Measurement of the Longitudinal Single Spin Asymmetries for W Boson Production in Polarized Proton-Proton Collisions at STAR

> Amani Kraishan Temple University for the STAR Collaboration

> > DIS 2019 Torino, Italy 8-12 April 2019

Jaffe and Monahar showed in 1990 that the proton spin can be written as a sum of contributions from quark and gluon spin and orbital angular momentum.

$$< S_p > = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta G + L_q + L_g$$
$$\Delta \Sigma = \int (\Delta u + \Delta d + \Delta s + \Delta \bar{u} + \Delta \bar{d} + \Delta \bar{s}) dx \qquad \Delta G = \int \Delta g(x) dx$$

 $\Delta f(x)$ *Helicity Distribution:* Probability density for finding a parton in a longitudinally polarized nucleon with flavor *f* and momentum fraction *x* in a nucleon.

Helicity Distribution

- DSSV08 global analysis.
- The total contribution of up and down quarks spin has been well constrained.
- The flavor separated contributions of the sea quarks, still have quite large uncertainties.
- The gluon polarization also shows a large uncertainty band.

Daniel de Florian, Rodolfo Sassot, Marco Stratmann and Werner Vogelsang, Phys. Rev. D80 (2009) 034030.

Weak Boson Production

The production of W boson in polarized proton-proton collisions is an independent method of probing the polarization of the light quarks and antiquarks.

- W production provides direct sensitivity to the u and d quark and antiquark helicity distributions.
- Large-scale defined by W mass (~80 GeV).
- Simple final state of charged lepton: no dependency on fragmentation functions.
- V-A coupling of the weak interaction leads to perfect spin separation.

Single Spin Asymmetry of W

Relativistic Heavy-Ion Collider (RHIC)

RHIC is the world's first polarized proton collider

STAR Detector

$$\eta = -\ln \tan \frac{\theta}{2}$$

- Calorimetry system with 2π coverage:
 - BEMC $(-1 < \eta < 1)$
 - EEMC $(1 < \eta < 2)$
 - TPC: Tracking and particle ID

(|η|<1.3)

•

•

•

Approximate kinematic range at RHIC $-2 < \eta < 2$ 0.06 < x < 0.4

Run 2013 Dataset

Production runs at $\sqrt{s}=500/510$ GeV (long. polarization) in 2009, 2011, 2012 and 2013:

W production (Quark polarization)

•

٠

Jet and Hadron production (Gluon polarization)

Run	L (pb⁻¹)	P (%)	FOM (P ² L) (pb ⁻¹)
Run 9	12	0.38	1.7
Run 11	9.4	0.49	2.3
Run 12	72	0.56	24
Run 13	200	0.56	63

W Selection at STAR

The W selection algorithm is built based on the topological and kinematic differences between W events and QCD events

$$p + p \rightarrow W \rightarrow e + v$$

- Isolated track pointing to isolated cluster in the calorimeter.
- Missing energy in the opposite azimuthal direction.

 $p + p \rightarrow QCD \rightarrow jets$

- Several tracks pointing to several towers.
- Vector p_T sum is balanced by opposite jet.

Jacobian Peak

- Signed p_T balance > 14 GeV/c
- Away E_T <11 GeV

Signal of Jacobian Peak with E_T distribution after selection cuts

Background Estimation

Electroweak Background:

This background arises from well-understood electroweak processes:

- $\circ \qquad \mathbf{Z} \rightarrow \mathbf{e}^+ \mathbf{e}^+$
- $\circ \qquad W \not \rightarrow \tau + v$

QCD Background: • Second EEMC:

Background (di-jets) which counts as a W event by escaping detection through non-existing calorimeter coverage ($-2 < \eta < -1$). \circ Data-driven QCD:

Background which passes e^{\pm} isolation cuts.

WA_L from Run 2011+2012

- A_L of W⁻ shows indication that data are larger than the DSSV predictions.
- A_L of W⁺ is consistent with theoretical predictions with DSSV pdf.
- Indication of symmetry breaking of polarized sea.

PRL 113 (2014) 072301

Impact of STAR 2011+2012 W A_L Measurements (NNPDF)

- The flavor asymmetry of polarized antiquarks in the nucleon is positive
- It has almost the same absolute size as the flavor asymmetry of unpolarized antiquarks

WA_L from Run 2013

- Most precise W A_L results from 2013 dataset.
- Consistent with 2011+2012 published results, with 40% uncertainty reduced.
- Further confirmed the polarized sea asymmetry.

Impact of STAR 2013 W A_L Measurements (NNPDF)

- The data confirm the existence of a sizable, positive u-bar polarization in the range 0.05 < x < 0.2.
- The data confirm the existence of a flavor asymmetry in the polarized quark sea.

WA_{LL} from Run 2013

Double spin asymmetry of W can also provide access to u-bar, d-bar polarization

Summary

- Sea quark polarization plays an important role in understanding the nucleon spin structure.
- STAR W A_L place unique and significant constraints on the polarized quark and antiquark distributions.
- Significant shift of the central value of $\Delta \bar{u}$ by including the new STAR 2013 WA_L results.
- First clear evidence of the flavorasymmetry in the polarized quark sea.

Phys. Rev. D 99 (2019) 51102

