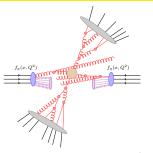
Measurement of Mid-rapidity Inclusive Jet Cross Section in pp Collisions at $\sqrt{s} = 200$ GeV

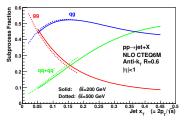
Dmitry Kalinkin For the STAR Collaboration

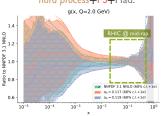
Indiana University – Bloomington

²Brookhaven National Laboratory

XXVIII International Workshop on Deep-Inelastic Scattering and Related Subjects April 15, 2021

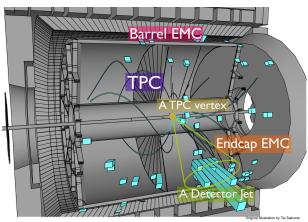



Proton Structure in Hard Interactions



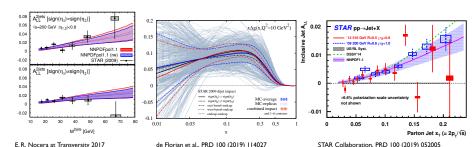
Jet production in high energy collisions of hadrons can be described in terms of following ingredients:

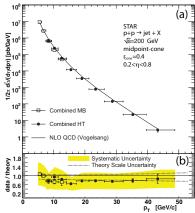
- Initial state of hadrons
- Hard collision of partons
- Parton Shower
- Underlying Event (UE)
- Hadronization


$$d\sigma_{pp \to jet + X}(Q^2) = \sum_{a,b} \int \underbrace{f_a(x_1,Q^2)f_b(x_2,Q^2)}_{proton \ structure} \underbrace{d\hat{\sigma}_{a+b \to jet + X}(x_1,x_2,Q^2)}_{hard \ process + PS + Had.} dx_1 dx_2$$

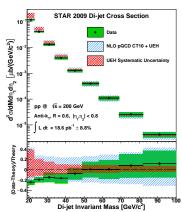
Original plot from NNPDF 3.1 Catalog of plots: α_S variations at NNLO


Jet Measurements using STAR Detector


- TPC: Interaction vertex and charged particle tracks
- BEMC and EEMC: Photon energy measurement
- **Trigger condition** on deposited EM energy sum in 1×1 patches in $\eta \phi$
- East and west
 Zero Degree
 Calorimeter: Absolute
 luminosity monitoring


Gluon Polarization using Jets at STAR

- Measurements using a similar collinear factorization framework $A_{LL} \sim \Delta f_a \otimes \Delta f_b \otimes \Delta \hat{\sigma}$ to determine Δg the helicity distribution of gluons inside the proton
- Detector effects are not unfolded but corrected by adjusting p_T (or M_{ii}) and A_{LL} of independent points
- Run 12 mid-rapidity inclusive jet and di-jet A_{LL} results recently published [PRD 100 (2019) 052005]
- Run 13 and Run 15 publications coming soon



Published Jet Cross Sections from STAR

Phys. Rev. Lett. 97 (2006) 252001

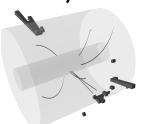
- An inclusive jet cross section
- Mid-point cone algorithm
- Not corrected for UE or hadronization
- Bin-by-bin detector effects correction
- Limited acceptance

Phys Rev D 95 (2017) 071103

- A di-jet cross section
- lacktriangle anti- k_T algorithm
- Detector effects unfolded
- No data-driven UE correction

lets at Three Levels

Parton jets

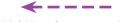

- Made of partons outgoing from the hard interaction
- Definition flexible depending on theoretical needs (e.g. fit using pQCD)

Particle jets

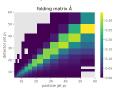
- Made of stable particles (at STAR the π^0 treated as stable)
- Universal Free from all detector effects
- Includes effects of
 - QCD radiation
 - Hadronization
 - UE (unless subtracted)

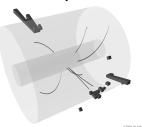
Detector jets

©2009 Tai Saku

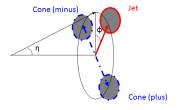

- Made of tracks and discrete calorimeter towers
- Experiment specific

Detector Effects Unfolding


Particle jets

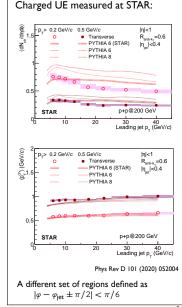

Simulation with Pythia 6 and GEANT3

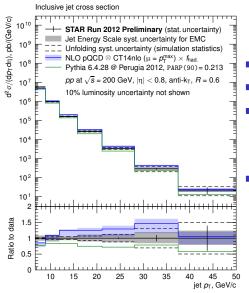
Unfolding of p_T spectrum by inverting the detector response matrix:


Detector jets

- Matrix inversion gives the exact result for the maximum likelihood estimator
- Statistical fluctuations are regularized by choosing sufficiently large bin sizes
- Need to estimate uncertainty due to the choice of prior (in this case, Pythia)

Underlying Event Correction

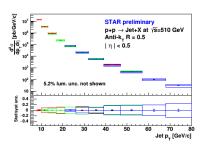

■ Two off-axis cone regions defined as $(\varphi - \varphi_{\rm jet} \pm \pi/2)^2 + (\eta - \eta_{\rm jet})^2 \le R_{\rm UE}^2$ with $R_{\rm UF} = 0.5$

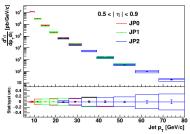

- For each jet calculate a jet area A and a ρ_T-density of constituents ρ_{UE}
- Correction implemented via a jet p_T shift:

jet
$$p_T \rightarrow \text{jet } p_T - A \cdot \rho_{\text{UE}}$$

 Applied to data before unfolding and to simulation in definition of the detector response

Inclusive Jet Cross Section at $\sqrt{s} = 200$ GeV, Particle Level




New preliminary result!

$$0.067 < x_T = \frac{2p_T}{\sqrt{s}} < 0.5$$

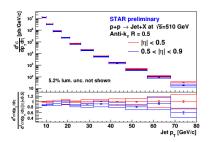
- Simulation sample statistics limits unfolding in finer binning
 - to be improved for final results
- Jet Energy Scale uncertainty from the EM calorimeter response
 - leading inherent uncertainty

Inclusive Jet Cross Section at $\sqrt{s} = 510$ GeV, Particle Level

$$0.021 < x_T = \frac{2p_T}{\sqrt{s}} < 0.32$$

Different triggers:

■ JP0: $E \ge 5.4 \text{ GeV}$


■ JPI: $E \ge 7.3$ GeV

■ JP2: $E \ge 14.4 \text{ GeV}$

Measured in two η -ranges:

 $0 < |\eta| < 0.5$

 $0.5 < |\eta| < 0.9$

Conclusions

- Jet measurements at STAR are extended to the unpolarized case, now with new result for pp at $\sqrt{s} = 200$ GeV
- Inclusive jet measurements at RHIC will allow to better constrain high-x behaviour of the gluon PDF
- ...and serve as a normalization for other possible measurements like measurement of hadron fragmentation inside jets

$$\left(\frac{d^2\sigma}{dp_{T:\text{jet}}dz_h}\right)/\left(\frac{d\sigma}{dp_{T:\text{jet}}}\right)$$

■ Measurements at two values of \sqrt{s} , at 200 GeV and 510 GeV, provide insights into energy dependence of various MC tune parameters