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Abstract

Understanding the properties of the quark-gluon plasma (QGP) gives us a glimpse

back to the early Universe. This very fact shows the importance of experiments to create

and study it. Such matter, however, can exist at temperatures of – at least – about 150–

200 MeV (∼2–109 K), so it can only be created in high-energy particle accelerators.

The QGP “freezes out” almost immediately, so its properties can only be inferred from

the created particles, which can be measured by complex detector systems. In heavy-ion

physics, it is essential to determine the dependence of this particle yield on pseudorapidity,

as this is a key point for comparison with theoretical models.

In 2018, in preparation for the Beam Energy Scan phase II, the STAR detector at

RHIC (Relativistic Heavy Ion Collider) was upgraded with the Event Plane Detector

(EPD). This instrument, as its name suggests, enhanced STAR’s capabilities in event

plane resolution for flow measurements, in triggering overall, and also centrality determ-

ination for fluctuation measurements. Due to its fine radial granularity, it can also be

utilized to indirectly measure pseudorapidity distributions of the produced particles.

The response of the detector to the primary particles created in the collision has to be

understood well: using simulated measurement data, I used an iterative unfolding pro-

cedure to determine the relationship of EPD data to input distributions, and measured

pseudorapidity distributions. I also did several systematic error checks of the method,

with the motivation to develop this technique to be used at other beam energies of the

RHIC. Experiments at several energies should give a more complete picture of the process

at which QGP is transformed into hadronic matter, thus “scanning” the phase diagram of

QCD (quantum chromodynamics) describing the strong interaction.

In my thesis, I concentrated on refining my results at
√
sNN = 19.6 and 27.0 GeV with

further systematic checks and comparing them via the total particle yield, furthermore,

obtaining results at 14.5 GeV. I did some comparisons of the 19.6 GeV results with several

other results at this beam energy, such as the MUFFIN-SMASH hydrodynamic model’s

prediction and PHOBOS experiment’s data.

1



Contents

1 Introduction 4

1.1 High-energy heavy-ion physics . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Nuclear physics and the Big Bang . . . . . . . . . . . . . . . . . . . 4

1.1.2 Pseudorapidity measurements in heavy-ion physics . . . . . . . . . 4

1.1.3 Relevance to high-energy nuclear physics in general . . . . . . . . . 6

1.1.4 Relevance to other observables . . . . . . . . . . . . . . . . . . . . . 7

1.1.5 Experimental techniques . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.6 (Pseudo)rapidity distributions and relativistic hydrodynamics . . . 8

1.2 Event Plane Detector at STAR . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Structure of the EPD . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Geometry of the EPD . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Calibrated ADC of the EPD electronics . . . . . . . . . . . . . . . . 16

2 Analysis 17

2.1 Raw EPD data to charged particle pseudorapidity measurements . . . . . . 17

2.1.1 Extracting EPD Ring hits . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 Detector distortions . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.3 Response matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Iterative Bayesian unfolding [26], [27] . . . . . . . . . . . . . . . . . 22

2.1.5 RooUnfold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Extracting pseudorapidity distributions . . . . . . . . . . . . . . . . . . . . 26

2.2.1 Efficiency: multiple count correction . . . . . . . . . . . . . . . . . 27

2.2.2 Methods on extracting dNch/dη . . . . . . . . . . . . . . . . . . . . 27

2.2.3 Consistency check . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2



3 Results 34

3.1 Results at various energies . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Systematic error checks [19] . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Dependence on input MC distribution . . . . . . . . . . . . . . . . 35

3.2.2 Tightening and shifting the input MC dN/dη . . . . . . . . . . . . 36

3.2.3 Changing the charged fraction in the MC training dataset . . . . . 38

3.2.4 Changing the pT slope of the MC training dataset . . . . . . . . . . 38

3.2.5 Centrality and z-vertex selection . . . . . . . . . . . . . . . . . . . . 38

3.2.6 z-vertex choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.7 Unfolding method choice . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.8 EPD related uncertainties . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Results summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Comparison with PHOBOS results . . . . . . . . . . . . . . . . . . . . . . 42

3.5 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.1 Comparison with MUFFIN-SMASH simulation . . . . . . . . . . . 44

3.6 Npart corrected comparison of pseudorapidity distributions . . . . . . . . . 45

4 Summary 45

References 51

3



1 Introduction

1.1 High-energy heavy-ion physics

1.1.1 Nuclear physics and the Big Bang

Up until the first few microseconds after the Big Bang, an unimaginably dense and hot

matter was present in the Universe, known as quark-gluon plasma (QGP), as illustrated

in Fig. 1 [1]. In that hot “soup-like” matter, the quarks and gluons could exist in their free

form; according to our current knowledge, this kind of matter is formed in high-energy

particle collisions (with at least 150–200 MeV collision energy). However, the high energy

density blows up the QGP almost instantly [2], and it freezes out to different particles, as

quarks are turned into hadrons due to colour confinement [3]: with the growing distance

between the quarks, the increasing field strength creates gluons and quark-antiquark pairs

until, all particles are colourless, i.e. have zero colour charge.

Using the known conservation laws, these frozen out particles can be identified; their

properties can be used to infer the various characteristics of the QGP and hence of the

near-Big Bang state.

1.1.2 Pseudorapidity measurements in heavy-ion physics

From the vast amount of experimental data obtained in high-energy particle collisions,

the first aim is to extract the basic physical parameters of the particles flying out from

the collision centre, in order to obtain the geometrical properties of the hadronic matter

after the QGP freezeout.

One of such quantities is the angle θ between the three-momentum p of the flying

out particle and the collider beam. In experimental particle physics, however, a more

convenient quantity, the pseudorapidity η is used, which is by definition:

η ≡ − ln

[
tan

(
θ

2

)]
=

1

2
ln

(
|p|+ pz
|p| − pz

)
, (1)

where pz is the z component of the momentum, and the z direction is chosen to coincide

with the direction of the beam [4]. This quantity is practical mostly because of two of its

properties:

• in the ultrarelativistic limit (m << |p| =⇒ E ≈ |p|, where E is the energy of
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Figure 1: The story of the Universe after the Big Bang. Quarks and gluons, before

being confined into bound states of hadrons after the first milliseconds, existed in the

form of quark-gluon plasma. The study of this primordial matter is currently possible

using methods of high-energy heavy ion physics. [1]

the particle in c = 1 unit system, where c is denotes the speed of light) it approaches

to rapidity

η ≈ y =
1

2
ln

(
E + pz
E − pz

)
(2)

known from special relativity and

• in the midrapidity region (around η = 0) it gives a rather uniform particle yield

as a function of rapidity in contrary to θ – as seen e.g. later in Sec. 3.4 as well in

PHOBOS’ results. This measure remains invariant under Lorentz transformations

along the beam direction [4].

In general, measuring pseudorapidity is essential for analysing the angular distribution
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Figure 2: Illustration of pseudorapidity η and its relation to the angle θ between the

three-momentum of the particle and the direction of the beam (usually chosen as axis

z). Source of the picture: [5].

of particles produced in heavy-ion collisions, as it allows us to study particle production

mechanisms and energy distributions in a manner that is consistent across different ref-

erence frames – particularly in high-energy environments where relativistic effects are

significant.

1.1.3 Relevance to high-energy nuclear physics in general

Measuring pseudorapidity distributions is mostly relevant in the exploration of the QGP.

These measurements provide indirect evidence for the existence of the QGP via revealing

changes in particle production patterns (and thus, in energy distributions); furthermore,

the phase transition between normal nuclear matter and QGP as predicted by Quantum

Chromodynamics (QCD) 1.

Pseudorapidity distributions offer detailed information about the dynamics of heavy-

ion collisions themselves as well, including the aforementioned energy deposition along the

beam axis and the symmetry of the collision. Via this information, accurate models of the

collision process can be constructed, and we can get closer to understanding the interplay

between different physical phenomena, such as thermalization and collective flow [6].
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Figure 3: Simulated geometry of the collision of two symmetric nuclei. Centrality,

which is the measure of how much the nuclei overlap, is specified by the impact vector b⃗.

Sources: [7], [8].

1.1.4 Relevance to other observables

Centrality refers to the overlap region (or impact parameter, see Fig. 3) of two colliding

heavy ions, quantifying how central or peripheral the collision is. The particles in the

nuclei participating in the collision are called then participants

Centrality is often expressed as a percentile of the hadronic cross section corresponding

to a certain energy deposited.

Particle multiplicity refers to the total number of produced particles (charged had-
1Quantum Chromodynamics is a theory describing the strong interaction, among other aspects, the

colour confinement as well. The phase diagram describing transitions between normal baryonic (nuclear)

matter and QGP (additionally, the hypothetical colour superconducting phase), referred to as the QCD

phase diagram.
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rons, photons, etc.) in a collision event. High multiplicity events correspond to more

central collisions and vice versa low multiplicity events to more peripheral collisions, thus,

it can be used to determine centrality.

In experiments like ALICE at the LHC, or in this analysis, STAR at RHIC, centrality

classes are defined based on the simulated multiplicity distribution [9].

The Glauber model is widely used to describe the dependence of the number of par-

ticipating nucleons (Npart) and the number of binary collisions (Ncoll) on the impact

parameter (b) in heavy-ion collisions [10]. By coupling a Monte Carlo implementation of

the Glauber model to a model of particle production (often based on a negative binomial

distribution), one can predict the particle multiplicity distribution for different centrality

classes [9].

Although in this case the particle multiplicity (RefMult) and consequently the central-

ity classes were already determined for the collision events in order to perform the pseu-

dorapidity measurements, in the reverse case, pseudorapidity distributions can provide

insights into particle production rates and multiplicity distributions. Such experimental

results are crucial for testing theoretical models of particle production and, in overall,

understanding the dynamics of the collision process.

1.1.5 Experimental techniques

Experimental setups for measuring pseudorapidity typically may involve detectors such

as Time Projection Chambers (TPCs) and calorimeters. These kinds of detector systems

capture the trajectories and energies of produced particles.

However, in this analysis, a single-layer scintillation detector was utilized – as for

angle distribution measurement no particle trajectories nor energies are needed. This

experimental setup, along with its “relative simplicity”, needs special data analytical tools

to achieve high precision and accuracy.

1.1.6 (Pseudo)rapidity distributions and relativistic hydrodynamics

Pseudorapidity distributions of particles produced in high-energy heavy-ion collision can

be inferred from relativistic hydrodynamic models, and vice versa, measured pseudorapid-

ity distributions can be fitted to a hydrodynamic model.
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Here I will use the c = 1 unit system, with c being the speed of light.

Equations of relativistic hydrodynamics can be described by the continuity of conserved

charges:

∂ν(nu
ν) = 0 (3)

(where n is the conserved charge, u is the velocity field), and by the conservation of the

energy-momentum tensor T :

∂νT
µν = 0. (4)

Let us assume that the modelled QGP behaves as an ideal fluid (which turns out to

be a very good approximation, acc. to [11]), then the energy-momentum tensor can be

expanded as:

T µν = (ϵ+ p)uµuν − pgµν , (5)

where ϵ is the energy density, p is the pressure, gµν is the metric tensor. That means, in

the locally comoving frame:

uµ =


1

0

0

0

 , T =


ϵ

−p

−p

−p

 .

A possible equation of state can be

ϵ = κp (6)

with a temperature-independent κ = 1
c2s

constant, cs being the speed of sound in the

(near-)perfect-fluid medium.

To complete the formalism, let us use Rindler-coordinates where

• τ =
√
t2 − r2 is a coordinate proper-time with t and r being the components of the

space-time coordinates xµ = (t, r) =


t

rx

ry

rz

,

• ηs =
1
2

√
t+|r|
t−|r| is the space-time rapidity.
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As cited in Reference [12], the solutions to these equations are

uµ =

coshληs

sinhληs

 (7)

n = nf

τλf
τλ

(8)

T = Tf

(τf
τ

)λ
κ
, (9)

where λ is a parameter controlling the acceleration (if λ = 1, there is no acceleration)

and f denotes quantities right at the freeze-out. If λ = 2, then κ becomes the number of

dimensions. T here denotes the temperature.

The next step is the application via calculating the hadron momentum distribution.

Firstly, as freeze-out conditions

• let Tf be defined as where ηs = 0,

• let the freeze-out hypersurface be pseudo-orthogonal to the velocity field (let the

vector-measure of the freeze-out hypersurface dΣµ(x) ||uµ(x)).

As cited in Ref. [12], in a 1+1 dimensional solution, the equation of the hypersurface will

be (τf
τ

)1−λ

= cosh
(
(λ− 1)ηs

)
. (10)

The rapidity distribution will be

dN

dy
≈ N0 cosh

α
2
−1
( y
α

)
e
− m

Tf
coshα( y

α), (11)

where N is the total number of hadrons, y is the rapidity (see Eq. 2); furthermore,

α = 2λ−1
λ−1

, m is the average mass of the hadrons, N0 is a normalization parameter, all to

be fitted with the experimental data.

The relation between rapidity and pseudorapidity distributions via a double differential

and using an average transverse momentum pt:

E

p

1

pt

dN

dptdη
=

1

pt

dN

dptdy
(12)

dN

dη
=

pT cosh η√
m2 + p2T cosh2 η

dN

dy
. (13)

Here, pT indicates the rapidity dependency of an average transverse momentum of the

particles. This can be estimated from the effective temperature (Teff) of hadron spectra
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using the Buda–Lund model, as cited in Ref. [12], this gives

pT =
Teff

1 + σ2y2
(14)

with

σ2 =
TfTeff

m2
(
∆y2 +

Tf

m

) (15)

and

Teff = Tf +
m⟨ut⟩2

1 + m
Tf

. (16)

The model parameters at the freezeout are

• Tf describing the central temperature 2,

• ⟨u⟩ the average transverse flow 3

• ∆y the rapidity distribution width,

all to be determined by the fits. This approach leads to a reasonable fit, as can be seen

in Fig. 4 [12].

Figure 4: Charged particle pseudorapidity distributions (denoted in this figure as

dn/dη) from the LHC TOTEM experiment, fitted with the result of the relativistic

hydrodynamical model’s solution. [12]

To sum up, there is plenty of motivation towards obtaining pseudorapidity distribu-

tions of the created particles in high-energy heavy-ion collisions with high precision.
2For a simpler fit, it could be assumed to be 170 MeV, then only deal with the rest of the model

parameters.
3Transverse flow is the collective motion of nucleons within the “fireball” created during a high-energy

heavy-ion collision. It is related to the average transverse momentum ⟨pT ⟩ = 1
N

∑N
i=1 pT,i [13].
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1.2 Event Plane Detector at STAR

Figure 5: The RHIC facility, including the STAR experiment. Source: [14]

STAR (Solenoidal tracker, see Fig. 6) experiment’s detector system is one of the facil-

ities of the Relativistic Heavy Ion Collider (RHIC, see Fig. 5). Its primary purpose is to

study the formation and several properties of the QGP.

Due to the complexity of the high-energy collisions, several simultaneous experiments

are needed to draw strong conclusions about QGP. Therefore, STAR is also composed of

several detectors specialised for different particles, or overall, characterising their motion.

A quantity that will be important for the measurement of pseudorapidity later on is

the index of the EPD ring : this corresponds to the number of tiles at the same distance

from the beam axis. For the axial angle θ measurement that is directly related to the

pseudorapidity, this will be the important value to extract from raw EPD data.

For a ring on one side (Side=-1, east side), I denoted from 0 to 15 from the centre

outwards, while on the other side (Side=1, west side) it is denoted from 16 to 31 from the

outside inwards. Thus, the pseudorapidity as a function of the ring index number is as

“continuous” as possible as a function of pseudorapidity (of course, the ring numbers are

discrete values, and also there is a jump between index 15 and 16, where the pseudorapidity

effectively changes sign).
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Figure 6: An earlier schematic of the STAR experiment; the EPD detector is not yet

drawn. Image source: [15]

The Event Plane Detector (EPD) is one of the latest upgrades as a newly installed

detector of the STAR experiment. It was installed in 2018 as part of the preparations

for the BES-II program. The motivations for building it included enhancing the event

plane resolution for flow measurements, providing independent centrality determination

for fluctuation measurements, and serving as a trigger in the high-luminosity environment

during the BES-II program.

In simple terms, its purpose is to measure the pattern of forward scattering charged

particles emitted during high-energy collisions.

Determining the initial geometry of each collision is a critical step in understanding the

complex physics of the system. Experimentally, this geometry is quantified in the form

of event planes, for which well-established methods exist. In this thesis, I will not discuss

this quantity in detail.
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1.2.1 Structure of the EPD

The detector consists of two highly segmented discs (“wheels”) with 1.2 cm thick scintil-

lator plates connected via wavelength-shifting optical fibres to the silicon photoelectron

multipliers.

The schematic structure of a wheel is shown in Fig. 7.

Each wheel consists of 12 “supersectors” covering an azimuthal angle of 30°, divided

into 31 additional tiles. All the supersectors deliver light to a silicon photoelectron multi-

plier (SiPM) via a bundle of 31 optical fibres; these signals are amplified and sent to the

STAR digitizing and data acquisition system (STAR DAQ). [16]

Figure 7: Schematic of the EPD structure. One of the two EPD “wheels” is shown.

The 31 tiles from each of the 12 supersectors are connected via bundles of optical fibres

to the silicon photoelectron multipliers and amplifier electronics. A single EPD ring is

highlighted in red, a single EPD supersector in yellow. Source: [16]

The determination of the types of particles (particle identification, PID) and whether

these particles originate from the original collision nodes (vertex) or are possibly daughter

particles born from their decay is irrelevant for the definition of the event plane. Although

the trajectory of charged particles is deflected in the 0.5 T magnetic field utilized at the

STAR experiment, simulations suggest that this does not significantly affect the determ-

ination of the event plane.

As a consequence, the EPD can neither determine the type of particles nor track their
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trajectories. [16] This property of the detector system will be relevant in how it can be

used to measure the pseudorapidity distribution of charged particles originating in the

collision vertex.

1.2.2 Geometry of the EPD

Figure 8: Detailed diagram of a supersector of the EPD; dimensions in centimeters.

Since the event planes are determined by the Fourier components of the azimuthal

dependence of the particle yield [17], the EPD also shows azimuthal symmetry. Due to

the placement of the rest of the detectors of the STAR experiment, the EPD is mounted

at z = ±3.75m position.

The EPD is capable of detecting forward and backward scattered particles, in a range

of

0.7° < θ < 13.5°

angle between the direction of the impacting particle and the collider beam. In pseu-

dorapidity terms, it means a

2.14 < |η| < 5.09

acceptance.

The EPD also has its predecessor, Beam–Beam Counter (BBC) with much less fine

granularity than the EPD: only 36 tiles, with the 18 inner smaller tiles used for the same

15



purpose – compared to the 372 tiles of the EPD [16]. It also has smaller acceptance

of 3.3 < |η| < 5.0 in pseudorapidity [18]. Thus, the EPD significantly improved the

event plane resolution – for example, by about a factor of 2 in Au + Au collisions at
√
sNN = 19.6 GeV 4.

When designing the detector segmentation, several requirements in terms of meas-

urement performance had to be taken into account, and the tile sizes were optimised

accordingly.

In the end, based on previous measurements [16], double impacts occur with a probability

of about 10% on tiles at any radial size, measured in central Au + Au collisions at energy
√
sNN = 19.6 GeV.

The impact of these effects should be determined from simulations for the online trigger

and, similarly, in offline analyses to be taken into account accordingly.

1.2.3 Calibrated ADC of the EPD electronics

At the end of the STAR DAQ, the raw data is simply the digitized electronic signal of

scintillations, therefore firstly one has to ensure its relation to the real particle hits.

Each EPD tile detects hits, primarily from Minimum Ionizing Particles (MIPs). As-

suming that the probability distribution of a single hit’s measured signal follows a Landau

distribution, multiple hits will produce a convolution of several Landau distributions.

The observed Analog Digital Count (ADC) distributions were fitted using a so-called

multi-MIP Landau function, as illustrated in Fig. 9. The properly chosen Landau dis-

tributions, representing the ADC contributions from n number of MIPs, were convolved

with different weights (n-MIP weights).

The conclusion was that using fewer than 5 n-MIP weights is sufficient for a good fit, as

the contribution from the 5-MIP weight was already zero within uncertainties. This was

based on the assumption, validated during data analysis, that the MIP weights followed

a Poisson distribution.

Given this finding, the systematic uncertainty from fitting only up to 5 n-MIP weights

is considered negligible [19]. Further systematic uncertainties will be discussed in Sec. 3.2.

4√sNN : centre-of-mass energy per nucleon in a nucleon-nucleon collision.
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Figure 9: An example of a multi-MIP Landau fit for the ADC count distribution in

ring #16, with ADC counts given in arbitrary units. The blue points with error bars

depict the data, while the red continuous line represents the fitted function. [19]

2 Analysis

During the whole analysis progress, including the Monte Carlo simulation, the unfold-

ing procedure and the plotting, I used the ROOT 5.34/38 [20] open-source data analysis

framework. Although a slightly older version at the time of writing the thesis, this was the

version readily available on STAR’s servers.

2.1 Raw EPD data to charged particle pseudorapidity measure-

ments

2.1.1 Extracting EPD Ring hits

The first step is to extract the Nhits
5 per EPD tile in each (triggered and thus recorded)

collision event.

The raw data at STAR is stored PicoDst datafiles. This format is designed for gen-

eral physics analysis, similar to a ROOT [20] tree, derived from the STAR standard
5Number of hits
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MuDst [21], [22] data. Then, as mentioned in Sec. 1.2.3, the next step is to fit the data

with convoluted Landau distributions.

In order to continue in obtaining the pseudorapidity distributions, several other para-

meters are needed as well, mostly different for the specific particle accelerator runs (as

they depend on accelerator energy, the current experiment setup’s fine-tuned parameters

etc.). For the sake of illustration, a few examples of these are:

• relevant (minimum bias) triggers,

• RefMult cuts (see Sec. 1.1.4),

• centrality definition of the collision events.

As these are mostly very technical parameters, in this thesis I will not get into details.

The conversion from EPD tile index to Ring number is very straightforward; for illus-

tration, in the case of the Monte Carlo simulation, a C++ function like this handles the

conversion of a StMuEpdHit class’ member to an integer EPD Ring number:

int get_ring(StMuEpdHit* epdhit){

int ring_no = epdhit->tile()/2;

if(epdhit->side()>0)

{

ring_no = 31-ring_no;

}

cerr << "Current tile number: "<< epdhit->tile() << endl;

cerr << "Current ring number: "<< ring_no << endl;

return ring_no;

}

A 2D heatmap visualisation of such a datafile with N(iRing) distribution (dN/diRing)

can be seen in Fig. 10.

2.1.2 Detector distortions

As stated before, in addition to event plane determination, the EPD’s fine radial gran-

ularity theoretically makes pseudorapidity measurements possible. That means, the raw

Nhits numbers from the EPD can be used to calculate the pseudorapidity distribution of

18
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Figure 10: Visualisation of an EPD datafile with N(iRing) distribution.

Figure 11: Vertices of particles detected by the EPD, based on a HIJING [23] +

Geant4 [24] Monte Carlo detector simulation. The plots display the vertex distribution

in the x–y plane, integrated along the z axis, revealing the detector structure and

different materials surrounding it.

charged particles (derNch/dη) by using the η value corresponding to each ring.

However, this kind of simple measurement also includes secondary particles that do

not originate from the primary vertex. As the EPD is located behind the rest of the
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detector system and far from the interaction point, various factors distort the measured

distribution.

The main factors causing significant distortion are:

• charged primary particles scatter in the detector material (or occasionally even on

each other), producing secondary particles that add a significant contribution to

derNch/dη calculated from a naive measurement. This is demonstrated in Fig. 11,

where the vertices (origins) of particles causing hits in the EPD are depicted. Of

course, such data comes from a Monte Carlo (MC) simulation of the detector ma-

terial.

• Neutral primary particles also may contribute through decays (e.g., a neutral Λ

baryon decaying into a proton and a pion). Data shown in Fig. 12 demonstrates that

this contribution is considerable, based on the same simulation with PID analysis.

Figure 12: Distribution of various simulated primary particles hitting the EPD, shown

ring-by-ring. The rings in the backward direction are on the left side of the panel, while

the rings in the forward direction are on the right side – ordered by the apparent spatial

rapidity of each ring. [19]

Due to these distortions, the analysis process of the experimental data gets more

complicated even in theory.

Let us denote the vector storing EPD hits of given events N. Its elements: N(iring)i

let us index with Ring numbers i ∈ {0, 1, ..., 31}.

Let us Formally denote the number of primary particles created during the collision,
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separated into discrete values, falling within a given pseudorapidity range
(

dN
dη

)
j
.

Assuming a linear dependence:

N(iring)i =
∑
j

Rij(ηj, iring)

(
dN

dη

)
j

(17)

This Rij matrix is not an identity matrix but a so-called response matrix 6. In this analysis,

it contains the number of hits in the given ring number distribution’s bin, originating

from a particle at the given η pseudorapidity distribution’s bin. In a continuous case 7, it

formally works as a convolution:

dN(iring) =

∫
R(η, iring)

(
dN

dη

)
dη. (18)

The R matrix needs to be determined via Monte Carlo simulations, then the dN
dη

distribution can be unfolded using the measured EDP ring hits N(iRing) distribution 8.

2.1.3 Response matrix

For this analysis, events were generated using the STAR HIJING Monte Carlo event gen-

erator, combined with Geant4 to accurately simulate the geometry of the EPD.

Note that no (light) ion fragments can be simulated in HIJING. These kinds of flying out

particles are, in reality, inevitable with heavy-ion collisions. However, this shortfall should

not change the results significantly. According to PHOBOS results [25], the contribution

from light ion fragments causes at least an order of magnitude smaller contribution to

measured pseudorapidity distributions than the resulting ones in this analysis, without

light ion fragment simulation (see Sec. 3.2).

Such a response matrix can be seen in Fig. 13 obtained for all particles (both charged

and neutral). The visualisation was done using HresponseNoOverflow() procedure of

the TH2 histogram function class of ROOT.
6The response matrix encodes the response of the detector, i.e., connects a detector-level distribution

with the true distribution to be measured [19].
7The pseudorapidity distribution is a continuous quantity anyway, but in numerical calculations we

work with binned distributions.
8In order to obtain a physically meaningful result, naturally, the Ring hit distribution also needs to

be normalized with the number of events processed

21



Figure 13: Heatmap of the R response matrix, connecting bins containing numbers of

EPD ring hits (caused by either primary or secondary particles) with bins corresponding

to primary particles at given η pseudorapidity. The left side (0–15 or 1–16 depending on

the indexing of the bin borders) corresponds to East EPD wheel, the right side (16–31

or 17–32) to West EPD wheel. It is worth noting that many primaries create hits even

in the opposite side EPD via secondary particles, as seen in upper left and bottom right

quarters.

2.1.4 Iterative Bayesian unfolding [26], [27]

As a matter of fact, in experiments, the distribution of measured, observable quantities

is different from the corresponding “real” physical quantities, due to physical effects and

imperfections in the detectors.

For a single physical variable, it is enough to use bin-to-bin correction, via a general

efficiency 9 determined from Monte Carlo simulation. This kind of correction does not

take into account correlation between bins, thus, it is only valid if the migration between

bins is negligible and the smearing is less than the width of the bin.

Another option is using a response matrix already discussed in Sec.2.1.2.

However, no probabilistic consideration guarantees this matrix to be invertible; therefore,

a simple (or might be that not even a regularized) matrix inversion to extract the real

physical quantities (such as pseudorapidity distributions as formally described in Eq. 18)

might not be an option even if the exact form of R would be known.
9Here we calculate the ratio of the number of events in a given bin for the reconstructed variable

versus the number of events in the same bin for the real variable.
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In this analysis, a method called Bayesian iterative unfolding was used. It is described

in detail in Ref. [26] and Ref. [27] on which this section is based, here I list the main

points of its theoretical background.

Let Ci (i = 1, 2, ..., nC) be independent causes causing effect E. Let P (Ci) be the

initial probability of the causes, P (E|Ci) the conditional probability of i-th to cause the

effect.

Then, according to the Bayes theorem:

P (Ci|E) =
P (E|Ci) · P (Ci)∑nC

l=1 P (E|Cl) · P (Cl)
. (19)

P (Ci|E) depends on the initial probability of the causes, as the final distribution

also depends on P (E|Ci). These probabilities need to be determined via Monte Carlo

simulations.

If there is an effect E and we are observing n(E) events, the expectation value of the

number of events attributable to each cause:

⟨n(Ci)⟩ = n(E) · P (Ci|E) (20)

In the case of all the possible Ej effect (j = 1, 2, ..., nE) of a Ci cause the Bayes formula

needs to be evaluated 10:

P (Ci|Ej) =
P (Ej|Ci) · P0(Ci)∑nC

l=1 P (Ej|Cl) · P0(Cl)
, (21)

where P0(Ci) is the initial probability of the different cases. Normalization is also needed:
nC∑
i=1

P0(Ci) = 1 és
nC∑
i=1

P (Ci|Ej) = 1 (22)

Also, the following condition must be fulfilled:

0 ≤ εi ≡
nE∑
j=1

P (Ej|Ei) ≤ 1 (23)

P (Ej|Ci) probabilities are formally the R response matrix.

After Nobs experimental observations the obtained distribution comes as n(E) =

{n(E1), n(E2), ..., n(EnE
)}. These can be calculated via an assignment as follows:

⟨n(Ci)|obs⟩ =
nE∑
j=1

n(Ej) · P (Ci|Ej). (24)

10This is also called the creation of a S smearing matrix.
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Taking εi efficiency into account, the expectation value of the real event number is estim-

ated as:

⟨n(Ci)⟩ =
1

εi

nE∑
j=1

n(Ej) · P (Ci|Ej) ∧ εi ̸= 0 (25)

The true total number of events can be approximated from these unfolded events:

⟨Ntrue⟩ =
nC∑
i=1

⟨n(Ci)⟩.

The final probability of the causes:

⟨P (Ci)⟩ ≡ P (Ci|n(E)) =
⟨n(Ci)⟩
⟨Ntrue⟩

.

The final efficiency:

⟨ε⟩ = Nobs

⟨Ntrue⟩
,

which may differ from the efficiency of the generated and reconstructed Monte Carlo

events ε0:

ε0 =
Nreconstructed

⟨Ngenerated⟩
=

∑nC

i=1 εiP0(Ci)∑nC

i=1 P0(Ci)
.

Therefore, the unfolding is done iteratively:

1. choose an initial P0(C) with the closest possible resemblance of the studied process;

2. compute ⟨n(C)⟩ and ⟨P(C)⟩;

3. perform χ2 test between ⟨n(C)⟩ and ⟨n0(C)⟩;

4. substitute P0(C) with ⟨P(C)⟩, n0(C) with ⟨n(C)⟩;

5. iterate again from point 2 until χ2 gets “low enoug”.

In this analysis, 4 iterations 11 were proven to be enough for all unfolding procedures

performed.

Introducing the unfolding matrix

Mij =
P (Ej|Ci) · P0(Ci)

[
∑nE

l=1 P (El|Ci)] · [
∑nC

l=1 P (Ej|Cl) · P0(Cl)]

11These were considered optimal according to the package’s manual I performed the unfolding with.

Too large iteration number may cause unreliability and fluctuations, and has to be addressed e.g. via

linear regularization.
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Eq. 25 can be rewritten as:

⟨n(Ci)⟩ =
nE∑
j=1

Mij · n(Ej). (26)

The V covariance matrix is composed of these two linear components:

Vkl = Vkl(n(E)) + Vkl(M), (27)

where

Vkl(n(E)) =

nE∑
j=1

MkjMljn(Ej)

(
1− n(Ej)

⟨Ntrue⟩

)
−

nE∑
i,j=1; i ̸=j

MkiMlj
n(Ei)n(Ej)

⟨Ntrue⟩
; (28)

and

Vkl(M) =

nE∑
i,j=1

n(Ei)n(Ej) · Cov(Mki,Mlj), (29)

in which

Cov(Mki,Mlj) =
∑

{ru}{su}

∂Mki

∂P (Er|Cu)

∂Mlj

∂P (Es|Cu)
· Cov[P (Er|Cu), P (Es|Cu)];

∂Mki

∂P (Er|Cu)
= Mki

[
δkuδri

P (Er|Cu)
− δku

εu
− δriMuiεu

P (Ei|Cu)

]
;

Cov[P (Er|Cu), P (Es|Cu)] =

 1
nu
P (Er|Cu)[1− P (Es|Cu)] if (r = s)

− 1
nu
P (Er|Cu)P (Es|Cu) if (r ̸= s)

where δij is the Dirac delta, nu is the number of generated events in Cu cause cell.

The background can be then taken into account via introducing additional cause

cells Cnc+1 and initial probabilities P (Cnc+1).

Unfolding the errors is also possible via this method.

A simple regularization procedure requires inverting the covariance matrix to obtain the

correct χ2:

χ2 = (xmeas − xtrue)
TV−1(xmeas − xtrue). (30)

However, V is mostly not well-conditioned. With bayesian unfolding, this does not cause

a problem: even though V is calculated via error propagation from n(Ej)-ből, Mij is

assumed to be independent. This is true for the first iteration, after that n0(Ci) is sub-

stituted with ⟨n(Ci)⟩ from previous iteration. The next ⟨n(Ci)⟩ is already dependent on

n(Ej). To take this into account, the error propagation matrix is utilized:

∂⟨n(Ci)⟩
∂n(Ej)

= Mij +

nE∑
k=1

Mikn(Ek)

(
1

n0(Ci)

∂n0(Ci)

∂n(Ej)
−

nC∑
l=1

εl
n0(Cl)

∂n0(Cl)

∂n(Ej)
Mlk

)
(31)
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The ∂n0(Ci)
∂n(Ej)

matrix is in fact ∂⟨n(Ci)⟩
∂n(Ej)

from previous iteration, thus, after the first iteration,

the second term vanishes:

∂n0(Ci)

∂n(Ej)
= 0 és így

∂⟨n(Ci)⟩
∂n(Ej)

= Mij.

The error propagation matrix can be used to obtain the covariance matrix of the

non-unfolded distribution V (n(Ei), n(Ej)) from the measurement:

V (⟨n(Ck)⟩, ⟨n(Cl)⟩) =
nE∑

i,j=1

∂⟨n(Ck)⟩
∂n(Ei)

V (n(Ei), n(Ej))
∂⟨n(Cl)⟩
∂n(Ej)

(32)

To sum up, the Bayesian unfolding is a powerful method both for unfolding and

uncertainty estimation.

2.1.5 RooUnfold

The software used to perform the unfolding procedure detailed in Sec. 2.1.4 is RooUnfold [28].

The software package is implemented in C++, building on ROOT classes and running

within the ROOT environment. It defines classes for the different unfolding algorithms and

a class for the response matrix.

The response matrix can be filled using RooUnfold’s built-in classes:

• Fill(xmeas, xtrue): fill a real measured value and the corresponding output value;

• Miss(xtrue): can be interpreted as an additional row in R, a non-real output value;

• Fake(xmeas): can be interpreted as an additional column in R, a “fake” input value.

2.2 Extracting pseudorapidity distributions

I obtained my results from dN/diRing EPD distributions via bayesian iterative unfolding,

inferring the statistical uncertainty of the results via propagating the covariance matrix.

I published the results for analysis performed at energies 19.6 and 27 GeV already in

2023 (see Reference [19]), therefore the results detailed here will be in strong agreement

with the results of the article.
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Figure 14: RooUnfold classes. The training truth, training measured, measured and

unfolded distributions can be TH1D, TH2D or TH3D histogram inputs. Source: [29],

Fig.1. In this thesis, RooUnfoldBayes and RooUnfoldResponse classes were utilized.

2.2.1 Efficiency: multiple count correction

The unfolding procedure results in one unfolded track for each individual EPD hit. How-

ever, as detailed in the previous sections, one primary track can cause multiple hits.

Therefore, this effect needs to be corrected for – either via a bin-by-bin correction cal-

culated from Monte Carlo simulation data (via a function of psuedorapidity, a Number

of hits from 1 primary(η) distribution), or by adding weights to the values that are

going to be filled in the response matrix, such that it could compensate for the multiple

counts during the unfolding. Both should lead to the same results; in this analysis, the

first method was used.

In Fig. 15, the bin-by-bin efficiency correction is visualised for both all particles and

only the charged particles as well.

2.2.2 Methods on extracting dNch/dη

In this analysis, I concentrated on obtaining charged particle pseudorapidity distributions

(dNch/dη). The reason behind only dealing with charged particles is that it was assumed

that EPD can only provide reliable results on charged particles.

It is also important to note that the same is assumed for the reliability outside EPD’s
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Figure 15: Efficiency correction visualised for all particles (black) and only the charged

particles (red).)

pseudorapidity range. Even though some of the figures have values plotted outside the

−5.09 ≥ η ≥ −2.14 and 2.14 ≥ η ≥ 5.09 range, these should NOT be interpreted as

realistic results.

In order to obtain the charged particle distribution (dNch/dη) from dN/dη, the fraction

of all the particles that are charged has to be taken into account. This can either be done

using different bin-by-bin corrections, or neutral particles can be marked as background

(“fake”).

In Fig. 16, I demonstrated how efficiency and then charged factor correction is applied to

the raw unfolded η distribution.

In this analysis, I used the following methods as the charged factor correction:

1. Bin-by-bin correction of the already unfolded dN/dη using the charged particle frac-

tion Ncharged(η)/Nall(η) from Monte Carlo simulation (MC) data (such a correction

can be seen in Fig. 17);

2. Bin-by-bin correction of the raw EPD data via Ncharged(iRing)/Nall(iRing) from MC

data; then unfolding only the EPD charged particle distribution (see in Fig. 18).

3. Mark neutral particles as background and fill the response matrix as in the second
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method, except that the hits from neutral primaries are considered as “fake”.

In the latter two cases, another type of response matrix has to be used that was filled

only with the charged particles’ data. The visualisation of both of these matrices is the

same, one of such can be seen in Fig. 19.
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Figure 16: Caption

The three different methods can later be used to estimate the systematic uncertainty

of the unfolding procedure itself. An example comparison of the three methods can be

seen in Fig. 20 and 21. In the EPD range, all three methods return roughly the same

dNch/dη within error.

2.2.3 Consistency check

Before unfolding the real EPD data, a closure test was done to check whether the unfolding

method can recover the “true” training data itself (MC “truth”).

I found that unfolding done on the input training MC sample reproduces well the

input η distribution. Even with some added noise (±1-–10%) to the training sample, the

resulting unfolded distribution was in agreement with the input distribution within < 3%

error. Such a test can be seen in Fig. 22. All in all, the unfolding itself was found to work

well.
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Ncharged(η)/Nall(η) obtained from MC data.
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Figure 18: Bin-by-bin correction of the raw EPD data via Ncharged(iRing)/Nall(iRing)

from MC data

Furthermore, after applying the multiple counting correction and the three different

methods of charged factor correction on the unfolded distribution 12, the resulting distri-
12Note that the mentioned unfolding procedure was at this stage still done on the MC EPD ring

distribution, thus on the training sample. Not to be confused with the unfolding done on the real,

experimental EPD data.

30



Sun Jun  5 05:02:23 2022

1

10

210

310

410

510

EPD response matrix, charged

Ring number
0 5 10 15 20 25 30

)η
P

se
u

d
o

ra
p

id
it

y 
(

6−

4−

2−

0

2

4

6

EPD response matrix, charged

Figure 19: Visualisation of a response matrix containing the charged particles’ data.

The plottable response matrix used with Fakes method look the same.
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Figure 20: Comparison of the three methods used to obtain the charged particle

distribution (dNch/dη) from the pseudorapidity distribution of all particles (dN/dη).

The unfolding was done on real EPD data at
√
sNN = 27 GeV.

butions were compared to the original MC dataset’s dNch/dη.

In Fig. 23 I visualised the unfolding and corrections done with all three methods. As

it can be seen, the points overlap, it is then reasonable to plot the relative difference
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Figure 21: Comparison of the three methods used to obtain the charged particle

distribution (dNch/dη) from the pseudorapidity distribution of all particles (dN/dη).

The unfolding was done on real EPD data at
√
sNN = 19.6 GeV.

compared to the MC dataset as well.

As it is visible in Fig. 24, the maximal relative deviation is only

• up to 2% in certain bins for the first method;

• less than 0.1% for the other two methods.

It’s important to highlight that, despite the third method (marking neutral particles

as fakes) yielding the most precise results in this consistency check, further systematic

checks revealed it to be the least reliable, as it heavily relies on the Monte Carlo input

used for the response matrix.

Given the result of the closure test, the unfolding and correction methods were con-

sidered adequately self-consistent.
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Figure 22: Unfolding the MC EPD distribution with added noise compared to the

input MC data. The unfolding seems to be robust to noise.
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Figure 23: Consistency check: comparison of the three methods used to obtain the

charged particle distribution (dNch/dη) applying to the Monte Carlo simulation data

itself.
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Figure 24: Consistency check of the three different methods to get dNch/dη from

Monte Carlo simulation-generated EPD ring distribution. The difference is shown as

unfolded dNch/dη over Monte C “truth”, the distributions divided bin-by-bin. Blue

marker represents the first method (η-dependent charged factor correction), black shows

the second method (EPD ring number dependent charged factor correction), and red

represents the third method (marking neutral particles), relative to MC truth’s dNch/dη.

Note that the errorbars are only plotted for informative purposes: they were calculated

using the ROOT’s TH1 class’ default square root of sum of squares of weights (Sumw2()).

3 Results

3.1 Results at various energies

As the consistency checks proved the usability of the unfolding method, the next step was

to apply the procedure to real EPD data.

In Fig. 25 and 26, the results from 19.6 GeV and 27 GeV measurements can be seen,

with reasonable statistical error.

In addition to published results, I did the analysis on
√
sNN = 14.6 GeV data as well.

In Fig. 27 and 28, rather consistent results were obtained. However, the statistical un-

certainties represented by the errorbars have no physical significance, as the uncertainties
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Figure 25: Example of unfolded dNch/dη at RHIC energy
√
sNN = 19.6 GeV, in

z-vertex range of −5 to +5 cm. The errorbars represent the statistical error propagated

via the covariance matrix. The horizontal axis represent η, the vertical dNch/dη. Note

that the results are only valid in the 2.14 < |η| < 5.09 range. 1st method used.

during the extraction of the raw EPD data were ill-defined.

In Fig. 29, the Fakes method was used as charged factor correction; in this case, the

error propagation did not work, and the same is true for all the unfolded distributions

done with this method. However, these data still do have significance, as they enabled to

check the systematic uncertainty of the different unfolding methods.

3.2 Systematic error checks [19]

In the following section, the examined systematic uncertainty sources and their contribu-

tion to the results are discussed.

3.2.1 Dependence on input MC distribution

The bayesian iterative unfolding process, via its iterative nature, should mostly overcome

differences in response matrix from real response that are not related to distortion effects,

such as detector geometry [26]. However, as the exact response matrix cannot be de-

35



Figure 26: Example of unfolded dNch/dη at RHIC energy
√
sNN = 27 GeV, in z-vertex

range of −5 to +5 cm. The errorbars represent the statistical error propagated via the

covariance matrix. The horizontal axis represent η, the vertical dNch/dη. Note that the

results are only valid in the 2.14 < |η| < 5.09 range. 1st method used.

termined even with precise MC simulations and the unfolding process itself is not perfect,

some dependencies on the various parameters in the MC simulations can occur. Those

are considered as systematic uncertainties of the measurement.

3.2.2 Tightening and shifting the input MC dN/dη

Firstly, the simulated sample’s dNch/dη was modified (“suppressed”) using a Gaussian

shape with width σ and mean η0. These suppression factors can be seen in Fig. 30a. This

was done via a random selection based on Gaussian distribution while filling the response

matrices.

Using this approach, all combinations could be analysed, that is, unfolding the i-th

MC sample’s EPD ring hit distribution via response from j-th MC sample. In case of

i = j, the unfolding was as close to perfect as expected.

Unfolding results with the Gaussian width of σ ⪅ 1 were not considered here, as in

this case there are almost no particles in the EPD range. Otherwise, there was less than

36



Figure 27: Example of unfolded dNch/dη at RHIC energy
√
sNN = 14.6 GeV, in

z-vertex range of −5 to +5 cm. The errorbars represent the statistical error propagated

via the covariance matrix, however, in this case they have no physical significance. The

horizontal axis represent η, the vertical dNch/dη. Note that the results are only valid in

the 2.14 < |η| < 5.09 range. 1st method used.

a few percent variations in the EPD’s η region.

Overall, in the analysis the effect of tightening the dNch/dη of the training sample to

σ = 2 and shifting it by ±3 units of pseudorapidity was investigated.

Broadening the input MC dN/dη

Similar to modification done in Sec. 3.2.2., here the tracks were modified with a factor of

exp

(
η2 − η2max

2σbroad

)
. (33)

There was no suppression utilized for |η| > ηmax, with ηmax = 6. The resulting shape of

the distributions can be seen in Fig. 31.

While unfolding the data with these input MC distributions, a significant decrease

at midrapidity values was observed. However, this occurred mostly outside the EPD’s η

region; the unfolding was considered acceptable down to σbroad ≈ 3.
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Figure 28: Example of unfolded dNch/dη at RHIC energy
√
sNN = 14.6 GeV, in

z-vertex range of −5 to +5 cm. The errorbars represent the statistical error propagated

via the covariance matrix, however, in this case they have no physical significance. The

horizontal axis represent η, the vertical dNch/dη. Note that the results are only valid in

the 2.14 < |η| < 5.09 range. 2nd method used.

3.2.3 Changing the charged fraction in the MC training dataset

The fraction of the charged particles in the MC input data was changed by ±15%. This

was achieved by randomly rejecting either the neutral or the charged particles.

3.2.4 Changing the pT slope of the MC training dataset

The transverse momentum (pT) distribution slope of the MC input data was changed by

±10% via randomly rejecting particles of small or large pT.

3.2.5 Centrality and z-vertex selection

It was investigated, by how much the unfolded distribution would change if either the

z-vertex or the centrality selection are modified. For the former investigation, a ±5 cm

calibration uncertainty in the z-vertex measurement of the real EPD data was employed;

for the second one, ±5% calibration uncertainty was assumed in centrality determination

of the real EPD data.
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Figure 29: Example of unfolded dNch/dη at RHIC energy
√
sNN = 14.6 GeV, in

z-vertex range of −5 to +5 cm. The horizontal axis represent η, the vertical dNch/dη.

Note that the results are only valid in the 2.14 < |η| < 5.09 range. 3rd method used; in

this case, the error propagation did not work at all.

3.2.6 z-vertex choice

Due to the detector geometry, it is important to also take into account the interaction

point’s z-vertex position in the calculations, as the resulting pseudorapidity distribution

should not depend on it.

The EPD data, as well as the responses, were collected in nine different z-vertex classes,

equally distributed from −45 to +45 cm. Depending on which range was unfolded, the

resulting distribution still may differ and has to be taken into account as systematic

uncertainty.

3.2.7 Unfolding method choice

The most significant systematic uncertainty contribution was caused by the difference

between the results achieved using different unfolding and correction methods (as listed

in Sec. 2.2.2.). The first method was used as a benchmark, from which the differences

were calculated.
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a)

b)

Figure 30: Tightening and shifting the MC input distribution using random selection

based on Gaussian distribution of σ width and η0 curve peak position. (a)

Demonstration of the Gaussian suppression factors used. (b) The dNch/dη of the

distorted MC input samples.

3.2.8 EPD related uncertainties

As previously stated, the EPD electronics were considered fully efficient (except some

“dead areas” in the detector from e.g. glue and gaps, but these were assumed to be

correctly handled in the simulation). The uncertainty from multi-MIP Landau fit was

considered negligible compared to other systematic sources.

In conclusion, the systematic uncertainties coming from the detector system itself were
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Figure 31: Broadening the MC input distribution using random selection based on

Gaussian distribution of σbroad width.

considered negligible.

Table 1: Summary of systematic uncertainty sources and their contribution.

Source Systematic uncertainty

MC input dNch/dη tightening, shifting 6%

MC input dNch/dη broadening 4%

Charged fraction in MC 6%

pT slope change in MC 1%

Centrality selection 2%

z-vertex selection negligible

z-vertex choice 1%

Unfolding method choice 8%

EPD related uncertainties, electronics, efficiency negligible

The different systematic uncertainty sources and their contribution with informative

percentage values can be seen in Table 1.
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3.3 Results summary

In this thesis, charged particle pseudorapidity distributions with systematic uncertainties

listed in Sec. 3.2 were obtained at two RHIC energies, in the EPD pseudorapidity range.

The results at
√
sNN = 19.6, 27.0 and 14.6 GeV can be seen in Fig. 32, 33 and 34, respect-

ively. The caption #MIP ≤ 5 written on the plot indicates the number of convolution

members in the multi-MIP Landau fit.

Figure 32: Charged particle pseudorapidity distributions measured with STAR EPD

on RHIC energy
√
sNN = 19.6 GeV. The data was processed in eight centrality classes,

presented with the different markers. The statistical uncertainties, marked by errorbars,

are not visible on this plot, as the markers themselves are larger. The coloured area

indicates the systematic uncertainties of the measurement.

3.4 Comparison with PHOBOS results

Another experiment of the RHIC complex was the PHOBOS experiment, which completed

data taking in 2006. The PHOBOS was a large acceptance silicon detector, covering

almost 2π in azimuth and |η| < 5.4 in pseudorapidity [25]. Compared to STAR’s EPD,

there are differences in both detector topology and granularity: the silicone pad detectors
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Figure 33: Charged particle pseudorapidity distributions measured with STAR EPD

on RHIC energy
√
sNN = 27.0 GeV. The data were processed in eight centrality classes,

presented with the different markers. The errorbars represent the statistical uncertainty,

the coloured area indicates the systematic uncertainties of the measurement.

measure the total number of charged particles emitted in the collision, with modules

mounted onto a centrally located octagonal frame (Octagon) covering |eta| ≤ 3.2, as

well as three annular frames (Rings) on either side of the collision vertex, extending the

coverage out to |η| ≤ 5.4 [30].

The PHOBOS also measured dNch/dη at 19.6, 62.4, 130, 200 GeV energies [31]. Al-

though in that paper a slightly different centrality binning was used (0–3%, 3–6% and

6–10% instead of 0–5% and 5–10%; the other centrality classes were the same), at 19.6

GeV the results can be compared.

In Figure 35, it is apparent that the two measurements show sizeable differences,

depending on η: around up to a factor of two, increasing from small |η| towards forward/-

backward rapidities.

The exact reasons behind this discrepancy are not yet known but the difference cannot
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Figure 34: Charged particle pseudorapidity distributions measured with STAR EPD

on RHIC energy
√
sNN = 14.6 GeV. The data were processed in eight centrality classes,

presented with the different markers. The errorbars are not of physical significance, the

coloured area indicates the systematic uncertainties of the measurement.

be explained by the systematic uncertainties described in Sec. 3.2.

3.5 Next steps

3.5.1 Comparison with MUFFIN-SMASH simulation

MUFFIN-SMASH is a next-generation hybrid event-by-event three-fluid hydrodynamic

model, suitable for simulations of heavy-ion collisions in the energy range from few up to

tens of GeV per colliding nucleon-nucleon pair. [32]

As seen in Fig. 36, this project also has results in charged particle pseudorapidity

distributions. It would be worth comparing my results with this model’s.
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Figure 35: Charged particle pseudorapidity distributions measured in PHOBOS

(hollow circles) and STAR (star markers). Note that on the upper left graph the

centrality class of the PHOBOS experiment’s result is actually 6–10%.

3.6 Npart corrected comparison of pseudorapidity distributions

In theory, the pseudorapidity distributions corrected with the number of particles created,

should all overlap. This has to be done.

4 Summary

Based on EPD ring-by-ring distributions, charged particle pseudorapidity measurements

at
√
sNN = 19.6, 27.0 and 14.6 GeV were performed with detailed systematic investigations

regarding simulation data, calibration data, and unfolding methods.

The results at
√
sNN = 19.6 GeV show significant difference compared to the results
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Figure 36: MUFFIN-SMASH results at 19.6 GeV. [32]

from PHOBOS. There are four components in this comparison: EPD spectrum measure-

ment, Geant4 simulation, unfolding procedure from the STAR part, and the PHOBOS

data itself.

The results at 14.6 GeV need to be refined, with proper statistical uncertainty analysis.

The method presented in this manuscript is to be extended to other
√
sNN values

(as part of the BES-II program) and to fixed target data – mainly at energies where the

QCD critical point is expected [33]. Refining this measurement method is also important

for the search of the QCD critical point, in order to fine-tune the models used in these

analyses.
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