5 cm

Table 5.5: W and X, values for FMS Pb-glass, measured by RADPHI for small cells and
extrapolated to large cells.

Another contribution to the systematic uncertainty is due to the choice of shower shape
model. As mentioned before in section 3.4.2, one can use an asymmetric shower shape
model, which takes into account corrections from the incident photon angle. The symmetric
shower shape model, which is independent of incident angle, is employed in this AZOL analysis,
therefore the possible bias from having not applied incident angle corrections must be taken
into account.

At the highest angle of incidence accepted in the FMS, using the asymmetric shower shape
returns a photon position a distance of, at the most, 0.5 cm from the position returned from
the symmetric shower shape. This bias has been confirmed in simulations. Furthermore, as
was mentioned in section 3.4.2, the bias is much more sensitive to the choice of z plane onto
which the photon trajectories are projected, rather than on the transverse shower shape.
Nonetheless, the bias represents another contribution to the overall position uncertainty,
and is denoted as A = 0.5 cm.

Putting everything together, the full position uncertainty is

%74
op = ——= @ Xysinf @ A. (5.30)

VE

Given typical values of E and 6, the typical contribution to the pr systematic is op,/h ~ 1%,

which is sub-dominant, but not negligible.
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Figure 5.22: Vertex distribution, in particular, the z-position of the vertex as determined
by the VPD. The black distribution is for all events, magenta is for FMS-JP2, yellow for
FMS-LgBS1, and green for FMS-SmBS1.

5.3.3 Vertex Uncertainty

The offset in the vertex is another possible bias in the overall pr of events seen in the
FMS. This offset, denoted og_, contributes to the pr systematic as or_/R,, where R, is the
distance between the FMS and the nominal vertex position, 7.2 m. Figure 5.22 shows the
vertex distribution in Run 13, along with distributions filtered by FMS trigger.

Since in Run 13 only the large cells were ultimately analyzed, the LgBS1 trigger is the
most unbiased trigger selection on the vertex distribution, which would give a reasonable
estimate of the vertex offset in the A7, data set. The mean of the LgBS1-filtered vertex
distribution is about 9.8 c¢m, which gives a value of op_ /R, = 1.4%; other trigger-filtered
distributions give a very similar mean, so this choice of trigger is of little impact. Further-
more, the Run 12 distribution was similar, and therefore this value of 1.4% is used as an

overall value for this pr systematic contribution.

5.3.4 Correlation Terms in pr Uncertainty

We now return to the question of including correlation terms: energy with position, energy

with vertex, and position with vertex. The measured energy is physically not correlated with

the vertex offset, therefore the energy and vertex term vanishes. The position uncertainty

and vertex offset could be correlated, however this correlation term also includes factors
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for the position and vertex uncertainties themselves, both of which are small with respect
to correlations involving energy uncertainty. Therefore, the position and vertex correlation
term is omitted as negligible. Finally, regarding the energy with position term, the dominant
energy uncertainty contribution, C', is from the calibration anchor point and is not corre-
lated with position. The sub-dominant contribution, G, from including radiation damage
considerations for the nonlinear gain correction, can be correlated with position and needs
some careful thought.

Consider the case where the energy of a shower is underestimated, that is, £, < F;. This
case occurs because the initial part of the shower was not detected, since it was effectively
blocked by attenuation due to properties of the Pb-glass as well as radiation damage. The
part of the shower that is detected, however, averages out in the transverse plane to a
greater value of h than it would have had the entire shower been observed. Therefore,
underestimating F leads to an overestimate of h and vice versa; the energy and position
uncertainties are thus anti-correlated. The derivatives of pr (E, h, R,) with respect to E and
h are both positive, so the anti-correlation therefore makes the overall energy and position
correlation term negative and would serve to reduce the overall pr uncertainty. Because this
correlation is based on the sub-dominant p7 uncertainty contribution G, it is expected to be
small. Therefore, neglecting this term altogether returns an overall py uncertainty which is a
slight overestimate. Ultimately, the more-conservative path was chosen and this correlation

term was omitted altogether as well.

5.3.5 pr Uncertainty Result

To summarize the above discussions, the full py systematic uncertainty is

T _(Ge e~ K@Xosine@fl]@{a&}, (5.31)
pr h|VE R,
where the contributions from energy, position, and vertex uncertainties have been respec-
tively bracketed. The overall contribution from energy uncertainty ranges around 5-6%, and
is dominant and also dependent on which py bin is considered. The position and vertex
uncertainties contribute about 1% and 1.5%, respectively, and when added in quadrature
with the energy uncertainty, give an overall o, /pr of approximately 5-6%.

The o, value is plotted in figure 5.23 as a function of pr, for all 7° events in the A’LrOL
analysis. The py binning can be seen in the small discontinuities at the py bin boundaries,
where the slope increases slightly when proceeding to higher pr. The overall value of o, /pr

is 5.3% for both the outer and inner regions.
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Figure 5.23: Full py uncertainty vs. pr for outer region (top) and inner region (bottom).
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5.4 Summary of Systematic Uncertainties

Table 5.6 shows a summary of all of the systematic uncertainties which are included in the
AEOL analysis. They are organized by type and origin, indicated in the classification column;

approximate typical values for each uncertainty are given in the rightmost column.

’ Uncertainty H Symbol \ Classification \ Typical Value ‘
Relative Luminosity Ay, [Ag,] A7 Shift 2-5x107*
Polarization Transverse Component | Ay, [P*] A7 Shift 1-2x107°
Overall Polarization op,py /PPy A’LrOL Scale 6.7%
Calibration Bias C pr Bias 5%
Nonlinear Gain Correction G pr Bias < 0.4%
Energy Bias in Position W/ hWE pr Bias < 0.5%
Position Bias from Shower Depth Xosind/h pr Bias < 0.5%
Position Bias from Shower Shapes Alh pr Bias < 1%
Vertex Offset | or/R. | pr Bias 1.4% |

Table 5.6: Summary of A7, systematic uncertainties.
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Chapter 6

0 .
77 Analysis Procedure

So far we have discussed the 7° event selection in chapter 3, the relative luminosity in
chapter 4, and systematic uncertainties on AEOL and on 7Y transverse momentum in chapter
5. This chapter shows how these components are combined into the final ATLFOL measurement.
The kinematic binning will be discussed first, followed by the Run 12 and 13 polarization
measurements from the RHIC Polarimetry Group. After that is a discussion of how the 7°
yields, relative luminosities, and polarizations are combined for the entire data set into an
AEOL measurement for each kinematic bin. This is followed by a study of the 7% signal and
background fractions, which are used to correct for a possible background Ay, ;, contribution to

EOL. The full, background-corrected A}i measurement as a function of py will be presented

in the next chapter.

6.1 Kinematic Binning and Means

Table 6.1 shows the kinematic bins used in the AEOL analysis. Two 7 regions are defined: an
outer region which has mostly large cells and an inner region with mostly small cells. The
n-ring between the regions is set at 3.15 as a rounded value which appropriately separates
the large cells and small cells calibration schemes, as presented in the M vs. n plot back in
figure 3.6. For the outer region, both Runs 12 and 13 are analyzed, whereas only Run 12 is
analyzed for the inner region, because the small cells were heavily radiation-damaged during
Run 13. Furthermore, only the first half of Run 13 data was ultimately analyzed, because
we determined the radiation damage to be too severe in the second half.

Four pr bins are defined separately within the two 1 regions. Their boundaries were
determined by approximately equalizing the 7° yields within each bin, given the full pr
distribution of the 7% considered in AEOL. The value pi**sh is a time-dependent pr threshold,
which was discussed in section 3.7.2; the lowest kinematically-allowed value of pr, given by
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’ n Region \ pr Bin H pr Range (Gev) \ E Range (GeV) \ n Range
1 P4 35
4.35-5.15
5.15-6.15
6.15 pie

pIesh) 95
2.95-3.70
3.70-4.60
4.60-p

Outer Region 30-70 2.65-3.15

30-100 3.15-3.90

Inner Region

W DN ] | W DN

Table 6.1: Kinematic bin ranges for the AEOL analysis. Two 7 regions were used, each divided
into four pr bins.

| 1 Region | pr Bin || (pr) (GeV) | (E) (GeV) | (n) |

1 3.01 36.8 2.02

. 5 173 2.7 5.83

Outer Region — 5.62 19.9 7.87
1 708 53.6 2.80

1 2.50 1.2 3.49

oner Region |2 333 527 344
3 111 63.8 3.42

1 537 792 333

Table 6.2: Kinematic bin means for the A’L’OL analysis.

PN~ FMIn/coshp™aX ) is less than pieh for both 7 regions. The upper limit of pp is
pmax . Bmax [ cosh ™ which gives a value of p®* = 9.8 GeV for the outer region and 8.6
GeV for the inner region.

Table 6.2 lists the means of the kinematic variables pr, F, and n for each of the pr
bins. Note that the pr means quoted here are the values at which the AEOL data points are
plotted; these pr means are background corrected (see section 6.4.1), but they are negligibly
different from the uncorrected values. The F and 7 values are not background-corrected.
These kinematic means are needed in the forthcoming global analysis of Ag(x), the polarized

gluon distribution function, for which this A’,{(Z measurement is a key piece.

6.2 Polarization

An Ajp; measurement requires three ingredients: particle yields, relative luminosity, and
polarization. The first two ingredients are obtained from STAR detectors and have been

discussed, however the polarization of the proton bunches is measured by an independent set
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of polarimeters which are located in the RHIC ring diametrically opposite STAR. They are
maintained by the RHIC Polarimetry Group at RHIC. For further details of the polarimetry
measurement, see [103] and references therein.

For each fill, the polarimetry group provides two numbers along with their uncertainties:
the initial polarization at the beginning of a fill, Py, and the time dependence of the polar-
ization, P, = dP/dt. For a given DAQ run which occurs T" seconds after the beginning of a
fill, the polarization is

P(T)= P+ PAT. (6.1)

The value of T" for each run in this analysis is taken from the middle of the run. Typically
a few polarization measurements are taken per fill.

These polarization measurements are then taken together within each fill and combined
into a luminosity-weighted average, returning one value of the polarization for each fill; the
FMS JP2 trigger was used for the luminosity measurement. Statistical and systematic errors
were also propagated on a run-by-run and fill-by-fill basis; details can be found in appendix
[ as well as the polarimetry group’s analysis note, [103].

Figures 6.1 and 6.2 show the polarizations for the blue and yellow beams as well as the
polarization product, as a function of a run index. Both the time-dependent polarization
P(t) (in blue) and the luminosity-weighted average P(t) (in magenta) are plotted. The data
shown in these figures are limited to the runs which are used in the A’LrOL analysis. For scaling
the raw double-helicity asymmetry to A’LFOL, the luminosity-weighted average polarizations
are used on a fill-by-fill basis. The overall luminosity-weighted polarizations and their errors

were also computed for both Runs 12 and 13; these numbers are given in table 6.3.

| | Run12 | Run 13 |Runs 12413 |

Psz ][ 0.54+£0.019 [ 0.57+£0.019 [ 0.55+0.019
Py || 0.56 £0.019 | 0.57 £0.019 | 0.56 &+ 0.020

PsPy | 0.31£0.020 | 0.324+0.021 | 0.31 £ 0.021
Lint 57.4 pb! 6.0 pb* 63.4 pb~*

Table 6.3: Overall luminosity-weighted average polarizations with uncertainties; blue beam,
yellow beam, and product polarizations are shown, as well as the overall integrated luminos-
ity. See appendix I for details.

6.2.1 Scale Systematic on AZOL

The final value of Ay is a measured raw double-spin asymmetry e, scaled by the polar-

ization product: Ap=¢er/PpPy. Because of this scaling, an additional scale systematic on

A7 is assigned. Table 6.3 indicates this scale systematic for Runs 12 and 13 combined is
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Figure 6.1: Polarizations vs. run index for Run 12; blue line is P(¢) and magenta line is the
luminosity-weighted average of P(t) within each fill.
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Run 13 Blue Beam Polarization vs. Run Index
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Figure 6.2: Polarizations vs. run index for Run 13; blue line is P(¢) and magenta line is the
luminosity-weighted average of P(t) within each fill.
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opypy /PPy = 6.7%. This is a systematic uncertainty on A 7, that is independent of all
the aforementioned shift systematic uncertainties. Furthermore, the aforementioned shift
systematic uncertainties define an uncertainty of the overall offset from zero; on the other
hand, the polarization scale systematic uncertainty defines an uncertainty in the overall

multiplicative scale of the asymmetry.

6.3 Maximum Likelihood Method A;; Computation

Data at STAR are typically taken in half-hour segments, called DAQ runs. In order to
combine the data from all DAQ runs into a single measurement, a Maximum Likelihood
Method (MLM) is employed. See appendix K for the full derivation; only the final formulae
are presented in this section.

Recalling equation 1.29, the asymmetry for a single run ¢ is expressed as

1 (NY*Y+N77) =R, (N + N7 1)
: P%P}” (NF*+N;77)+Rs, (N7~ + N 7))’

A = (6.2)

where f(i) is the fill which contains run . Instead of measuring Ay, for each run, we
combine the yields, relative luminosities, and polarizations into a single formula which gives

the overall maximum likely A;;, denoted by Ay ;:
X Piy Pl (N7 + N7T) = Rs, (N + N1

ALL - 2 .
S (PR PYo ) [(NFF 4 N77) + By, (NF 4 N9)]

(6.3)

While this expression looks similar to equation 6.2, it is a summation over a summation.
Moreover, the numerator summands are weighted by the polarization product, whereas those
in the denominator are weighted by the polarization product squared.

With PPPY the average polarization product and N = >, (Nt + N, ~ + N~ + N; )
the total yield, the simplified statistical uncertainty is

1

The more-exact statistical uncertainty is given in appendix K, which is what is actually used

in the calculation, but the result is extremely close to this approximation.
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6.4 Background Corrections

Any measured asymmetry of any signal could be influenced by a possible nonzero asymmetry
in the background under the signal. Given measurements of both the signal+background
asymmetry and the background asymmetry alone, the signal asymmetry can be extracted
from the signal+background asymmetry. Such a procedure is called the background correction
to the asymmetry and it is applied to A’LFOL, given a background A;; measurement from the

mass window sideband region, which was discussed in section 3.7.3.

6.4.1 Implementation

Let Ajs be a measured asymmetry in some mass signal window, with a nonzero background;
Ay includes both the signal and background contributions. Let Ag be the asymmetry of
the background and let Ag be the signal asymmetry, which we are trying to extract. Let F
be the signal purity, defined as the fraction of the events within the mass window that are
the true signal events; thus 1 — F' is the fraction of events which are from the background.

The measured asymmetry is then decomposed as
Ay =FAs+ (1 — F)Ag. (6.5)

The signal asymmetry, corrected by the background asymmetry, is therefore

1 1—-F
Ag = —Ay —
ST M I

Ap. (6.6)

The uncertainties of Ay, Ap, and F', written 04,,,04,, and o, propagate to the uncertainty

1)\? F—1)\? Ap — Ay \?
0'1243 = (F) 0-124M + (T) 0'124]3 + (T) O'%;v. (67)

Typically asymmetries are measured as a function of a kinematic variable v € {n, pr, E'}

of Ag as

or a set of such variables. The mean v in each measurement bin, denoted by (v), also needs
to be corrected by the background. Its correction and uncertainty can easily be obtained by
replacing the As in equations 6.6 and 6.7 by (v)s. The final asymmetry plot is of AIOL vs. pr
and we use A7, = Ag, ATot = Ay, and ABF = Ap, as well as similar notation for the mean

pr values. The background correction is then

0 1 Tot
ALL - ALL -

F

1-F
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(7)) = % {pr’) — % - (p2%). (6.9)

In practice, the shift in asymmetry due to the background correction is smaller than the
statistical uncertainty, but it is sometimes larger than the systematic uncertainty; the shift
in (pr) is typically smaller than 0.01 GeV and is negligible, but nonetheless implemented.
A correction on the pr uncertainty is not implemented here, since the correction itself is
negligible and the final pr uncertainty given in the A’EOL measurement plots represents an
overall systematic uncertainty anyway.

Regarding the background-corrected uncertainty, o4, from equation 6.7, one can gain
an understanding of how large the increase in statistical uncertainty will be, which arises
from including the lower-statistics background asymmetry Apg determination along with the
higher-statistics A, in order to produce Ag, which has less statistics than A,;. Let Ny, and
Np be the number of events used for A, and Ap, respectively. Then, with P the polarization

product,

1 1 1
— — = - 6.10
T = BN, PNy OB CWVIZF (6.10)

Inserting this relation into equation 6.7 and assuming Ag & A, gives the ratio of background-
corrected uncertainty to the original uncertainty as
A 2—F

5 6.11
T Ay F ’ ( )

which falls toward 1 as F' increases; for F' > (.75, the gain in uncertainty is less than a factor
of 1.5.

For each runset, which is a set of 5-10 consecutive (good) runs, contributions to AT%
and to AB¢ are included in separate MLM sums of equation 6.3. The final maximum likely
values of these asymmetries are those which are used in equation 6.6 and equation 6.7 is
used as the corrected statistical uncertainty. We now turn to a determination of the signal

purity, F'.

6.4.2 Signal and Background Fitting

Let m be invariant mass. The 7° (or n) signal is modelled by a skewed Gaussian,

G(m) = exp [—% (m;“)zl X {1+erf {% : m;“} } (6.12)

where the fit parameters are p, the expected and un-skewed signal mass, w, the signal

width, and «, which is related to the skewness. The background is modelled with a linear
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combination of Chebyshev polynomials of the first kind:
B(m)=1+ Z brTi(m), where Ty (cos®) = cos (k@) . (6.13)
k=1

The degree used here is n = 3 and the coefficients {b} are the fit parameters. Written
explicitly,
B(m) =14 bym + by (2m* — 1) + b3 (4m® — 3m) . (6.14)

Typical values of {by, by, b3} obtained from fitting are around

{1.5t0 2, —0.5t00.5, 1to 1.5} for the outer region,
{-15t0 —1, —3to —0.5, 1to 1.5} for the inner region.

Now define the following additional fit parameters: the estimated number of pions N, n-
mesons N, and background events Ng. Letting G.(m) and G, (m) be the skewed Gaussians

for the pions and 7-mesons, respectively, the full fit model M (m) is
M(m) = N;Gr(m) + N, G, (m) + NgB(m). (6.15)

The fit functions {G.,G,, B} are considered as probability density functions and are nor-
malized over the full mass range of 0 to 1 GeV. Consequently, the total number of events as

determined by the fit algorithm is
1
/ M(m)dm = N, + N, + Np. (6.16)
0

The signal range, S, over which the purity is calculated is determined using an algorithm
similar to that used in determining the E-dependent 7° mass window, described in section
3.7.3. The same idea of starting from the fit maximum and sliding left and right of the peak
to a fraction of the maximum is used in order to establish a similarly defined signal range.
The endpoints of S, are used as boundaries of integrals used to calculate the 7° purity.

Using the mass histogram H(m), the pion purity F', defined as the fraction of events in

the signal range S, which are pions, is

I
Cin (6.17)

F:Nw'_u
Iy
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where Iy, given a function of mass f(m), is defined as

Iy ::/S f(m)dm. (6.18)

Note that for the case of Iy, the integral over S, is replaced by a sum over the corresponding
mass bins of H(m), a histogram. In practice, it is better to use the background fit B(m)
compared to the data histogram H(m) to determine the pion purity:

Ip e

F=1-Ng-— — N, - —Z. 6.19
B [H n IH ( )

Note that the n-meson contribution is included in case S,, the window corresponding to
G,(m), overlaps into the signal region Sy; this usually does not happen and for the purpose
of discussion can be ignored.

The propagated uncertainty on F'is
OF \* OF \? 2~ OF OF OF OF
2 2 2
~\oN- EY O T2 ) 6.20
o= (v e (5) it 3 i + 23 iy o 620
where the covariances oy, s, can be written in terms of correlation coefficients py, s, via oy, 5, =

Pf 1,010 The uncertainties {on,, 0y, } and correlation coefficients may all be determined

from the fit, and o7, = v/Iy. Putting everything together, the uncertainty is

3
+ ZZN%ITj[Tkajbkabjabk (621)

j=1 k=1

1 NAI?
ot gy fioks

3
+ 2 Z IBNBITk)OkaBO'ka'Nb:| .
k=1

This uncertainty is useful for determining the fit quality, but it does not impact AEOL signif-
icantly, since op is scaled by a factor of (Ag — Ayr)/F? in equation 6.7, which is typically
small.

The signal+background fitting is performed with an extended maximum likelihood fit
algorithm by RooFit [104]. Figures 6.3 and 6.4 show sample fits for the outer and inner
regions, respectively. The fit algorithm was performed runset-by-runset for all p; bins used
in A7,. The fits were to data in a fit window, defined between a lower mass bound of
typically 0.06-0.1 GeV up to an upper bound of 0.6-0.75 GeV. The exact boundaries chosen
depended on the shape of the mass distribution and the performance of the fit algorithm; the

algorithm would tend to be successful for various fit window boundaries, but after a relative
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Figure 6.3: Sample fit results for each of the four py bins of the outer region. The fit legend
is in the first panel. Tall vertical lines denote signal window S, boundaries, and the short
vertical line indicates the upper boundary of the sideband region (which is not used in the
fit or calculation of F').

limit, the fit would fail if the window was too wide. Consequently, the fit window boundaries
were chosen to push toward that limit, in order to maximize the subset of data considered
in the fit. The lowest three pr bins of the outer region included an n-meson fit; all other pr
bins did not show enough of an n-signal to warrant an n-meson fit attempt.

The signal peak fit height does not match the data peak height as well as one would hope,
especially at higher py. This weakness justifies the preference toward using the background
fit and data histogram integrals to calculate F' (via equation 6.19), rather than making use of
the signal fit integral. The sideband regions, along with the n-meson, seem to be reasonably
well-fit for almost all of the runsets, therefore the background fit is more reliable than the

signal fit for providing a measurement of F'.
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Figure 6.4: Sample fit results for each of the four pr bins of the inner region.

6.4.3 Purity Results

Figures 6.5-6.8 show plots of pion purity F' as a function of runset as well as a distribution,
for each pr bin for both n regions. The error bars are from equation 6.21. There is some
slight time-dependence observed in some of the F' values. In practice, one could background-
correct each runset’s Aﬂ value, use each runset’s value of F', and form an enhanced MLM
sum; however, this would require a good measurement of the background asymmetry for each
runset, which is not available since the background (sideband) sample size is much smaller
than the signal sample size. Therefore, a single maximum-likely value of F' for each pr bin
used in AEOL is obtained instead; correcting for time-dependent F' would not improve the A’LrOL
result much, given the context of the error bars on F.

These maximum likely purity values are indicated by the red constant fit lines. Figure
6.9 shows a plot of these values for each of the py bins used in A7, . The error bars are from
equation 6.7. The background level is 20-25% for the outer region and 10-15% for the inner
region.

One might ask if there is a systematic uncertainty on AEOL associated to this background

179



correction. Already, according to equation 6.7, there is an increase in statistical uncertainties
from making this correction. On the other hand, it is reasonable to investigate the A7,
values for different choices of F'. It turns out that for changes in F' within its uncertainty,
changes in A’LTOL are no more than 3 x 10~%, which is comparable to the relative luminosity
systematic uncertainty and well below the gain in statistical uncertainties. We have therefore
left the uncertainty associated to the background correction to be taken into account via the
increased statistical uncertainties.

The application of the background correction is shown in figures 6.10 and 6.11. The
top-left panel of each figure shows a comparison of signal+background asymmetry AT9¢ in
red, to the background asymmetry AP$ in blue. These asymmetries are plotted versus their
pr bin means; the vertical uncertainties are statistical and the horizontal uncertainties are

pr bin RMS values. The bottom-left panel shows the difference A75¢

— ABS versus corrected
pr means, with error bars representing their propagated uncertainties (since AT and AB¢
are taken from separate parts of the M distribution, the uncertainty on their difference
is the quadrature sum of their uncertainties). A fit line is drawn, showing the difference
between A" and AP$ is no more than one standard deviation. The top-right panel shows
the extracted, background-corrected signal asymmetry A’EOL in green compared to AT5¢ in red.
The bottom-right panel shows AT, — ATS" on the vertical axis versus (p%') — (p=) on the
horizontal axis; vertical error bars are not uncertainties, but differences in the uncertainties
of the asymmetries, 0 4,0 — 0 7ec. Differences between A7) and ATS range from 2 x 107 to

ALL
1.5 x 1073,
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Outer Region P, Bin 1 Purity Distribution

Outer Region P, Bin 1 Purity vs. Internal Runset Index
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Figure 6.5: Left plots show the 7° purity vs. a runset index, and right plots show the
distributions of purities. The outer region (top plots) includes both Runs 12 and 13, and
there is a vertical black line in the top-left plot showing the boundary between the Runs.

The inner region (bottom plots) does not include Run 13. This is for py bin 1.

Outer Region P, Bin 2 Purity Distribution
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Figure 6.6: 7° purities for py bin 2. Note that for py bins 2-4, there are more runsets plotted;
this is because a few later runsets are completely cut out of pr bin 1 via the time-dependent

pr threshold cut.
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Outer Region p_Bin 3 Purity vs. Internal Runset Index Outer Region P, Bin 3 Purity Distribution
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Figure 6.7: ¥ purities for pr bin 3.
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Chapter 7

0
z 7 Measurement Result

We are now prepared to discuss the ATLFOL measurement result. This measurement has been
released first in 2014 [105], as a preliminary measurement, meaning that some corrections
and systematics were not yet studied. Four years later, it has been published as a final
measurement [15], which includes everything discussed in this dissertation. This chapter

presents both of these versions, along with a discussion of the impact of the result.

7.1 Preliminary A}:OL Measurement

Measurements at STAR are typically released to the public twice: the first release is a
preliminary release, and is an early look at a particular measurement; typically a preliminary
measurement is in a state where further analysis is unlikely to change its story much. After
further detailed analysis, when a particular measurement is mature enough and well-vetted
within the collaboration, it is published as a final result. The preliminary measurement of
A7 was released in 2014 [105], and does not include many of the topics that have been
discussed, such as the pr systematic uncertainty.

Most of the 7° selection cuts were somewhat less-restrictive than they are for the final
measurement. The inner and outer regions were both analyzed together, and the asymmetry
was determined for 6 bins in energy, integrating over pr, as well as for 6 bins in pr, integrating

over energy. The 7¥ selection cuts were the following:

e 25 <n<4
e 2.5 <pr <10 GeV for Run 12 and 2.0 < pr < 10 GeV for Run 13
e 30 < F <100 GeV

o /<08
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e Similar F-dependent mass cut, but it was not yet time-dependent

The time-dependent pr threshold cut was also not yet implemented, meaning a fraction of
sub-threshold 7’s were included in the analysis (see figures 3.25-3.27).

Two 7 isolation cones sizes were used (see section 3.4.4): 35 mrad and 100 mrad, inspired
by the dependence of ATZ{,O on 7 isolation, where higher A?{? is observed for more-isolated 7’s
[58]. The relative luminosity used for the preliminary plots was measured by averaging the
R3 values obtained from the VPDE, VPDW, and VPDX using the CDF corrections, since the
preliminary plots were released before the rate-safe corrections were implemented. Finally,
the beam-current fill-by-fill polarization measurements were used, rather than the luminosity-
weighted averages of the time-dependent polarizations; the impact of this change on Aﬂ is
negligibly small, however the RHIC polarimetry group prefers the use of luminosity-weighted
average polarizations for any asymmetry analysis.

Figures 7.1 and 7.2 show A’L’OL plotted vs. E and pr, respectively. The vertical lines are
statistical uncertainties, the horizontal lines are £ and py bin RMSs, and the vertical size
of the shaded boxes represents the systematic uncertainty from the relative luminosity. For
the relative luminosity systematic, the widths of the S distributions were used (for Run
13, the distribution was bimodal, and the width of the wider distribution was used), plus
the distribution mean. For Run 12, the systematic uncertainty on A7, was 2.8 x 10~* and
for Run 13 it was 6.2 x 10~*. These uncertainties were averaged together, weighted by 7°
statistics for each bin.

The red markers are for 35 mrad 7° isolation, and the blue markers are for 100 mrad
isolation. For visibility, the 100 mrad points are offset to the right by 1 GeV in energy in
figure 7.1 and by 0.1 GeV in pr in figure 7.2. Unlike AQO, which depends on 7 isolation, no
such dependence is observed in AEOL. Given the statistical and systematic uncertainties, this
measurement does not show any significant nonzero asymmetry; the highest pr point in figure
7.2 is an outlier, being almost two standard deviations from the zero line, however it was
later found that hot towers were contributing to this point’s anomalously high asymmetry.
The statistical and systematic uncertainties therefore represent overall bounds on the size of

A’EOL for these forward kinematics.
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Figure 7.1: Preliminary measurement of A7) vs. E; see text for details.
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Figure 7.2: Preliminary measurement of A’L’OL vs. pr; see text for details.
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7.2 Final AZOL Measurement

Figure 7.3 shows the final version of the A7, measurement [15], as a function of py, for the
outer and inner 7 regions (see table 6.1 for the binning). Numerical values for the points and
errors are provided in table 7.1. The vertical error bars represent the statistical uncertainty
on A’LFOL, and the vertical extent of the shaded boxes represents the ATLFOL shift systematic
uncertainty from relative luminosity and polarization transverse component. The horizontal
extent of the shaded boxes represents the pr systematic uncertainty. The polarization scale
systematic uncertainty of 6.7% is not included in the plot.

Extrapolations of the present theoretical models of AZOL(pT) to these kinematics have
been plotted as well; the measured AEOL is in agreement with both of them. These extrap-
olations were determined from next-to-leading order calculations from [106, 107] and the
following PDF and polarized PDF sets were supplied to the algorithms used to generate

these predictions:
e NNPDFpoll.1 polarized PDF [13] with NNPDF2.3 PDF [108]
e DSSV14 polarized PDF [14] with CTEQ6M PDF [109]

For both of these, the DSS fragmentation functions were used [110].

The uncertainty band on the theoretical A’it}d (pr) extrapolation is that for the NNPDF
prediction. The NNPDF collaboration trains a neural network based fit on Monte Carlo
generated copies of the data, called replicas, which take into account the data nominal
values, errors, and correlations. Given 100 replicas, the variance in the neural network
parameterized Ag(z, Q?) was determined, along with the central value; this was done for
the possible values of x and Q? corresponding to the pion transverse momenta. The next-
to-leading order calculation of A7, was performed for the variations of Ag(z,Q?) within
one standard deviation, providing the error band. It is worth mentioning that this is an
uncertainty band on an extrapolation, which is somewhat open to interpretation.

We have also fit the AEOL measurement data points to a constant, which gives an overall
maximum likely value for each pseudorapidity region, denoted AEOL; note that the fit result
is not plotted. For the fit, the A7 statistical and shift systematic uncertainties are added in
quadrature for each point, but the polarization scale systematic uncertainty is not included.

The constant fit results, along with the y-squared per number of degrees of freedom are:
e Outer Region: A7, = —0.0011 # 0.0012, with x?>/NDF = 0.47/3

e Inner Region: A7, = +0.000018 = 0.0011, with y?/NDF = 2.0/3
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Figure 7.3: Final measurement of FMS A’LTOL vs. pr for the outer region (top) and inner
region (bottom). The vertical error bars are statistical uncertainties, the vertical extent
of the shaded boxes is the shift systematic uncertainty, and the horizontal extent is the pp
systematic uncertainty. Extrapolations of model calculations for A7) (pr) to these kinematics
are also plotted, where the dashed blue curve is that from DSSV14 [14] and the solid black
curve that from NNPDF [13]. The hatched band represents the uncertainty on the NNPDF
extrapolation, as described in the text.
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pr Bin ‘ (pr) ‘ A7) A7) Stat. Unc. | A7, Sys. Unc. | pr Sys. Unc.

Outer Pseudorapidity Region: 2.65 <n < 3.15, 30 < E <70 GeV
1 3.91 | -0.00191 0.0022 0.00034 0.21
2 4.73 | —0.00085 0.0024 0.00032 0.25
3 5.62 | -0.00177 0.0025 0.00031 0.29
4 7.08 | +0.00015 0.0024 0.00029 0.37

Inner Pseudorapidity Region: 3.15 <7 <3.90, 30 < E < 100 GeV
1 2.50 | -0.00154 0.0022 0.00021 0.13
2 3.33 | 40.00210 0.0021 0.00021 0.18
3 4.11 | -0.00140 0.0022 0.00021 0.22
4 5.37 | 40.00076 0.0023 0.00021 0.29

Table 7.1: A7), measurement numerical values. The columns are py bin number, mean py
(GeV) of the point, A7, measurement in that pp bin, A7) statistical uncertainty, A7, shift
systematic uncertainty, and py systematic uncertainty (GeV).

7.3 Discussion and Outlook

The measured A’LrOL is consistent with both theoretical extrapolations. While the gluon
polarization models, represented by Ag(x), are rather unconstrained in the low-z region
(x < 0.05), these extrapolations essentially assume the central Ag(z) fit, which is nearly
zero at low x. Although all of the A}i data points’ error bars cross the zero line, this
measurement presents upper bounds on AEOL for these forward 7% kinematics. This is the
first time A7, has been assessed for forward 7° kinematics to such a high sensitivity (cf., for
example, figure 1.17, [60]). Our measurement is sensitive to gluons down to z ~ 107 (see
figure 1.15), a region that is abundant with soft gluons. A new global analysis combining
other recent results is needed in order to constrain the true size of Ag(z) for these low-z
gluons, as well as the shape of Ag(x) at higher x.

Along with this measurement, several other recent A;; measurements from RHIC will
be included in the next global analysis [111]. In particular, some recent measurements at
STAR include inclusive jets and dijets at central pseudorapidity (|n| < 1) [64, 65, 112], as
well as inclusive dijets at intermediate pseudorapidity (0.8 < n < 2) [62]. Figure 7.4 gives a
sense of the impact these new data will have on the upcoming global analyses. It defines the
contributions to the proton spin from the gluons and the quarks as running integrals, where

the integrals are taken over the polarized PDFs from a minimum x value, x,, up to 1:

1
AGl, = / drAg(z), (7.1)

Zmin
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Figure 7.4: Running integrals AG|.  (left) and AX|}  (right), indicated by the solid black
curves. The gray and blue bands are for the DSSV08 [5] and DSSV14 [14] global analyses,
respectively. The yellow band indicates the projected uncertainties for the upcoming global
analysis. Figure adapted from [113].

ASL = / Cdeds(m) = Y / N (7.2)
Fmin fefqqy © i
The lower x.,;, is, the better understood AG and AY. are; some say that these running
integrals may converge to a central value after x,;, is low enough, but that remains to be
investigated.

The solid black curves in figure 7.4 represent AG|; —and AY|.  from the DSSV14
global analysis [14]; their uncertainty bands are given by the blue shaded regions. The gray
bands represent the uncertainties from the previous DSSV08 global analysis [5]. The yellow
band represents projected uncertainties for the upcoming global analysis, which will be based
on data for z > 1073, indicated by the vertical dashed line. While these plots are rather open
to interpretation, they provide some sense of the impact that the recent RHIC pp data will
have on our understanding of AG, with the largest improvements to be seen in the region
1073 <z <1072

One might ask if the analyzed s are primarily originating from the QCD hard scattering,
or if a substantial fraction of them are coming from proton remnants or other multi-parton
interations. A7, could be diluted by 7% which do not come from the hard-scattering.
Typically NLO calculations fold in these additional 7° sources, as does Pythia (provided we

do not try to simulate gluons which are too soft). One could instead look at forward dijet
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asymmetries, which are guaranteed to originate from the hard scattering. In this channel,
the asymmetry will not be diluted, however dijets represent a rather small fraction of the
overall cross section.

Measuring Ay for forward dijets in an upgraded forward calorimetry system at STAR,
where both jets are in the range 2.8 < n < 3.7 (and /s = 500 GeV), could push sensitivity
down to @ ~ 1075 [114]. This is one of the many motivations for an upgrade to the forward
calorimetry at STAR, which includes a tracking system in the STAR barrel, along with a new
electromagnetic calorimeter and a new hadronic calorimeter, both to be installed in place
of the FMS [115]. The FMS was dismantled in 2018, allowing for the installation of these
new systems to begin, opening the door to many exciting new measurements. Moreover,
the upcoming Electron Ion Collider (EIC), which will collide polarized electron beams with
polarized proton beams, will provide many more precise measurements, further pushing the
boundaries of our understanding of the proton and of QCD in general into new frontiers
[113].
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Appendix A

Decay Kinematics of 7 — v+~

A.1 Invariant Mass

Consider the decay of a 7° with momentum along the z axis into two photons spanning the

xrz plane with 4-momenta

ki = (Ey, Eysinag, 0, By cosay) , (A1)
kz = (EQ, _E2 sin a9, 0, E2 COS 042) . (AQ)

The invariant mass squared is
M? = (ky + ko)? = 2k ky = 4E, B, sin® % (A.3)

where o = a1 + i is the photon decay opening angle. Let £ = E; + F, be the total energy
and let Z = |E) — Es| /E be the energy imbalance. The invariant mass is then

M = 2/E\E,- sin% ~ VEE; - (A.4)
E
- BEVI-Z2. sin% ~SVI=Z2-a, (A.5)

The mass can be thought of as a function of F; and E, or of E and Z, given a fixed value

of a. Solving for the opening angle gives

2 arcsi ( M ) M (A.6)
a = ICSiN | —— | R} ——— .
2V E By VE B,
M 2M
= 2 n(——_| r ——. AT
wesin (5 1) = 5 A7)
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Note that the opening angle spans approximately za/w cells, where z is the distance to the
interaction point and w is the cell width. For z = 7 m, a 10 mrad opening angle spans 7 cm,
which is just over 1 large cell width or just under 2 small cell widths.

In order to explore the inter-dependencies of the kinematic variables, the next few pages

show various planes cut from the M (F, Z, «) and M (E;, Ey, o) hypersurfaces.

e Figure A.1 shows M-contours in the o vs. E plane for fixed values of Z, as described by
equation A.7. These plots show the energy-dependence of the opening angle: higher
energy pions (M = 0.135 GeV) have smaller opening angles than those with lower
energy, and the more massive n-mesons (M = 0.55 GeV) have much larger opening

angles than pions.

e Figure A.2 shows a-contours in the M vs. E plane for fixed values of Z, as described
by equation A.5. For constant opening angles, the invariant mass rises as a function
of energy. If the opening angle as a function of energy is overestimated, then data
will tend to show an increase in the mass as a function of energy. In other words,
the observation of a positive linear dependence of the invariant mass on the energy is

evidence of an overestimation of the photon separation at higher energies.

e Figure A.3 shows a-contours in the M vs. Z plane for fixed values of E. At higher
7, the mass decreases for fixed values of . This decrease is more extreme at higher
energies. Note that the uncertainty on Z becomes much greater as the photon separa-
tion decreases and approaches the region where it is difficult to distinguish 1-photon

clusters from those with 2 photons.

e Figures A.4 and A.5 show contours of a(E), Fy) and a(E, Z) given M fixed at the 7°
mass and at the 1 mass. Placing an upper limit on a 7° opening angle, a consequence

of an isolation cone, helps reduce contributions from low energy soft photons.
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M(E,a) contours for fixed Z=0.0
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Figure A.1: « vs. FE plane with M contours for fixed Z = 0 (top), Z = 0.5 (middle), and
Z = 0.8 (bottom).
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o(E,M) contours for fixed Z=0.0
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Figure A.2: M vs. E plane with « contours for fixed Z = 0 (top), Z = 0.5 (middle), and
Z = 0.8 (bottom).
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o(Z,M) contours for fixed E=35.0 GeV
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Figure A.3: M vs. Z plane with a contours for fixed £ = 35 GeV (top), F = 65 GeV
(middle), and E = 92.5 GeV (bottom).
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o(E E,) contours for fixed M=0.135 GeV a(Z,E) contours for fixed M=0.135 GeV
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A.2 Note on Small Angles from 7’ Decay Cones

Consider a 30 GeV 7° decaying toward the FMS. Typically it will decay into a pair of
photons with an opening angle of 10 mrad. Assuming the decay can happen with any
azimuthal orientation, the space of possible photon trajectories forms a 10 mrad cone, which
intersects the FMS front plane in an ellipse, since the cone axis is at an angle with respect
to the normal vector of the FMS front plane. The question is whether we can just use
the transverse separation between the photons as a simple approximation to get « (which
assumes the cone intersects the FMS plane as a circle), or if we need to correct for slight
ellipticity.

Let the angle between the cone axis and the FMS plane’s normal vector, which is equiv-
alent to the 7° scattering angle 6, be 70 mrad, corresponding to photon hits detected 0.5
m away from where the beam pipe intersects the FMS front plane. The eccentricity of the

projected ellipse is then

sin 0.070

= —— = 0.07. A8
© 7 Cos 0.010/2 (4.8)

The ratio of the ellipse’s minor axis length to the major axis length is then /1 — 2 = 0.9975,
which is too small to be noticeable with respect to the position resolution of the FMS. Thus
ellipticity corrections are not needed in the determination of opening angles based solely on

distance between photon hits.
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Appendix B

Spin Asymmetries and their Relative

Luminosities

This appendix lists the 9 possible spin asymmetries and their associated relative luminosities,
defined using a notation which is commonly used at STAR and PHENIX. Their relations
to the spin asymmetries defined in physics literature, such as Ay, and Ay, are listed at the

end.

B.1 Notation

a = asymmetry number (following STAR relative luminosity convention)
hp = blue (west) beam proton helicity
hy = yellow (east) beam proton helicity
€q = raw asymmetry

dosen(hs)sien(hy) — proton helicity-dependent differential cross section
R, = relative luminosity

Lsign(hp)sien(hy) — proton helicity-dependent integrated luminosity
H, = helicity factor (see appendix H)

H, = +1 for helicity combo in R, numerator

H, = —1 for helicity combo in R, denominator
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a €a R, H, Description
(dotT +do %)= (dot~ +do~ ) | LTt 4+ L7
1 h 11 A
(dot+ +do=+) + (dot— +do——) | Lt + L—— Y yellow 55
(do™ +do™") = (do~" +do~ ") | LTt + Lt~
2 h blue SSA
(dot* +dot=)+(do~*t+do——) | L=t + L~ b e
(dott +do~ ") —(dot~ +do~ ") | LT+ L~
hgh DSA
3 (dot* +do~)+ (dot— +do~+) | LT— + L=+ By i
4 do** —do—— L hp + hy like sion asvm
dott + do—— L— 2 © Bt asy
do=t —do= L= (1 — hB) hy
5 do—+ +do—— - 5 yellow SSA, hg = —
do™™ —do™ Lt (1 —hy) hg
I S — bl A hy =—1
6 dot~ + do—— L—— 2 ue 554, hy
d0'++ — d0'+_ L++ (1 + hB) hy
7 ot + dot— = 5 yellow SSA, hp = +1
8 do”" —do™” L hy — g like sign as
do— + do+- = 5 unlike sign asym
dott —do™" Lt (1 + hy) hp
9 o+t & do— I 5 blue SSA, hy = +1

Table B.1: The nine asymmetries and their relative luminosities.

B.2 Nine Asymmetries and Relative Luminosities

Table B.1 lists the 9 asymmetries defined at RHIC, along with their corresponding relative

luminosities. While these asymmetries are longitudinal asymmetries, they can also be defined

for transverse polarized collisions as well, however they gain a dependence on azimuth, ¢. The

naming conventions for physics asymmetries are usually as follows (given a = 1 corresponds
to the RHIC yellow beam and a = 2 to blue):

e Single-Spin Asymmetries
— Longitudinal: AY =

— Longitudinal: A% =

e Double-Spin Asymmetries (DSAs):

— Longitudinal: A;; =

(SSAs):

1

—¢E€

Pyt
1

Pg

1
PpPy

€3

Transverse: AY cos¢ = ——¢;
Py

1
. AB _
Transverse: Ay cos¢ = 562

Transverse: Ayy = Arr+ As cos2¢ =
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Assuming the luminosity uncertainties (i.e., statistical uncertainties of scaler counts) of

Ly, are Ap,p, , the relative luminosity uncertainties are:

Ap, = \/<A3+ + AT ) (Lo + Ly )"+ (A2 + A ) (Lo +Lyy)”

(Loe 4+ Ly
G L)'+ (A2 +A%,) (Ly+Ley)”
2 (L—+Loy)!
Ay — (A2 +A%) (Loy + Ly ) + (A2, + A% ) (L + Ly )
’ (L-y+ L)t

AQ

L3

NPLIE A1,
%

A’ 12+ A2 L2,
It
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Appendix C

Local Polarimetry and Residual

Transverse Component Systematic

Here we discuss polarization measurements at STAR, obtained by the ZDC-SMD [98, 99].
Measuring polarization at STAR provides an independent verification that the beams are
polarized transversely, during a transverse running period, by measuring transverse single-
spin asymmetries (TSSAs) in the ZDC-SMD. During a longitudinal running period, the
TSSA should be very close to zero; if so, the spin rotators are appropriately rotating the
proton bunch spin states to longitudinal, since any residual transverse component of the
polarization would appear in the ZDC-SMD as a nonzero TSSA. This appendix outlines
measurements of these asymmetries and their application to a measurement of the systematic

. 0 . . .
uncertainty on A7, due to possible nonzero transverse polarization components.

C.1 Local Polarimetry

Consider a beam of protons, accelerated by a synchrotron, entering a local coordinate system
such that the beam is along the z axis, with the y axis vertical and the x axis parallel to
the synchrotron radius. During a transverse polarization running period, let the incoming

proton polarization vector be

Pr = (0, Pr,0), (C.1)

assuming that longitudinal components are zero (i.e., negligible Thomas precession). During

a longitudinal polarization running period, let the polarization vector be

P, = (P, P, P.), (C.2)
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where P, >> P,, P,.
During a transverse run, the raw left/right TSSA is

VNIV = /g o)
\/ NIN}, + /NLN}Y

where Ay is the TSSA (analyzing power), and Nz’j% is the number of hits (viz. ZDC-SMD,
but this could be done with any appropriately segmented detector) which scatter to the left

er = PrAy =

(L) or right (R) for incoming proton spin up (1) or down (). This is the cross-ratio formula
for a TSSA, which does not require a measurement of the relative luminosity [56].
During a longitudinal run, given that the polarization vector can have arbitrary nonzero

transverse components, one can look at two asymmetries: the raw left /right asymmetry

and the raw up/down asymmetry

P N T NEN, + VNN,

For the longitudinal running period, the notation for yields N;}{’Uy p is a bit different: L
and R again denote scattering left or right, U and D denote scattering up and down, but
since the beam is ideally polarized along the beam axis, the notational superscripts + and
— are used to indicate incoming polarization aligned and anti-aligned along the beam axis,
respectively. If there is a nonzero transverse component to the polarization, either + will
select the transverse component up protons and — will select the transverse component down
protons or vice versa. Therefore the signs of e,z and ey p will depend on the azimuth of the
polarization vector’s transverse component; however, it turns out that this sign ambiguity
does not matter in the determination of the final polarization vector angles.

Converting to polar coordinates, the longitudinal polarization vector becomes

P, = Py sinfcos ¢, (C.6)
P, = Ppsinfsing, (C.7)

where P, = /P?+ P2 + P? can be measured by the RHIC polarimetry group by, for ex-
ample, by their pC polarimeters.
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Inserting equations C.6 and C.7 into equations C.4 and C.5 and using the value of Ay
from equation C.3 yields

P

ELR = —LsTsin081n¢, (C.8)
Pr

evp = ——ersinfcosg, (C.9)
Pr

the solution of which gives the polarization polar angle and azimuth:

P 2 2
sing — rVErtEUD (C.10)

P, Er ’

tang = LR (C.11)

€UD
Instead of measuring e,z and eyp, one can fit the TSSA cross-ratio as a function of ¢
to the form g sin (¢ + ¢p), with fit parameters 7, the asymmetry, and ¢,, a phase angle
related to the azimuth of the transverse component of the polarization. This “overall” TSSA
is related to the U/D and L/R asymmetries via

€L:P£'AN:Q/PxQ—FPyQAN:\/g%R—{—é“QUD.

Since Ay is independent of polarization, we have

ErT €L
Ay = — = = C.12
N pT PLJ_7 ( )
which implies
Er i P[J/‘
ErT N PT‘

(C.13)

Note that by equation C.10 this verifies sinf = Pi-/ Py,

C.2 Relating Local Polarimetry to A;; Systematic

Let Pg and Py be the polarization vectors for two colliding longitudinally-polarized proton
bunches. Define their product as p = PgPy as well as the products of their transverse and
longitudinal components as p* = P4 Pyt and pll = P]gPﬂ.

In the ZDC-SMD, we can measure the raw TSSA during longitudinal running, €7, and
compare it to e, the raw TSSA during a period of transverse polarization with polarization

Pr, with the same conditions under which €;, was measured, such that P ~ P2 pt2 — p?
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(e.g., by disabling spin rotators for a few fills during a longitudinal running period). Following

equations C.12 and C.13, we have for each beam

€l Er
—_— == C.14
=3 (C.14)

Letting N"2" be the yield, given proton spin states hp, hy € {+,—}, and R3 be the
relative luminosity, the measured overall double-spin asymmetry (DSA), denoted A, may
be decomposed into contributions from Ajy; and from the transverse DSA Ayy = Ay +

Arrcos2¢ as

1 N*Y" 4 N7 —R3(N*~ + N1

A=_.
p Nt++ N— + Ry (N+— + N-+)

where A}, = ep1/p is the measured longitudinal DSA, and Ay = enn/p is the measured
transverse DSA (see appendix D for details). The primes denote that these asymmetries
are measured with respect to the overall polarization; they can be compared to the “true”

DSAs, Arp =¢er/pl and Axy = enn/p*, allowing A to be expressed as

H L
A= %ALL + %ANN. (C.16)

By assuming P+ << P, we expand the factors of the first term:

Pl P —pr2 ] Pi2_1 o 120
P VT ' \P) YT

In the context of small asymmetries, the higher order terms can be ignored and we may

. (C.17)

safely assume pll /p ~ 1.
The systematic uncertainty then is just the difference between the measured asymmetry

and extracted “true” asymmetry:

Ay, [PH]=A-A s AN A C.18
Arr . LL—PB'Py‘ NN—6¥'8¥' NN, ( )

where equation C.14 was used to write the fractional transverse polarization components as

ratios of asymmetries measured in the ZDC-SMD.
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Appendix D

Decomposing Cross Sections in terms

of Spin Asymmetries

This section illustrates how cross sections can be decomposed into the longitudinal and
transverse spin asymmetries. It essentially follows appendix A.3 of [33], and is meant to

show another interpretation of spin asymmetries in general.

D.1 Longitudinal Components

Consider a particle, described by the state |¢), heading in the z direction. Let its spin be in

the xz plane, such that it makes an angle o with the z axis. That is, the spin vector is
P = (Psina,0, Pcos ) (D.1)

(the label P stands for polarization, which is more properly defined for an ensemble of
particles, but P is chosen instead of S to avoid confusion with spin operators). If a = 0,
then the spin of |¢) is aligned with its momentum.

Consider the two helicity states: spin along the +z axis, described by |+), and spin along

the —z axis, described by |—). These states form a basis

(-

which spans the spinor space on which the spin-1/2 representation of the spin operators act.

The matrices corresponding to the spin operators S;, Sy, and S, in this representation can
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be expanded as follows:

s.=3( 1 o) =3( M+ 196 (03)
s=3( 0 o ) =5 (P - ) 0.
s.=3( o )= (e = ). (0.5)

With the spin vector of |¢)) defined via equation D.1, the expectation values of the spin

operators must be

(V]Salv) = %Sina, (D.6)
(W]Syl) = 0, (D.7)
(W]S:]v) = %cosa. (D.8)

We expand [¢) in the {|+),|—)} basis as [¢)) = cy|+) + c_|—). Acting with S, yields

1 1

Sul) = e+ = 5e )

and hence the expectation value,

i) = (e 1) (Jek - ge-)) = 5 (@ = ).

together with equation D.8, implies the relation

& —c® =cosa. (D.9)

The S, operator yields a similar relation:

ISl = (e + (1) (Gl + ge i) = e

and thus
2cic_ =sina. (D.10)

Simultaneously solving equations D.9 and D.10 for ¢4 allows us to express the state in terms
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of its spin vector angle:

1+ cosa 1 —cosa
9) = 1| o ) 2, (D.11)

Now consider two colliding particles a and b with spin vector angles a and 3, described

as:
1+ cosa 1 —cosa

@) = | o ) + ), (D.12)
1+ cosp 1—-cosp

) =\ ) | ), (D.13)

The scattering cross section may be written as:

dog =4 - (abloab) = (1+cosa)(l+cospf)or + (1 +cosa)(l —cosfB)oy_ +
(I —cosa)(l+cosf)o_+ (1 —cosa)(l—cosfB)o__
= (044 top-Fo i +o_)+cosalopy +op-—0op —0_)+

cosfB(oyy —04_+0_y —0__)+cosacosf (04 —04_ —0_4 +0__),
where
O44 = <aibi\alaibi>

and

0O =044 + 04— + O_4 +o__.

Defining the following asymmetries

Ae — (U++ + Of— —0_4 — 0-**)
L o )
A — (04++0 4 —04 —0)
L 9
g

(04++0 - —04 —0__)

A =
LL e 9

allows us to write the cross section as

g

1 (14 Af cosa + A} cos B+ Apg cosacos f3) . (D.14)

Oab =
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D.2 Transverse Components

We can easily move to the transverse basis {|1), |{)} with the following transformation:

= (i),

S = (1),
The spin operators become

5. = 5(mat- 1)

s, = 3(Imw-1mu)

5. = 3(mw+ )

and the state is expanded as

V) = [1) + ¢ ).

Expectation values give rise to the following relations:
(WISel) = 5 (cf =) = 5sina,
1
WIS:|Y) = erey = 5 cosen
Solving this system yields

1 —|—sma sma

[¥) = D+ = b (D.15)

Similar to the longitudinal case, one can define the following asymmetries, which are az-

imuthally modulated:

oM+ 04 — O+ — O
Ag, = THFEOUTOINTOU _ pe g pe cosg,
o
o +0pp —0r — O
An, = i R R + Ab, cos 6,
o
oM +0) —0r —O
App = ItFIU . NI AL 4 Appcos (2,

where ¢ is the azimuth of the measured particle or jet and R is related to the relative
luminosity. The cross ratio single-spin asymmetry can be used for Ap, negating the need for
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the offsets R, and hence we can assume R = 0 if Ay is properly measured. Finally, the cross

section may be written as

Oap = %{1 + A% sin accos ¢ + A% sin B cos ¢ + [As; + Apr cos (2¢)] sin asin 5}. (D.16)

D.3 Application: Systematic Uncertainty on A;; due

to Nonzero Transverse Polarization

The full cross section, after averaging over azimuth, assuming parity conservation (A = 0),

and assuming cosa = cos f &~ 1 is

Oapy X 14+ Appcosacosf + Ay sinasinf

~ 1+ A;, + Assinasin (.

The systematic uncertainty on Ay, from a nonzero transverse polarization component is just
the extra term:
0ALL = |As -sina - sin ] . (D.17)

This is the same as equation C.18 when we average that over azimuth (so Ayy = Ayx) and
use sin @ = P+ /P, where § € {a, 3}. If we allow a and b to have a nonzero azimuth, equation
D.17 becomes

dApL = |As - sina - sin 3 - cos (¢, — @), (D.18)

but since ¢, and ¢, are typically difficult to measure, the most consersative estimate of

cos (g — ¢p) = 1, which gives equation D.17, suffices.
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Appendix E

Shower Shape Derivation and

Incident Angle Corrections

This appendix presents a derivation and a possible physical motivation for the shower shape
model used for reconstructing photon positions from contiguous regions of energy deposition
(clusters) in the FMS cells. The derivation begins with the simpler 1-dimensional version,
followed by an extension to 2 dimensions in application to the FMS; this method allows for
the physical motivation for the model to become clear. Finally, some ideas for correcting the
shower shape for nonzero incident angles are presented. The original reference upon which
the shower shape model is based is [90].

Some attempts of incident angle corrections involve taking the original model and apply-
ing it to six longitudinal slices. Each slide is a copy of the model in [90], fit to a simulated
transverse profile. Each slice’s fit result is then weighted by the longitudinal shower profile.
For details on this method, see [91] and [92]. This appendix, however, presents progress

toward a much simpler alternative.

E.1 Derivation of the Symmetric Shower Shape

We begin by deriving the symmetric shower shape, as used in [90]. It is called “symmetric”
because it assumes the incoming photon which starts the shower is at normal incidence to
the detector, causing a transverse profile which is symmetric about the photon’s trajectory.

Correcting for nonzero incidence angles would skew the shower shape.
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Figure E.1: 1-dimensional Cauchy distribution physical picture.

E.1.1 1-Dimensional Shower Shape

The shower shape, whether skewed by incident angles or not, is modelled by a sum of 2-
dimensional Cauchy distributions, thus it is important to first understand a simple, but
relevant physical scenario in which a Cauchy distribution appears. We begin with a physics
question which forms the motivation for the use of a 1-dimensional Cauchy distribution, and
later show how it extends to 2 dimensions and applies to the shower shape model used in

FMS photon reconstruction.

E.1.1.1 The Cauchy Distribution

Consider a point P from which photons are emitted, uniformly in all angles. Let P be a
distance b from a line, as shown in figure E.1. Given that photons have a uniform probability
of being emitted at any angle ¢, what is the probability distribution of photons hitting the
line, as a function of source distance b and of position x on the line?

The probability distribution of photons being emitted as a function of 8, denoted f(0),
is constant but must be normalized. If the line is infinitely long, it will detect photons for
all 0 € (—m/2,7/2), thus for f(#) to be normalized over this range, we have f(6) = 1/7.

The angular coordinate 6 from the source is related to those of the plane, x and b, by
§ = arctan <%> . (E.1)

This relation can be used to transform the distribution f(6) to f(x). The probability of a
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photon being emitted within a small angle A# is equal to the probability of observing it in
a small interval of the line Ax, which is determined by Af# and 6. The transformation of

probability distributions is then

do

=1 o). (E2)

/dxf(x):/def(e) = f(z) =

Differentiating equation E.1 shows that

1 b
T b2+ 22’

f(z) = (E.3)

which is the 1-dimensional Cauchy distribution. It is a function of z, for a given parameter
b, which is proportional to the width of the distribution. When b is small, that is the photon
source is close to the line, f(x) is peaked sharply at = 0; on the other hand, when the

source is distant from the plane, f(z) is much more spread out over z.

E.1.1.2 Segmenting the Line into Cells

Now imagine that the line is segmented, as a 1-dimensional detector might be: it is composed
of cells, which are segments each of length d, where only the total number of photons which
strike each cell is read out (more correctly, the ADC counts). If we draw a straight line
from P to the detector such that this line is perpendicular to the detector, it will intersect
a particular cell which will see the highest relative number of photons; this cell is called the
high tower, and let the point at which the line intersects it be denoted by p.

Define x. as the transverse distance between p and the center of a particular cell; any
cell works, but it should either be the high tower or one nearby. Let this cell be denoted by
C. What is the probability distribution over z., in other words, what is the relative number
of photons seen in the cell C', as compared to its neighboring cells?

Cumulative distribution functions (CDFs) of a given probability distribution can be
used to determine probabilities within ranges; this assumes the probability distribution is
integrable. In this case, CDF of f(x) is:

F(z) = / di f(2) = % + % arctan (%) . (E.4)

—0o0

To obtain the fraction of light detected in cell C', we consider the probability of observing the
photon in a range [x. — d/2, x. + d/2]. This probability, denoted G(z.), is then the difference
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of two CDF's evaluated at the range endpoints:

Glr) = F (x + g) _F (x - g) | (E.5)

E.1.1.3 Multiple Photon Sources

Instead of just considering one source P at a distance b, one can consider a set of sources { P; },
with each P; a distance b; from the line detector. The overall probability distribution seen
at the line would just be a sum of Cauchy distributions for each 7 (this ignores interference).
If we consider N sources, all along a straight line perpendicular to the detector line, then

the probability distribution on the detector is:

f@) == KL (E.6)

The parameters (weights) a; represent relative photon emission rates of the sources, and in
order to maintain normalization, the sum of all a;s must be 1. The CDF of this weighted
sum is the weighted sum of Cauchy distribution CDFs, and consequently the G(z.) for N
sources is easy to derive. The FMS shower shape model from [90], which is 2-dimensional,
considers 3 P;s all along a straight line perpendicular to the FMS plane.

If the sources are along a line which is not perpendicular to the detector line, then we
must account for the x position of each source. To do so, the terms in equation E.6 just
need to be shifted by = — x + x;, where z; is the transverse distance of P; from some central
axis through z = 0. This consideration will be our motivation for the simpler incident angle

corrections idea.

E.1.2 2-Dimensional Shower Shape

Now consider a source P at a distance b from a plane. The source emits a uniform distribution
of photons with respect to a polar angle § and an azimuthal angle ¢, as shown in figure E.2.
The uniform probability distribution must be normalized over 6 € [0,7/2) and ¢ € [0, 27),
thus f(6,¢) = 1/2m.

The detector plane coordinates x,y are related to the source coordinates by

/22 1 12
0 = arctan <a:—+y>’ (E.7)

b

<
I

arctan <%> . (E.8)

216



Figure E.2: 2-dimensional Cauchy distribution physical picture.

The transformation of the source emission probability distribution is again achieved by equat-

ing integrals, bearing in mind the necessity of Jacobian factor in the source’s integrand:

/d:cdy flz,y) = /dgbd& -sin@ - f(0, ¢). (E.9)
Differentiating each side returns
o0
flz,y) = ‘ﬁ‘ -sinf - f(0, ¢), (E.10)

where the second Jacobian factor comes from the generalized chain rule. Writing out the
Jacobian and extending the result to an arbitrary number of sources (in a perpendicular
line) gives the expression

a;b;

(E.11)

N
1
f r,Yy)=5_-" E .
) 2m i=1 (b?+$2 +92)3/2
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This equation is the sum of N 2-dimensional Cauchy distributions; it matches the shower
shape model given by equation 10 in [90].

We now extend this model to a plane which is segmented into squares, each with side
lengths d; this segmentation is that of the FMS with the squares representing the Pb-glass
cells. The CDF of equation E.11 is

Faw = [ [ dudifai) -
.

1 1 x Y Ty
= -+ — a; |arctan [ — ) 4+ arctan | — | 4+ arctan
4 2m = b; b; bin/0? + 22 + 32

and the segmented distribution (cf. equation 5 in [90]) is

(E.12)

d d d
G(xmyc) =F (xc+_7yc+_> _F(Ic__)yc+_) -

2 2
d d d d
_F<wc+§7yc_§)+F<xc_§ay6_§)a (E13)

which is the sum of two corners’ CDFs, minus the sum of the opposite two.

E.1.2.1 The FMS Shower Shape Parameterization

The symmetric shower shape for the FMS is modelled by 3 sources along a straight line. The

default parameter values, as determined from a fit in [90], are:
e a; =0.8, by =0.8 cm
e a,=0.3, by =0.2 cm
e a3 =—0.1, b3 =7.6 cm
e (given N =3 and d = 4 cm)

The biggest contributions come from P, and P,, which are close to the FMS plane and are
thus sharply peaked at + = y = 0. The distant source P3; “anti-contributes” to the shower
shape. The fit may not have been constrained by the aforementioned physical picture, where
we would likely prefer all a; > 0; nonetheless, this parameterization has been used in many
analyses of FMS data.

It is worth noting that the longitudinal position of the plane here is a bit ambiguous:
while it definitely should not be the front plane of the FMS glass, it could be the shower
max plane (where the electromagnetic shower is at maximum), the PMT plane, or something
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else. Whatever the plane may be, the transverse position of reconstructed photons is highly
sensitive to the choice of plane, which only really matters when we take into account incident

angle corrections.

E.2 Incident Angle Corrections

When the angle of incidence is nonzero, the electromagnetic shower is no longer symmetric.
To correct for the nonzero skewness, we must use an asymmetric shower shape. Recalling
section 5.3.2, however, the effect of correcting for the incident angle imparts only a maximum
of a 0.5 cm change in the photon position; the energy uncertainty from the calibration
(5%) completely eclipses this effect. Nonetheless, incident angle corrections are still worth

considering if one desires higher accuracy in the photon position reconstruction

E.2.1 Longitudinal Slices of Symmetric Shower Shapes

One attempt at incident angle corrections simply takes the symmetric shower shape model
(with N = 3) and uses it for each of six (or any reasonable number) longitudinal slices.
Each slice k has its own set of parameters {ax1, g2, ags, bg1, br2, brs}. The shower shapes
for each slice are centered along a line which represents the incident photon’s trajectory,
which may not be at normal incidence. The transverse position-dependence of each slice
is injected into the x. and y. variables for each slice (see [92, 91] for details). Simulations
were performed to determine the shower shape slice-by-slice, and fits were done for each
slice. Each slice was also weighted according to the longitudinal shower profile. Ultimately,
there are 42 parameters in this model: 6 slices, each with 6 shower shape parameters and
1 longitudinal weight (although the longitudinal weights could have been absorbed into the
ag; parameters, giving 36 free parameters overall). Altogether, this is a linear combination
of 18 2-dimensional Cauchy distributions.

Because there are so many parameters involved, this shower shape model is rather com-
plicated for practical matters, where millions of photons need to be reconstructed. The
model begins to break down as the incidence angle is increased (beyond FMS acceptance);
furthermore, it is not valid for all incident photon energies, since the longitudinal position
of the shower max plane is dependent on incident energy and angle. The slicing procedure
overlooks the already present longitudinal dependence of the Cauchy distributions: the b;
parameters. Instead, a computer algorithm was used to determine the values of aj; and
br;, and many of them have become nonsensical, even though the overall sum of the 18

Cauchy distributions looks reasonable even at the highest scattering angles within the FMS
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acceptance.

E.2.2 Simpler Alternative: Cherenkov Parameterization

We now attempt an alternative model: making use of physical intuition to try to simplify the
incident angle-dependent shower shape. Since the default shower shape parameters do not
seem to be physically motivated, one can try to re-parameterize the shower shape according
to a simplified physical model of the shower development. The model presented here is an
unfinished endeavor.

The idea here, which is based on photon sources that come from shower particles, is to re-
parameterize the shower shape with a;s and b;s chosen such that we have a “path” of sources
approaching a detector plane; this path depends on the incident angle of the photon which
starts the electromagnetic (EM) shower. The weight a; of each source could be determined
by a property of the shower, such as the number of shower particles per radiation length X,

which is assumed to double after each X.

Cherenkov Shower Model

Consider a charged particle moving through a medium with a velocity faster than the phase
velocity of light in that medium. This particle will leave behind a trail of spherical EM waves
which will add together to form a phase-front, shaped like a cone, which trails behind the
charged particle. This radiation, called Cherenkov radiation, is typically within the visible
part of the EM spectrum, and well within the photo-sensitivity range of the FMS PMTs. If
we assume that most of the photons that the PMTs detect are Cherenkov photons, we first
consider modelling the Cherenkov part of the EM shower.

Consider the simplified model of an EM shower, where after every radiation length either

+ — ety occurs. Assume that after each

pair-production v — e*e” or bremsstrahlung e
radiation length, the number of shower particles doubles while the energy per particle halves.
A simple shower re-parameterization is to have a source P; at each radiation length (up to
a limit, called “shower max”), and have the weights double as a; = 2a;_;. These sources
are physically analogous to the “trail” of spherical EM waves which form the addends of the
Cherenkov cone. The next few sections show how to modify the parameters of the current

shower shape in order to model this Cherenkov shower development.

Parameter N

We would like N to be the number of radiation lengths to consider. Since at every radiation

length ¢, the energy per shower particle F(t) halves, eventually E(t) will be less than a critical
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energy value Ej, where pair-production and bremsstrahlung will cease to be the dominant
energy-loss mechanism. At this point in the shower development, the number of particles
will be maximized, which gives rise to its name: shower max.

Let 0 represent the depth of a shower into the Pb-glass; the number of radiation lengths
is t = 0/Xy. Given an incident photon energy of E.,, the energy for particles at a depth of ¢
radiation lengths is approximately

B(t) = =2 (E.14)

Bl
Define the shower max position ¢, to occur at a depth such that E(t,,) = Ey. Solving for

t,, returns the value

In(E,/Ey)
tm(E,) = —2—=. E.15
(B,) = 2L (B.15)
We may then define NV to be t,,, truncated to an integer, that is, let
N(E,) = [tn(E,)). (E.16)

Parameters q;

We assume the sources are positioned at each radiation length ¢, so that the ith source’s
weight parameter a; is proportional to 2¢. Since the sum of all a;s must be 1, we have a

normalization factor, which depends on N(E.), times 2":

1 ; 2
a;(E,) = m -2 = ONE)IT 1" (E.17)

One caveat to this idea is that only the electrons and positrons in the shower will con-
tribute to the Cherenkov shower; in the first radiation length there are 0 leptons, then in
the second there are 2. In the third length there are still 2 leptons, plus two bremsstrahlung
photons. In the fourth length, the two photons pair produce, giving a total of 6 leptons.
Continuing this process and letting n; denote the number of leptons in layer ¢ of the shower,

we have a recurrence relation which can be used to determine n; for each i:
2 i
n; = 2Ni_9 + N = 3 (20 = (-1)7]. (E.18)

To determine a; using this recurrence relation, one divides each n; by the total number of

leptons after N(E,) layers, which returns

2i+1 _ 2(_1)1::

a;(Ey) = ON(EN+2 — (—1)N(Ey) — 3

(E.19)
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It turns out that equation E.19 is approximately the same as equation E.17, with the differ-
ence between the two decreasing as N(E,) increases. For N(E,) = 10, the difference is of

order 107%, thus for simplicity equation E.17 will be used for a;(E.).

Parameters b;

At this point, it is unclear exactly where the “detector plane” should be, relative to the path
of sources. One idea is to let the detector plane be a distance of L radiation lengths from
source Py, with the distance measured along the path of sources P;. Let r; be the distance

of source P; to the detector plane, with r; measured along the path of P;s:
ri(Ey, L) =[N(E,) —i+ L] - X,. (E.20)

Given an angle of incidence 6, of the incident photon, the distance between any source P
and the plane is then
bi(E,, L,0,) =r;,(E,, L) - cosb,. (E.21)

The distance L is left as a free parameter of the re-parameterized shower shape.

Parameters (x;,y;)

Now define (z;,y;) to be the transverse position of the source P;, such that (z = 0,y = 0)
corresponds to the point at which the path of sources intersects the detector plane. If the

photon enters the Pb-glass with an azimuthal angle ¢,, we then have

z;(0,, ¢y) = ri(E,, L) - sinf, - cos ¢, (E.22)
Yi(0, dy) = 1i(E,, L) - sin b, - sin ¢,,. (E.23)

Re-parameterized Shower Shape
Putting all of the above together using equation E.11, the probability distribution becomes

1 N(E~) a;(E,) - bi(E,, L,0.)
f 5 ,E ,(9 ,¢ = —. 1\ i\ Loy Liy Uy
(33 Y; Loy, Uy ’Y) 27 ; {bz(E’w L, 97)2 + [[L’ _ xi(e’y’ Qs—y)]Q + [y N yi(e’y’ gb’y)]Q}

3/2°

(E.24)
Note that all the old parameters a; and b; are now in terms of the incident photon properties,
and that the only free parameter of this shape is L, the distance between Py and the detector

plane.
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The CDF is then the same as equation E.12, but with the following substitutions:

N — N(E,) (E.25)
a; = a;(E,) (E.26)
b; — bi(E., L,0,) (B.27)
v 2 — 2i(0,, 6,) (E.28)
y =y —yi(by, by) (E.29)

This parameterization has shown potential of getting us closer to a proper incident angle
correction, and is certainly worthy of further exploration, for those who wish to improve pho-
ton position reconstruction accuracy. Improving photon position accuracy may ultimately
improve 2-photon invariant mass resolution for 7° and n-meson reconstruction.

Figure E.3 shows one of the fit attempts of this shower shape to simulation data. It uses
a similar parameterization, although there is certainly room for improvement and further

exploration:

2i

ai(Ey) = SxEym 1 (E.30)
Xo :

b; = W [L+ N(E,)—icosb.,] (E.31)

r— x —iXpsind, (E.32)

Yy (E.33)

G(2e,ye) — V-G (Hx.+ Stanb,,0) (E.34)

With N(E,) fixed at 10, W fixed at 4X, and H fixed at —1, the remaining fit parameters
are L, V (a vertical scale), and S (an additional horizontal shift). This is a 1-dimensional
model, so y is not changed. Figure E.3 is the best parameterization we have been able to do

so far, but clearly needs work.
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Figure E.3: New shower shape parameterization result. FMS Geant4 simulation data are
plotted as black points, and the shower shapes are drawn; parameters L, V, and S are
written in the upper right corner of each plot. Four angles of incidence are plotted, and E,
is fixed at 60 GeV.
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Appendix F

Additional Relative Luminosity

Figures

This appendix contains extra figures for relative luminosity measurements and cross checks,

as discussed in chapter 4:
e ZDC Rj3 measurements: figures F.1 and F.2
e CDF-corrected E and W R3 comparison: figures F.3 and F.4
e CDF-corrected E and X R3 comparison: figures F.5 and F.6

e CDF-corrected W and X R3 comparison: figures F.7 and F.8
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Run 12 ZDC R3 vs. Run Index
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Figure F.1: R3 from ZDC for Run 12; from top to bottom: CDF corrected E, CDF corrected
W, CDF corrected X, rate-safe corrected.
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Run 13 ZDC R3; vs. Run Index
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Figure F.2: R3 from ZDC for Run 13.
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Run 12 R¥Y — RY vs. Run Index

R3(bbce)-R3(bbew) vs. i
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Figure F.3: Run 12 R3 from E minus R3 from W vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Run 13 RE — R}V vs. Run Index

R3(bbce)-R3(bbew) vs. i
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Figure F.4: Run 13 R3 from E minus R3 from W vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Run 12 R¥ — RY vs. Run Index
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Figure F.5: Run 12 R3 from E minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Run 13 R¥ — RY vs. Run Index

R3(bbce)-R3(bbex) vs. i
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Figure F.6: Run 13 R3 from E minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Run 12 RY — R¥ vs. Run Index

R3(bbcw)-R3(bbex) vs. i

— - - - %2 / ndf 4.42e+07 / 692
0.02 —_ ..... R e S o p0 _ —0;000818‘6i0.0000018

001,“) ............ ........ e ................ o \\ ...... \h,‘ ......... <

_001_/’ ............ ; ,. ........... LA S / .................... - ....... A
_002 _ ............ : ........ 34: ................ .................. :-, ..................... _ ............. ) ...................
—0.03 _ ..................... ..................... ORI SO SO SN SRS

700 200 300 400 500 600
run index

R, BBC W-X

R3(zdcw)-R3(zdex) vs. i

%2/ ndf 3.922e+04 / 692

0,004t S S S L o ~7.273¢ 05 £ 5.6160-06

100 200 300 400 560 600
run index

R3(vpdw)-R3(vpdx) vs. i

%2/ ndf 7.769e+04 / 692

é i i i 0 -8.912e-05 + 2.822e-06
0.003 p ; :

R, VPD W-X
o

g ) o[ ] =N—— feooprprengeyee: beosprreigerengene heooyreepenengenye S S feooprgenngennye:

100 200 300 400' 500 600
run index

Figure F.7: Run 12 R3 from W minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Run 13 RY — RY¥ vs. Run Index
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Figure F.8: Run 13 R3 from W minus R3 from X vs. run index; in order from top to bottom,
the plots are for CDF corrected BBC, ZDC, and VPD.
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Appendix G

Rate-Sate Counting Derivation

This derivation is a summary of that in [95]. This is a method for correcting scaler counts
for accidental coincidences and multiple collisions, and is the method used for computing
the relative luminosities used for A7LTOL. It is called the rate-safe counting method, or also

sometimes the pile-up correction method.

G.1 Rate-Safe-Corrected Scaler Counts

Event Classes

Assume that there can be multiple collisions per bunch crossing; typically there are ~ 1

collisions / bunch crossing. We define two classes of collisions, called “event classes”:
1. Double-sided events (DS): collisions which will trigger a coincidence
e DS events occur an average of Ax times / bunch crossing
2. Single-sided events (SS): collisions which will trigger a single hit, but not a coincidence

e East Single-sided events (ESS) occur an average of A\g times / bunch crossing

e West Single-sided events (WSS) occur an average of Ay times / bunch crossing
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Hit Probabilities
— DS events

The probability for detecting kg hits in the E-scaler from DS events, given that the E-scaler

has efficiency x acceptance = eg is

kg! '

Pps (kg) = (G.1)
Likewise, the probability for detecting ky, hits in the W-scaler from DS events, given that

the W-scaler has efficiency x acceptance = ey is

(€WAX>kW Q*EW)‘X

|

Pps (kw) = .

(G.2)

The joint probability that the E-scaler detects kg hits and the W-scaler detects ky hits from

DS events is
Pps (kg, kw) = Pps (kwl|kg) - Pps (ki) , (G.3)

where Ppg (kw|kg) is the probability that the W-scaler detected ky hits, given that the
E-scaler detected kg hits.

Let ¢ denote the number of collisions in the bunch crossing. After a bit of effort (see

[95]), one can show that this joint probability distribution may be written as
p i U\ kw ke ik ik Axe X
DS (kEka) = Z /{;E Ew €E (1 —EW) (1 —€E) ETe— (G4)

k 7!
i>maz(kg,kw) w

— SS events

The probability for detecting kg hits in the E-scaler from SS events is

(5E>\E)kE e CEAE

Prss (ki) = (G.5)
kg!
Likewise, the probability for detecting ky, hits in the W-scaler from SS events is
ew )W e—ewAw
Pwss (kw) = (Ewdw) : (G.6)

kw!
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Probabilities for Detecting Zero Hits

Consider the following three probability distributions:

1. Zero hits in E-scaler

P (kg =0) = Ppg (kg =0) - Pggg (kg = 0) = e-s8CGx+3p) (G.7)
2. Zero hits in W-scaler

P (kw = 0) = Ppg (kw = 0) - Pygg (ky = 0) = e7=wOxFiw) (G.8)

3. Zero hits in both E and W scalers

P(k}E =0,ky =0) = PDS(kE =0, kw ZO)'PEss(kZE :O) - Pywss (kw :0) =
— EWEBAX —EWAX —€EAX —EWAW —€EAE

(G.9)

Let P* denote the probability that we detect zero hits in both E and W scalers, given
the condition that both the E and W scalers also detected zero hits. Using the Kolmogorov

definition of conditional probability, P* is expressed as

pr_ Plkp=0ky =0) _ x

P (kg =0)- P (kw = 0) ’

where Q = epyeg. (G.10)

Let Ppavy be the probability of detecting at least 1 E(W)-scaler single, and Px be the
probability of detecting at least 1 coincidence. These probabilities are used to rewrite the

above three probability distributions for detecting zero hits in the form of

(probability of zero hits) = 1 - (probability of at least 1 hit).

Rate-Safe Correction Equation

Take the logarithm of P* to obtain

1— Px
QDA =lnP"=1n . G.11
x (1= Py) (1 - ) (G-11)

Assume the probability distributions of detecting Ngw) hits in the E(W)-scaler and Nx

coincidences are all binomial, given a total of N, bunch crossings. Binomial distributions are
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needed, since the probability of a trigger is significant for all filled bunch crossings. Denoting
the mean of these binomial distributions by (-), we thus have
N,
Py = <N—S> where S e {E,W,X}. (G.12)
bx
Finally, the product of E and W acceptances and efficiencies times the rate-safe counts N, is
written in terms of the raw scaler counts { Ng, Ny, Nx} and total number of bunch crossings

Ny, as
1 — (Nx) /Ny,

(1 = {Ng)/Noz) (1 = (Nw)/Nea) |

where the subscript “rsc” stands for “rate-safe correction”. Because the relative luminosities

QON,, = Ny, - In (G.13)

are computed as ratios of corrected counts, for different spin combinations, the €2 factor may

be left here, since it will cancel out in any relative luminosity computation.

G.2 A Note on Accidental Coincidences

1. For bunch crossings with 1 collision, we either have a true coincidence from a DS-event

or a single hit from a SS-event
e No accidental coincidences can occur in this case
2. For bunch crossings with more than 1 collision, we have the following possibilities:
e Detection of coincidence event: either one or both of the following cases must

occur:

— At least 1 DS-collision — occurs an average of Ay times / bunch crossing
— At least 1 ESS-collision and 1 WSS-collsion — occurs an average of A\g and
Aw times / bunch crossing, respsectively

e Detection of single event

— DS-event contribution

— All SS-events in the bunch crossing are toward one detector — occurs an

average of A\g or Ay times / bunch crossing

Since P* only depends on Ax, but not on \g or Ay, equation G.13 for N,,. only counts “true

Y

coincidences,” eliminating the need to consider “accidental coincidences.”
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G.3 Corrected Statistical Uncertainty

Define the function f, through which the counts uncertainties will be propagated:
f(NX,NE,Nw) ::Q'Nrsc<NX7NE7NW)- <G14)
The uncertainties in { Ny, Ng, Ny} propagate to an uncertainty in € - N, as

of \? of \° of \°
T Nypee = (m) oy T (ﬁ) oy + (m) O

of of L ofr of L of of
Ny ONg  NxXNe T aN aNy OV TGN ANy, O NN |

(G.15)

N

where o4 is the uncertainty (variance) of A and oap is the covariance of A and B. All
derivatives are evaluated at Ng = (Ng), with S € {X, E,W}. Since the scaler counts { Ng}

are given by binomial distributions, the variances are

O-JQVS = NbeS (1 — PS)

= (Ng) (1 - %) (G.16)
= (Ns) - ((Ns),
where N
((Ng):=1- <N:>' (G.17)

The covariances can be obtained from 2-dimensional histograms. Finally, the derivatives of

f evaluate to
of -1 of 1
ONx  ((Ny) o ONgw  ((New) ( )

Inserting the variances, covariances, and derivatives yields the propagated uncertainty:

o2 = (Nx) | Ne) | Nw)
2UNXNE QONXNW QO'NENW ’

¢(Nx)C(Ng)  ¢(Nx)C(Nw) — C(Np) C(Nw)

In practice, however, it is better to use the Pearson correlation coefficients, which are covari-
ances normalized by the product of the variances: pg,s, := 0s,5,/0s,0s,- Typically, these
correlation coefficients are close to unity for the present analyses.

Inserting the expression of the variances, the propagated uncertainty can be rewritten
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using the Pearson correlation coefficients as

ba o _MNx) N (Nw) \/ (Nx)(Nx)
Pl TC(Nx) T C(NE) T C(Nw) RN C(NX) ¢ (Ne)

(Nx){(Nw) (Ng)(Nw)
. 2”NXNW\/<<Nx><<NW> i 2”NENW\/<<NE><<NW>‘

(G.20)

Equations G.13 and G.20 represent the quantity used for computing the relative lumi-
nosity and its statistical uncertainty. The statistical uncertainty in equation G.20 is further

propagated into the nine relative luminosity equations.

239



Appendix H

Bunch Fitting and Scaler

Asymmetries

This appendix explains the bunch fitting algorithm, used to determine the intrinsic scaler
asymmetry, Sy, which was used as another method to determine the relative luminosity
systematic in section 5.1.3. Refer to chapter 4 of [95] (see also [33]) for the method used to
compute €3, the double-spin asymmetry via the bunch fitting algorithm; this appendix is a

summary of the method and how it applies to any general spin asymmetry.

H.1 General Bunch Fitting Algorithm

Let r* be a quantity defined for bunch crossing ¢ € B, where B is the set of bunch crossing
numbers under consideration. The quantity 7° could be scaler counts, a ratio of scaler
counts, yields, etc. The objective of bunch fitting is to fit 7 to the following equation, which

is motivated by the general relation of spin asymmetries and cross sections, as outlined in

appendix D:
0 ifa=1
r' =c, (1+ Hle,) , where H, = q hi,, ifa=2. (H.1)
hihi,  ifa=3
The fit parameters are ¢, and &,, for each asymmetry number a € {1,...,9} (see appendix

B). The yellow (east-facing) and blue (west-facing) single-spin asymmetries are 1 and es;
the double-spin asymmetry is e3. The parameter ¢, is approximately the average value of r
for the case where ¢, ),z H. << |B]|.

The bunch fitting algorithm determines the pair of parameters (cq, €,), which minimizes
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the x2 of the fit for asymmetry number a, given by

2

Y

Co (14 Hig,) — 1
S
i€B r

(H.2)

where 02, is the variance of r*. Using (H;)2 =1, V a and 7, the summands expand such that

X2 = (14e2)2(1) — 2¢,2(7) + 226, B(HL) — 2c,,2(Hir') + 2(r),

where for a bunch crossing-dependent quantity z*, the function ¥(z°) is defined as

; (O]
i€B T

The pair (c,,,) which minimizes equation H.3 is the solution to the system

0 = a_Xa = 2028(12(1) —+ QCEZ(H;) - QCaE(Hfzrz)
€a
oxa 2 ' ' o
0 = a = 2Ca (]_ —I— €a) 2(1) - QZ(Tl) + 4Ca€a2(H¢§) - 28@E(Hlllrl)
Ca

The solution, which can be expressed solely in terms of the summations ¥(z%) is:

o Z(HYX() — B(1)X(Hr)
© o S(H)S(H) — S (r)
S(H)S(Hyr') = B(1)%(r)

Cq —

The asymmetry &, is thus easy to extract for a given quantity r*.

H.2 Uncertainty Propagation

Propagation of uncertainty of each r* gives the uncertainties on the fit parameters:

2 Oe, ? 2
Usa — Z aT‘k O-Tk-a

keB

2 dcq ’ 2
O'Ca = Z % 0'7,}9.

keB
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(H.5)

(H.8)

(H.9)



The derivative of the function ¥ (x') is nonzero if z* is dependent on 7, e.g., for z* = f(r),

0 10 ,, 4, 10
Srse flr ) => = = aka(rl):U—Qk%f(r’f). (H.10)

i€B Ty

Derivatives of the y2-minimizing fit parameters are then

Ocq _ L [Z(H(Zz)z — 2(1)2] [E(H;rz) _ HCILcE(Tz)} -
ort ok [S(H)S(Hir) -SSP '
dcg 1 ‘1; (HI) — (1)
ok ok B(HL)?-2(1)2 (H.12)
The propagated uncertainties are therefore
o2 = Z 1 [S(H])? - ()7 [S(Hir') — HFS(r')] -
“ T Gl @R -SEeF | -
» _ [ L EH) - SO)]
o 1; Lo D(H)? = 5(1)2 | (H.14)

H.3 Scaler Asymmetries

The above procedure can be used to extract raw asymmetries ¢, from a scaler system .S,

given a minimum-bias relative luminosity measured by detector M B by choosing

i

 Ng

==,
Nyp

where N, is the number of scaler counts for bunch crossing i, measured by scaler D. The
fractional error on r' is given by propagation of uncertainty, assuming N§ and Ni,, are

uncorrelated:
O i . 1 I 1 (H 15)
ri \| Ny NI, '

Let N;(_) be the total number of scaler counts seen by D, summed over bunch crossings
with like (unlike) proton helicities. Then, for example, the raw double-spin asymmetry
extracted with the above definition of r* is
N&/Niip = N /Nup _ Ng — R'"Ng
Ng/Niip + Ng /Ny N§+ Ry'PNg

€3 = (H.16)

where the minimum bias relative luminosity is RY'? := N}, 5/N;,;5. This asymmetry is then
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seen as a raw double-spin asymmetry in scaler detector S, with respect to a minimum bias
scaler detector M B. Including the beam polarizations allows the definition of the scaler spin

asymmetries (with respect to M B) as

S}j = El/Py
SB =¢ey/Pp . (H.17)
SLL = 53/PBPY

This is the expression of Sy, used for the relative luminosity systematic uncertainties, where

g3 was obtained from applying the bunch fit algorithm to 7" = Nipp/Nipe.-
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Appendix 1

Polarization Uncertainties

This appendix is a summary of polarization uncertainty propagation from the analysis note
written by the CNI Polarimetry Group at RHIC [103], but with additional details specific
to the Run 12 and 13 double-spin analysis.

We begin with a discussion of polarization for a single beam, along with its systematic
uncertainty, followed by a section which outlines how the polarization product and product
uncertainty is calculated. This is followed by a section concerning the combination of uncer-
tainties for Runs 12 and 13. Finally, the fully averaged polarizations and uncertainties are

presented.

I.1 Single Beam Polarization

Let r € {1,...,N,} C N denote a single run number and f € {1,...,N¢} C N denote a
single fill number, where NV, and N are the total numbers of runs and fills, respectively. Let
F; be the set of runs with fill number f, and let f(r) be the fill number of the fill which
contains run r.

The CNI Polarimetry Group provides polarimetry parameters for each fill F; as a pair
of parameters { P, P} } along with their uncertainties {UP}), Upfl}. Letting ¢, be the time of
run r since the beginning of its fill F}(,, the time-dependent polarization for one beam for

run r is
_ 0 1
Pr = Pypy + Py - s (I.1)

The parameter P}] represents the polarization at the beginning of F, while Pf1 represents
the rate of polarization change.

For each fill Fy, we may compute a luminosity-weighted average, given the luminosity of
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run r is denoted by L,

ZLP Pf+—ZLtT, where Lj:= Y L, (1.2)

TEFf TEFf TGFf

The uncertainties on the polarimetry parameters, {apJg UPI} propagate to an uncertainty
on (P)IW 7, along with a relative fill-to-fill systematic uncertainty on the pC polarization,

Osys(p)/ P, as

ZLt ® (P)W Usy;(P). (L.3)

O (p)L

TGFf

Values of ogysp)/P are obtained from table 4 in [103]:
e Run 12: 0% for blue beam, 3.1% for yellow beam
e Run 13: 2.8% for blue beam, 1.4% for yellow beam

We may then combine the fill-by-fill luminosity-weighted average polarizations into an overall

polarization, denoted by IP, by luminosity-averaging (P)}" over each fill:

Ny Ny

1 Lw
P:E;Lf<P>f . where L::fZ;Lf. (1.4)

The fill-by-fill uncertainties o, Py from equation 1.3 propagate as the quadrature summation

Ny
1
op = E @ LfO'(P%;W (15)
f=1

There are two additional systematic uncertainties to consider: uncertainty from overall
polarization scale and uncertainty from the profile correction. The overall scale uncertainties
Oscale(P)/ P, which originate from H-jet and pC scale uncertainties and are summarized in
table 5 of [103], are:

e Run 12: 3.4% for Pg, 3.4% for Py, and 6.6% for PgPy

e Run 13: 3.2% for Pg, 3.3% for Py, and 6.4% for PgPy
The uncertainty due to profile correction, opofie(P)/ P is

e For single beam: 2.2%/./N;

e For both beams together: 3.1%//N¢
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At this point, one must be careful not to double-count uncertainties. The uncertainty op
in equation 1.5 actually already contributes to ogcale(P)/P. If N is the total number of fills

used to obtain the polarimetry Ay and, in turn, ogeae(P)/P, then we can approximately

/ N
Op — Opcorr — OP * Rey/1 — —f (16)
Nr

For the case where more fills were analyzed N; than were used to obtain polarimetry Ay,

correct op by using a factor:

then Ny > Nr implies o,, . = 0 and the scale systematic is completely double-counted.
On the other hand, if Ny < Np, then o,, . accounts for the extra statistical uncertainty

from having analyzed fewer than Nr fills. The values of Nr are (from table 6 in [103]):
e Run 12: 49 for blue, 49 for yellow
e Run 13: 138 for blue, 139 for yellow

As for the numbers of fills analyzed, Ny = 45 for Run 12 and N; = 40 for Run 13.
All of the above uncertainties are combined together to form a total uncertainty on the

P for a single beam as

Oscale (P ) Oprofile (P )

Tot
= corr P. P. y 1.7
which can be written as a relative uncertainty on P as
Tot
Op OP corr Uscale(P) Uproﬁle<P)
= _ I.8
P P © P © P (18)

1.2 Beam Polarization Product

Equation 1.7 represents the uncertainty of the overall polarization of one beam, but the
A7 analysis uses the product of polarizations from each beam. Let us now consider the

polarizations of two beams, denoted P and (). The product of polarizations for one run r is

P.Qr = (P + Priry - 1) (@) + Qi) - 1) » (L9)

and the luminosity-weighted average for one fill f expands to

1
(PQ)Y = PIQY + I (PPQ} + PIQY) Y Lit, + PjQ} Y Lytl| . (L.10)

TEFf TGFf
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The statistical uncertainty, including fill-to-fill systematic uncertainties, is

0 po O p1
Cpquv = 7 | QpLr+Qp Y Lot | @ =5 Q5 Y Lty + Q) ) Lty | &
f T‘EFf f T‘EFf T‘EFf
JnHo g1 P
TPy Y | @ T (Y L Y it e qpg D)
! reFy f reFy reFy Q
(1.11)

where ogys (PQ) /PQ = 04ys (P) /P @ 04y (Q) /Q = 3.1% for both Runs 12 and 13. The

overall luminosity-weighted average polarization product is then

Ny
PQ = % f; Ly(PQ)YY, (1.12)
and the statistical uncertainty is
1 X
opQ = E fe? LfO'(pQ>IfW. (Il?))

The double-counting correction is

Ny
Min (N;?, Nf?) ’

OpQ — OPQ,corr — OPQ ° Re |1 - (114)

where the lesser of N and N is used, since that would be the number of fills one would

need in order to calculate a polarimetry double-spin asymmetry. Finally,

Uscale(PQ) Uproﬁle(PQ)
—rg TR

ag&t = 0pQ,corr © PQ - (I.15)

where the scale and profile systematic uncertainties are
® Osale(PQ)/PQ = 6.6% for Run 12, 6.4% for Run 13

o 0profie(PQ)/PQ = 3.1%/+/ Ny for both Runs together

247



I.3 Combining Uncertainties over Two RHIC Runs

If the analyzed data include polarizations from two RHIC Run periods, there will be two
sets of polarimetry uncertainties to propagate, in order to determine an overall polarization
uncertainty. This section demonstrates how to combine the two sets of uncertainties from

Runs 12 and 13; altogether, four uncertainties need to be considered:

1. The fill-to-fill systematic uncertainty, oss(PQ)/PQ, is trivial to combine since it enters

each term of the quadrature sum in equation [.11.

2. The profile correction uncertainty, oprofie(PQ)/PQ is also straightforward, since it is
the same for both Runs 12 and 13.

3. For the scale uncertainty, oscae(PQ)/PQ, [103] suggests to use the larger uncertainty
between the two RHIC Runs.

4. For the double-counting correction, adding together the number of fills involved gives

the correction factor

Nyi2+ Nyas
Min (N1, Ny ) + Min (Nfy, NE, )

OpQ — OPQ,corr — OPQ ° Re - 1— s (116)

where the numbers of fills are subscripted by the RHIC Run numbers.

1.4 Results

We now list the numerical results of the polarization, following the notation used in this
appendix. Run 12 is shown first, followed by Run 13, then the combination of Runs 12 and
13. The printed number of digits is not necessarily the actual number of significant figures,

since 4 digits were printed past the decimal point for all numbers.
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RUN 12
Lips = 57.4036 pb™*

Pp =0.5434 op, = 0.0187
Py = 0.5641 op, = 0.0194
]PB]PY = 0.3069 OpPgPy — 0.0204

O (Blltonfl seale) = e [\/ 1 45/49} -[0.0066] = 0.0019
Opy (lltootil scale) = Re [\/ 1— 45 /49] -[0.0078] = 0.0022

05 Py (Lol scale) = e [m} -[0.0058] = 0.0017
Py - 0uate( Py)/ P = 0.5434 - 0.0340 = 0.0185

Py - 0ot Py) /Py = 0.5641 - 0.0340 = 0.0192

PuPy - 0ecre (P Py) /PPy = 0.3069 - 0.0660 = 0.0203

Ps - Oprosie(Pp)/ Pp = 0.5434 - 0.0033 = 0.0018

Py - oprofite(Py) /Py = 0.5641 - 0.0033 = 0.0018
PPy - 0profie(PePy )/ PpPy = 0.3069 - 0.0046 = 0.0014
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RUN 13
Lint = 6.0140 pb™!

Pp = 0.5688 op, = 0.0192
Py = 0.5656 op, = 0.0194
]P)BPY = 0.3225 OpPgPy — 0.0212

O']P)B7(ﬁ1]_to_ﬁ1] scale) — Re |:\/ 1-— 40/138] : [00067] = 0.0056
OPy ,(fill-to-fill scale) — Re |:\/ 1-— 40/139] . [00057] = 0.0048

05 Py (Lol scale) = FRe [\/m] -[0.0054] = 0.0045
Pp - 0uate(Ps)/ P = 0.5688 - 0.0320 = 0.0182

Py - 0wt Py) /Py = 0.5656 - 0.0330 = 0.0187

PuPy - Oecre(PPy) /PPy = 0.3225 - 0.0640 = 0.0206

Ps - Oprosie(Pp)/ Ps = 0.5688 - 0.0035 = 0.0020

Py - Oprosite(Py)/ Py = 0.5656 - 0.0035 = 0.0020
PPy - Oprosie( PsPy) /P Py = 0.3225 - 0.0049 = 0.0016

250



RUNS 12 + 13
Lin = 63.4177 pb™*

Py = 0.5458 op, = 0.0191
Py = 0.5642 op, = 0.0199
PsPy = 0.3083 op,p, = 0.0208

O (Bltofil seale) = e [\/ 1-85 /187] - [0.0060] = 0.0044
Ty (o eai) = Re [/1— 85/188] - [0.0071] = 0.0052

OB Py (il tontll scale) = e [\/ 185/ 187] -[0.0053] = 0.0039
Py - 0uate(Ps)/ Py = 0.5458 - 0.0340 = 0.0186

Py - 0wente( Py) /Py = 0.5642 - 0.0340 = 0.0192

PuPy - Oecnie( P Py)/Pr Py = 0.3083 - 0.0660 = 0.0204

Ps - Oprosie(Pp)/ Pp = 0.5458 - 0.0024 = 0.0013

Py - oprofite(Py) /Py = 0.5642 - 0.0024 = 0.0013
PgPy - 0profie(PePy )/ PPy = 0.3083 - 0.0034 = 0.0010
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Appendix J

Including Photon Uncertainties in pp

Uncertainty

The pr uncertainty was approximated in equation 5.21, rewritten here:

Opr NO'E Ohp OR,

~ —

pPr E h@RZ

(J.1)

A more accurate determination of the py uncertainty can be made by making use of invariant
mass and taking into account uncertainties on photon separation and energy imbalance;
however, it will be shown that the additional terms which correct equation J.1 are suppressed.

Given a 7 with the 4-momentum given in equation 5.19, its invariant mass is
M? = E? — pZ.csc? 6. (J.2)

Defining Z as the photon energy imbalance and « as the decay opening angle, the two-photon
system invariant mass is

M? = E* (1 — 2°) sin? % (1.3)

Let R be the distance between the nominal vertex and the point on the FMS plane at which
the 7% would have struck had it not decayed; the plane should be the one which was used
for photon position reconstruction. Let D be the transverse distance between the detected

photon hits. Then

«Q D Dcos@

Now take a(D,#) from equation J.4, insert it into equation J.3 and equate the result to

equation J.2:
T2
1+77
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Solving for pr gives

[1+T%22
pT(E,Z,Q,D) = FEsinf - ﬁ (J6)

The uncertainty propagates as

Opr Opr Ipr Opr

UpTzaEUE@azoz@ aeag@aDaD. (J.7)
By defining X as
opr . (72 —1)T?
X =D -—=Fsinf - , J.8
oD 11122 it 2212 (18]
the derivatives in equation J.7 are
Ipr _ Ppr
a_E —_— E’ (J-9)
opr  (1+T*ZX
o0z zZ2—1 (J.10)
% = prcotd — X tanb, (J.11)
3pT X
_— = —. 12
oD D (J.12)
Because tanf = h/R,,
op\ 2 OR 2
op = sin® 0 cos® 0 (7) + <Rz) (J.13)
It is also easy to show that, given Z = (E) — Ey)/FE and op, /Ey = 0,/ Ey = 05/ E,
1— 272
oy = 2B (J.14)

2 E

It turns out that X is quite small when compared to other contributions to o,,. If we
set X =0, the o0z and op terms drop out. The oy term is then the same as that in equation
J.1, up to a factor of cos?#, which is within 2% of unity for relevant values of 6. Since the
dominant F term is the same as that in equation J.1, the determinations of o, in equations

J.1 and J.7 are approximately the same.
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Appendix K

Maximum Likelihood Method for A;

Measurement

This appendix derives the maximum likely value of Ay, given a set of runs; it follows
[116], appendix D. We first review the maximum likelihood method (MLM), followed by its

application to Apr.

K.1 Maximum Likelihood Method

Let f (z;,«) be the probability of measuring x; in the ith measurement of a sequence of
repeated measurements, where « represents the actual value of the measurement, 7.e., what

the measurement is nominally. Such a probability is often a Gaussian distribution:

(K.1)

f(zi,0) = 1 exp [_M

oV 2T

Define the likelihood function L as the product of the probability distributions for N mea-

surements:
N

L=]]f(z: ). (K.2)
i=1
The maximum likely value, denoted &, is the o such that L is maximized: & is the solution

to oL
0 —

=5 - (K.3)

a=x
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Because L is a product, it is simpler to evaluate the maximum value of its logarithm:

Oln L
0= Oa

il Oln f (z;, @)
:Za—a

a=«x

With f (z;, ) as a Gaussian distribution, the likelihood function is

L= <U 127T)Nexp [—% f; (z; — a)2] : (K.5)

Differentiating the logarithm of L with respect to « yields

olnL 0 1 1 & )
— 2 |N1 — - —
oa |,_, O« [ n(a 27r) 2022@ @) ] )
= a=a (K.6)
LN
i=1
Setting this to zero returns the solution
1 X

Now consider the same Gaussian probability distribution, but allow for the width o to

vary from measurement-to-measurement, denoted as ;. The modified distribution is

f(zi,a) = ! exp [—u] : (K.8)

Differentiating In L gives

ol () e[ S]]

Oln L
Oa
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Setting this equal to zero yields & as a weighted average:

a =

N ) 2
—Zi;l %i/ 07 (K.10)
Zizl 1/01'2

K.2 Maximum Likely A,

The above MLM can be used to extract a maximum likely value of the asymmetry A,

denoted Ayr. Let i represent a single DAQ run. Let

S’i = N;r+ + Niii,
D;:= N+ N; 1, (K.11)
P :=PFPY,

where Nsign(hp)sien(hy) s the number of 7% with the initial proton spin states as hg and hy.
Let R; be the relative luminosity Rs3 for run <. For a single run, the measurement of Ay, is

written

P Si+RD;

The probability for measuring Ay, in the ith DAQ run, given a nominal value denoted by

AL (K.12)

Ay L, is modelled as a Gaussian with run-dependent uncertainty o;:

(ALLZ- - ALL) ;

/ (ALL“ALL> X exp | — (K.13)
20'7;
Using the MLM technique above, the maximum likely value is
N
_ Y Apn/o?
AL = M. (K.14)

Zi]il 1/‘7?

The task is to now compute 0; =: 04, Ly which is the uncertainty of A;;,. From now on,
we suppress the ¢ subscripts for brevity. We also assume that statistical uncertainties of R;
and P; are negligibly small when compared to the statistical uncertainties of the yield (and

the statistical uncertainty on P; is already accounted for in the calculation of the overall
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polarization uncertainty in appendix I). The uncertainty in Ay, is

0A L\ 0Ar 1\
ai“ = <—8§L) cr?g + (—(‘ﬂgL) a% —

(1 - ALLP)2 O'gv + (1 + ALLP)2 R2O'2D
P2 (S + RD)? '

(K.15)

Assume that the raw asymmetry A, P << 1 and can be neglected in the calculation of
o4, Alsolet og = VS and op = \/5, because the yield distributions are assumed to be
Poissonian. The uncertainty becomes
S+ R*D
0124“ eee— R (K.16)
P2(S+ RD)
If the relative luminosity is close to unity, then the assumption R* ~ R can be made and

the numerator cancels a factor in the denominator, returning

1
T R — K.1
A1 ™ P2 (S ¥ RD) (K.17)

Substituting equation K.17 into equation K.14 gives the MLM value of Ay, used in this

analysis:
N
. ¥ P (Si— R.D;
ALL _ Z]zvzl ( ) ) (K18)
> iy PP (Si+ RiD;)

K.3 Statistical Uncertainty

It remains to propagate statistical uncertainty of S and D to Ay :

- 2 - 2
(?;;L) Ji%_<€£;;> g%i. (K.19)

The derivatives with respect to S; and D; are

N

2 _
94, = Z

i=1

8/_1[/[/ _ -F)Z - -PZ'QALL (K 20)
0Si Sl PE(Sk+ ReDy)’
OALL  —RP - R;P?Ar; (K 21)

OD; SN P2(S,+ RuDy)
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Assuming that P2A;; is negligible, inserting these derivatives into equation K.19 gives

VN, P2(S,+ R2D)
O3 == .
A SN P2(S,+ RD)

(K.22)

Making the approximation P, = P, the average polarization, as well as R; = 1, the uncer-

tainty becomes simply
1

where N = Zf\il (S; + D;). It turns out that equation K.23 is extremely close to the

value determined from equation K.22; ultimately equation K.22 is used for the statistical

(K.23)

. 70
uncertainty on A7 ;.
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Appendix L

Curing Radiation Damage in the FMS
by Photobleaching

The problem of radiation damage in the FMS Pb-glass cells was discussed in section 2.3.4.
This appendix discusses in more detail the photobleaching techniques that were used to

reverse the effects of radiation damage, effectively “curing” the FMS.

L.1 Solar Photobleaching

After the end of Run 13, the FMS was unstacked during the summer of 2013 and all cells were
exposed to 48 hours of sunlight. During the exposure time, transverse transmittance spectra
were measured at three longitudinal depths along a cell. Figure L.1 shows the spectrum
of light used for the transmittance measurement; the spike at 656 nm is due to deuterium
emission from the light source. Figure L.2 shows the transmittance spectra for a clear (not
damaged) large cell, clear small cell, and damaged large and small cells; the colors indicate
three longitudinal measurements: one near the front face (green), one in the center (red),
and one near the back (blue). The vertical axis is a transmittance relative to the average
transmittance for wavelengths greater than 900 nm (note that since this is just a relative
transmittance, it can be greater than 1). For the large cell, the front measurement shows the
most damage, whereas for a small cell, the middle measurement shows the most; for both
cells, the back measurement shows the least amount of damage.

Figure L.3 shows the ratio of transmittance of the damaged cell to that of the clear cell,
given no sunlight exposure, 15 hours of exposure, and 40 hours of exposure, respectively for
each row of plots in the figure. The clear cell was exposed in tandem with the damaged cell

exposure. After 40 hours of exposure, the cells were 90-95% cured.
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Figure L.1: Light source spectrum used for Pb-glass transmission spectra.
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Figure L.2: Transmittance spectra for a large clear (not damaged) cell (top-left), small clear
cell (top-right), damaged large cell (bottom-left) and damaged small cell (bottom-right).
The colors indicate three longitudinal depths at which the transverse transmittance was
measured: near the front (green), near the middle (red), and near the back, where the PMT
would be (blue). The relative transmittance at 410 nm is written on each plot.
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| UV Irradiation of Small Lead Glass Cells: Power=40 W
1

5 E » ® L]
] E
o 0.9
g ®
g ; *® . ]
g 0.8: ] LI
- = L]
= - ]
° 0.7: .
2 E
E 0.6¢ » LED Wavelength: Power=40 W
[1] =
T 0.5 @-®
= » ] 375-380 nm
049 .
Fo® ®  385-390 nm
0.3
T ® 410415
— nm
0.2 Fe
0; ,
2 4 6 8 10 12 14
Fri May 13 15:39:34 2016 Time [Hours]

Figure L..4: Relative transmission of a small cell as a function of UV-LED exposure time
(hours) for three different wavelengths: 410-415 nm (blue, slowest), 385-390 nm (red, mid-
dle), and 375-380 nm (black, fastest).

L.2 Photobleaching with UV-LEDs

After Run 16, the FMS Pb-glass was radiation damaged enough to once again necessitate
curing. Since unstacking the FMS again and exposing all cells to sunlight is a laborious task,
an alternative idea was employed. After testing multiple UV sources such as tanning bed
lights and bug lights, we settled on UV-LEDs and constructed a thin UV-LED array to sit
in front of the FMS glass. This array was designed to be turned on between RHIC fills for
a few hours per day during Run 17, in order to combat the radiation damage and attempt
to keep the glass relatively clear.

A variety of UV-region wavelengths were tested. Figure 1.4 shows the relative transmis-
sion in a small cell as a function of time (in hours) for 3 different wavelengths of light; the
fastest curing was from the lowest wavelength: 375-380 nm. Thus an array of this wave-
length of UV-LEDs was constructed. Due to a mistake in construction, however, a fraction
(~ 1/3) of the UV-LEDs were not the intended wavelength; they most likely are closer to
400 nm. As a consequence of this mistake, although we were not able to power the array to
its full intended power, the overall emission spectrum of the array was broader, which may
have actually helped clear a broader range of F-centers.

Due to design and installation restrictions, the UV-LED array needed to be built in
modules; it also need to be as flat as possible so it could fit in the region in front of the
FMS. This region housed the LED flasher array (see section 3.5.1), which also had to be
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redesigned. The UV-LED array was positioned approximately 3 inches in front of the FMS
glass, with the UV-LEDs facing the glass directly. The LED flasher system, which previously
sent LED signals into every single FMS cell via fiber optics, was removed. The flasher LEDs
themselves were extracted from the fiber optics system, polished, and then re-connected and
mounted on the front face of the FMS, so that they faced away from the FMS and toward
the UV-LED array. Since the UV-LEDs were mounted on aluminum plates, the aluminum
provided enough reflectance of the flasher LEDs such that the flasher system could still be
used in the same manner: for time-dependent gain tracking.

Since the UV-LEDs ran rather hot, a method of keeping them cool was needed. The
UV-LEDs were mounted on aluminum plates, embedded with copper pipes which carried
chilled water; these plates not only served as heat-sinks for the array, but also allowed the
array itself to be segmented into small enough pieces such that installation was streamlined.
Ultimately during operation, the temperature of the FMS rose only a couple of degrees and
returned back to normal about 15 minutes after the UV-LED array was powered down.

Figure L.5 shows the effect of radiation damage as a function of pseudorapidity; the
vertical axis is the ratio of flasher LED amplitudes between the end and the beginning of
a 47 pb™! period of /s = 200 GeV pp collisions. The damage is seen to be more severe
at higher pseudorapidities, therefore the density of the UV-LEDs in the array was made to
increase as a function of pseudorapidity. Figure L.6 shows a diagram of one quadrant of the
UV-LED array, where the beam pipe passes through the bottom left corner. The distribution
of UV-LEDs is shown, along with the 7 aluminum plates that make up the array quadrant;
the aluminum plates cover the majority of the large and small cells within the quadrant.

Each UV-LED needed 10 W of power, supplied by a voltage drop of 10 V per LED and 1
A of current. Only 1 W of UV radiation power was emitted per LED; the rest was dissipated
as heat. Given that there are approximately 768 UV-LEDs, multiple power supplies were
used. The power was first distributed to the power supplies via a 3-phase Power Distribution
Unit (PDU); one PDU was used for the north half and another for the south half. Each
PDU was connected to a 208 V input and contained 3 banks (one for each phase) with 4
power supplies attached to each. On each power supply, there were 2 circuits containing 4
parallel strings of UV-LEDs, each with 4 UV-LEDs in series along with a fuse. Figure L.8
shows a diagram of this power distribution setup.

Both PDUs were connected to the local intranet as well as directly linked to the control
room via a fiber optic connection. Since both the PMT HV and UV-LED array were remotely
controllable, a graphical user interface was designed in order to simplify operations, as shown
in figure L..9. The graphical interface also served as a software interlock between the UV-LED
array and the PMT HV system, since having both on at the same time could possibly damage
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the PMTs: exposing the sensitive PMTs to the high flux of UV radiation could overpower
them. Because of this danger, the system demanded verification that the UV-LEDs were off
before permitting the HV to be turned on, and vice versa. Furthermore, for every time any
button was clicked on the control interface, a text message was sent to those responsible for
FMS operations, the so-called experts; if the UV-LEDs were ever detected to be on at the
same time, both the UV-LEDs and HV systems were shut down, and the operator in charge
would be presented with a message to call the experts immediately. During the entirety of
Run 17, this critical state of the UV-LEDs and HV systems being simultaneously on never
occurred.

Figure L.7 shows the ratio of flasher LED amplitudes for a 43 hour exposure of the
FMS to the UV-LED array; this ratio is plotted as a function of pseudorapidity. Overall,
the UV-LED array successfully cleared the Pb-glass and it was used daily for a few hours
per day during Run 17 to maintain glass transparency and a relatively constant trigger
rate throughout the entire Run. This array was effectively the solution to the problem of

radiation damage in the FMS.
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Figure L.5: Ratio of LED flasher amplitudes between end and beginning of a period of
radiation damage accumulation, as a function of pseudorapidity.

Figure L.6: One quadrant of the UV-LED array, showing the distribution of LEDs and their
associated aluminum plates. The UV-LEDs were wired in groups of four (wiring not drawn).
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LED ADC Ratio vs Eta, Large and Small 43 Hour UV soak

o 5
=
o 4.5:
4 -
3.5F
2.55
= ——
2r _—+_
1.5F —— e
o8 — .
0.5F
0 26 28 3 3.2 3.4 3.6 3.8 4
Tue Jan 17 15:06:05 2017 Eta

Figure L.7: LED amplitude after 43 hour exposure to UV-LED array, divided by LED
amplitude before exposure, vs. pseudorapidity. Radiation-hard cells (which are a few cells
that are “hardened” against the effect of radiation damage) were omitted from this diagram,
as well as cells with misbehaving PMTs.
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