Searching for Diffractive Contributions to the Forward π^0 Transverse Single-Spin Asymmetry in $\sqrt{s}=200~{\rm GeV}$ Polarized pp Collisions

Christopher Dilks

for the STAR Collaboration DNP 2018 – Waikoloa, HI 26 October 2018

Outline

- ◆Transverse Spin Asymmetry: A_N
- The Experiment at RHIC
- The Measurement

Transverse Single Spin Asymmetry: A

If
$$A_N > 0$$
,

- Spin-up proton tends to produce more π^0 s to the left, than to the right
- Spin-down: vice versa

$$A(\phi) = \frac{d\sigma^{\uparrow}(\phi) - d\sigma^{\downarrow}(\phi)}{d\sigma^{\uparrow}(\phi) + d\sigma^{\downarrow}(\phi)} \sim A_N \cdot \cos \phi$$

$$\sim A_N \cdot \cos \phi$$

Transverse Single Spin Asymmetry: A_N

S. Heppelmann – CIPANP 2012

Large π^0 A_N, independent of \sqrt{s} and rising with x_F, observed since 1976

- Collins, Sivers, suggest A_N~1/p_T
- Twist-3 suggests flatter p_T dependence
- \blacksquare May rise as a function of p_{T} at low x_{F}

π⁰ Event Topology Dependence

S. Heppelmann – DIS 2013

- Isolated pions have larger A_N than those with nearby energy deposits
- Pion A_N is therefore **event topology-dependent**

Diffractive Contributions

- \blacksquare Large forward $\pi^{\scriptscriptstyle 0}$ $A_{\scriptscriptstyle N}$ and its topology dependence not fully understood
- \blacksquare Any contributions from diffractive π^0 production?

Diffractive Contributions

- \blacksquare Large forward π^0 $A_{_{\rm N}}$ and its topology dependence not fully understood
- Any contributions from diffractive π^0 production?

This talk:

RHIC: Relativistic Heavy Ion Collider

Brookhaven National
Laboratory
Long Island, NY

Detectors and Orientation

For A_N measured in the forward direction:

- polarized proton stayed intact
- Backward RP track: unpolarized proton stayed intact

FMS: Forward Meson Spectrometer

- Lead-Glass Electromagnetic Calorimeter
- Array of ~1200 Pb-glass cells coupled to Photomultiplier Tubes (PMTs)
- Primary Observables: $\pi^0 \rightarrow yy$ (also η , etc.)

EM Shower in Pb-Glass Cell

Pb-Glass e⁺

PMT

RP: Roman Pot Detectors

Event Selection

Pions

- 100 mrad Isolation
- Highest energy pair in the event
- \blacksquare Mass within π^0 mass window
- 12 < E < 70 GeV
- $Z = |E_1 E_2| / E < 0.8$
- p_⊤ trigger threshold cut

Protons

- Hits in both inner and outer Roman Pots
- Track within geometric acceptance
- Hit at least 6 of 8 tracking planes

Additional cuts for selecting p+p \rightarrow p+ π 0+X:

- One good track in forward RP, and no activity in backward RP
- No hits in BBC (Beam Beam Counter), a scintillator spanning $2.1 < \eta < 5$ (this is a *rudimentary* rapidity gap cut)

Diffractive pp $\rightarrow p\pi^0X$

Diffractive pp \rightarrow p π^0 X Kinematics

Proton Kinematics

Transverse momentum: $p_{\tau} \sim 0.1 - 0.5 \text{ GeV/c}$

Momentum transfer: $-t \sim 0.01 - 0.25 (GeV/c)^2$

Fractional momentum loss: $\xi \sim 0.1 - 0.3$

Pion Kinematics

Transverse Momentum: $p_{_{\rm T}} \sim 1 - 4 \; \text{GeV/c}$

Energy:

 $E \sim 10 - 40 \text{ GeV}$ $X_{E} \sim 0.1 - 0.4$

Some Ideas for a Possible Model

- Remnants "X" should have p_T which balances pion p_T
- If the proton were to fluctuate into a proton+ π^0 state before/at the Pomeron vertex, the π^0 may have angular momentum correlated to proton spin
- There are also models involving GPDs

Outlook on Asymmetries

$$\cos\phi_{\pi^0}$$

 $\cos\phi_{\pi^0} \stackrel{\text{Usual } \pi^{_0} \text{ asymmetry modulation}}{\text{Do diffractive } \pi^{_0} \text{s contribute to the inclusive } \pi^{_0} \text{ A}_{_N}?}$

 $\cos\phi_{v}$ Compare to proton A_N

$$f\left(\phi_{\pi^0},\phi_p
ight)$$

 $f\left(\phi_{\pi^0},\phi_p
ight)$ Are there any modulations which involve both the proton and pion azimuthal angles?

Estimating ~2-4% statistical uncertainty on A_N

Summary

- STAR is beginning to explore diffractive contributions to large transverse single spin asymmetries, A_N
- Large A_N is observed for forward π^0 s
- We observe a substantial amount of pp \rightarrow pπ⁰X events, with the π⁰ in the forward direction
- Analysis of possible asymmetries is underway

backup

Mechanisms for a nonzero A_N

Collins Mechanism

Azimuthal dependence of hadrons in each jet

Correlation between struck parton spin and fragmentation hadron $k_{\scriptscriptstyle T,\Pi}$

Applicable for low- p_{T} (<<Q) processes

Azimuthal dependence of jet production

Correlation between initial parton $k_{T,\alpha}$ and proton spin

 $p_{\scriptscriptstyle T} << Q$ processes

Collinear Twist-3 Factorization

Include additional an additional parton interacting:

- initial parton distributions (PDFs)
- final state fragmentation functions (FFs)

Large contribution from twist-3 FFs

Applicable for high p_{τ} (~Q) hard scale

Pitonyak, International Journal of Modern Physics A 31, No. 32,1630049 (2016)

Approximate Acceptance

FMS Pions

- ■10 < E < 100 GeV
- $-1 < p_{T} < 10 \text{ GeV/c}$
- $-2.65 < \eta < 3.9$

RP Protons

- $-0.1 < p_{T} < 0.9 \text{ GeV/c}$
- $-0.01 < -t < 0.5 (GeV/c)^2$
- $-\xi < 0.3$

Detectors for assessing Rapidity Gaps

- TOF/MTD/BEMC: | η | < 1
- EEMC: 1 < η < 2
- BBC small tiles: $3.3 < |\eta| < 5 (@3.74m) \dots$ overlaps with small FMS cells
- VPD: 4.2 < | η | < 5 (@5.68m) ... overlaps with BBC
- ZDC: $6.5 < |\eta| < 7.5$ (@18.0m)