Overview of Gluon Helicity Measurements at STAR

Christopher Dilks for the STAR Collaboration SPIN 2018 – Ferrara, Italy

12 September 2018

Proton Spin Composition

Jaffe-Manohar Spin Sum Rule:

$$S_p = \frac{1}{2} = \Delta \Sigma / 2 + \Delta G + L$$

Quark spin contribution: $\Delta\Sigma \approx 0.2 - 0.3$

Gluon helicity contribution: ΔG

Unconstrained for

lower x

 ~ 0.2 for x > 0.05

Partonic Orbital Angular Momentum: \mathbf{L} – unknown

Polarized Gluon Distributions

Gluon Helicity at STAR

Gluon Polarization

Longitudinal Double-Spin Asymmetry

Unpolarized PDFs:

Well-understood

Polarized PDFs:

- Hard Scattering Cross **Section & Asymmetry:**
- Dominant quarks well-understood • Gluons unconstrained at low x
- $\hat{\sigma}, \hat{a}_{LL}$ Well-understood

• Fragmentation Functions: D –

- Only needed if measuring final-state hadrons
 Well-understood for quarks
 Larger uncertainties for gluons

How to Measure A_{LL}

Requires 3 coincident measurements:

Yields (jets, dijets, pions, *et al.*) for each proton spin combination

See Ting Lin's presentation (up next!) for further detail

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory Long Island, NY World's only polarized synchrotron collider

- Spin state known for every proton bunch
- Longitudinally polarized collisions achieved with Spin Rotators

STAR Experiment

Central Rapidity

- Jets at 510 GeV in 2012 and 2013 (STAR Preliminary) Int.J.Mod.Phys.Conf.Ser. 40 (2016) 1660021
- Dijets at 200 GeV in 2009
 Phys.Rev. D95 (2017) no.7, 071103
- Dijets at 510 GeV in 2012 and 2013 (STAR Preliminary)

- 1

Central Jets at 200 GeV in 2009

- ◆ Jets reconstructed from anti-k_T algorithm with R=0.6
- ◆ Jet p_T corrected to parton-level, which excludes underlying event / beam remnants
- Positive A_{LL} above DSSV08 fit is evidence of positive $\Delta g(x)$ at high x

X > 0.05

Central Jets at 510 GeV in 2012 & 2013

510 GeV measurement agrees with 200 GeV measurement from 2009

 \Rightarrow Reconstruction using anti-k_T algorithm with R=0.5

♦ Higher \sqrt{s} pushes sensitivity to lower *x*: $x_{510} = \frac{200}{510} \cdot x_{200}$

Central Dijets at 200 GeV in 2009

Central Dijets at 510 GeV in 2012 & 2013

- ♦ Higher \sqrt{s} pushes to lower *x*
- \Rightarrow Anti-k_T with R=0.5
- Plotted vs. parton invariant mass
- Full central region shown
- Asymmetries also agree with models

Intermediate Rapidity $0.8 < \eta < 2$

Pions at 200 GeV in 2006 Phys.Rev. D89 (2014) no.1, 012001

Pions at 510 GeV in 2012 and 2013 Analysis Underway

Intermediate Dijets at 200 GeV in 2009

- More-forward production probes lower x, down to 0.01
- Provides tighter constraints to size and especially shape of Δg(x) for x>0.05
- Three topologies shown:
 - one jet forward, other jet central (opposite side)
 - one jet forward, other jet central (same side)
 - both jets forward
 - forward-forward case probes lowest x
- Anti- k_{T} with R=0.6
- See Ting Lin's (up next) presentation for further detail
- Analysis of 510 GeV data underway

ALL

x > 0.01

Intermediate Pions at 200 GeV in 2006

Forward Rapidity $2.65 < \eta < 3.9$

 Pions at 510 GeV in 2012 and 2013 Phys.Rev.D 98 (2018) no.3, 032013
 * new result!

- Pions at 200 GeV in 2015
 Analysis Underway
- Dijets et al. in the Forward Upgrade for 2021+ Analysis for the Future

Forward Meson Spectrometer

Pion Event Sample

Forward Pions at 510 GeV in 2012 & 2013

- Pushing even farther forward probes x down to 0.001
- Provides constraints to the unexplored low-*x* region, which is *abundant* with soft gluons
- Shown for two pseudorapidity regions
- Analysis for 200 GeV is underway, and although it will not probe to as low of x, it will help improve constraints on $\Delta g(x)$

Forward Upgrade for 2021+

Summary: Recent A_{LL} Measurements

√s (GeV)	RHIC Run	Central Jets	Central Dijets	Interm. Dijets	Interm. Pions	Forward Pions	Forward Dijets
200	2006	Published* x>0.05			Published x>0.01		n/a
200	2009	Published x>0.05	Published x>0.05	Published x>0.01			n/a
200	2015	Underway x>0.05	Underway x>0.05			Underway x>0.0025	n/a
510	2012	Preliminary x>0.02	Preliminary x>0.02	Underway x>0.004	Underway x>0.004	Published x>0.001	n/a
510	2013	Preliminary x>0.02	Preliminary x>0.02	Underway x>0.004	Underway x>0.004	Published x>0.001	n/a
200 & 510	2021+						Future x>0.001

* not presented

backup

Recent RHIC Longitudinal pp Runs

- ◆Run 6 2006 200 GeV
- Run 9 2009 –
 200 GeV
- Run 12 2012 –
 510 Gev
- Run 13 2013 –
 510 GeV

```
    Run 15 – 2015 –
    200 GeV
```


Factorized A_{LL}

$$A_{LL}^{\pi^{0}} = \frac{d\Delta\sigma^{pp \to \pi^{0}X}/dK}{d\sigma^{pp \to \pi^{0}X}/dK} = \frac{\sum_{f_{1}, f_{2}, f_{3}} \Delta f_{1} \otimes \Delta f_{2} \otimes \left[d\hat{\sigma}^{f_{1}f_{2} \to f_{3}X'}\hat{a}_{LL}^{f_{1}f_{2} \to f_{3}X'}\right] \otimes D_{f_{3}}^{\pi^{0}}}{\sum_{f_{1}, f_{2}, f_{3}} f_{1} \otimes f_{2} \otimes d\hat{\sigma}^{f_{1}f_{2} \to f_{3}X'} \otimes D_{f_{3}}^{\pi^{0}}}$$

C. Dilks

Gluon Helicity at STAR

Measuring A_{LL} in pp Scattering

$$\begin{split} A_{LL} &= \frac{1}{P_a P_b} \frac{\sigma_{++} + \sigma_{--} - \sigma_{+-} - \sigma_{-+}}{\sigma_{++} + \sigma_{-+} + \sigma_{-+}} \\ \text{Luminosity:} \quad L &= \frac{dN/dt}{\sigma} \implies \sigma = \frac{N}{L_{int}} \\ P &= \frac{I_+ - I_-}{I_+ + I_-} \\ \text{Relative Luminosity:} \quad R_3 &= \frac{L_{++} + L_{--}}{L_{+-} + L_{-+}} \\ \end{split}$$

Measuring Relative Luminosity

3 scaler subsystems for relative luminosity and local polarimetry

We primarily use VPD and ZDC

Anti- k_{τ} algorithm for jet reconstruction

Anti-kT Algorithm Example

- Example: few hard particles and many soft particles
- d_{1i} between hard particle "1" and soft particle "j" $(k_{T1} > k_{Ti})$:
- If entity "1" was instead a soft particle $(k_{T_1} \approx k_{T_i})$, d_{T_i} would be much larger
- Result: soft particles tend to cluster with hard particles before they cluster with each other
- If a hard particle has no other hard particles within a distance of 2R, then it accumulates all soft particles within a circle of radius R, forming a (conical) jet

If another hard particle 2 is present such that $R < \Delta_{12} < 2R$ then there will be two hard jets. It is not possible for both to be perfectly conical. If $k_{t1} \gg k_{t2}$ then jet 1 will be conical and jet 2 will be partly conical, since it will miss the part overlapping with jet 1. Instead if $k_{t1} = k_{t2}$ neither jet will be conical and the overlapping part will simply be divided by a straight line equally between the two. For a general situation, $k_{t1} \sim k_{t2}$, both cones will be clipped, with the boundary b between them defined by $\Delta R_{1b}/k_{t1} = \Delta_{2b}/k_{t2}$.

Similarly one can work out what happens with $\Delta_{12} < R$. Here particles 1 and 2 cluster to form a single jet. If $k_{t1} \gg k_{t2}$ then it will be a conical jet centred on k_1 .