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Chapter 1

Introduction

Since 2001, experiments with Au+Au heavy ion collisions at
√
sNN = 200 GeV

beam energy conducted at the Relativistic Heavy Ion Collider (RHIC) have provided

a growing stream of evidence consistent with the formation of a strongly interacting

phase of matter in which the fundamental degrees of freedom are quarks and gluons.

The quark-gluon plasma (QGP) that is thought to be created in collisions of ultra-

relativistic gold nuclei exhibits fluid-like properties, in particular elliptic flow, that

is a final state momentum anisotropy due to initial state spatial anisotropy of the

overlapping nuclei, and jet quenching, that is the suppression of back-to-back high-pT

correlations due to energy loss in the dense medium of the plasma.

Two-particle correlations have historically been used to great effect in the study

of multiparticle production at hadron colliders. Since correlations can reveal particle

associations from the initial stages of QGP formation, they have proved to be a useful

research tool in the analysis of heavy ion collisions at RHIC. The discovery of jet

quenching was an early result of two-particle correlations with high-pT particle pairs.

Further high-pT correlation studies revealed an unexpected “ridge” feature, that is

enhanced long-range correlations in pseudorapidity, not seen in the p + p collisions

which constitute a baseline reference for heavy ions.

In this work we present plots of the pattern of particle formation in
√
sNN = 200

GeV Au+Au heavy ion collisions at the RHIC using three different two-particle cor-
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relation measurements of number and transverse momentum as a function of relative

azimuth, pseudorapidity and centrality. In all three observables, R2, C, and ∆PT , we

see the onset with increasing centrality of a near-side “ridge” of enhanced correlations

in pseudorapidity.

The correlation plots of real data are then compared to plots of simulations, first

using data from RQMD (relativistic quantum molecular dynamics) and second, using

data from a simple “cluster” model. The “cluster” dataset is a simplistic cartoon of a

collision event involving an invariant mass that decays and receives a longitudinal and

then transverse Lorentz boost. The effect of radial flow on clusters is shown in two

ways, with the radial boost applied to individual clusters as well as collectively. We

find that the transport-theoretical RQMD model does not produce a “ridge”, however

the effect of radial flow in simulated cluster data produces a near-side “ridge”, purely

kinematic in origin, that is quite similar to that seen in the data.
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Chapter 2

Background

2.1 The Perfect Liquid

We live in a frozen world. The air we breathe, the food we eat, the structures that

shelter us, the ground under our feet and the sun that shines upon us are all forms of

baryonic ice. Stable baryonic matter, bound in atoms, was once identified with the

totality of the universe but is now estimated to constitute only a small portion of it,

no more than a few percent of what exists. Due to the light energy it emits, baryonic

matter is the part of the universe that we are able to directly observe, as planets,

stars and galaxies. The remainder of the universe is dark matter and dark energy.

Dark matter is supposed to account for the deviation of the gravitational rotation

of galaxies from the predictions of general relativity. Dark energy is supposed to

account for the accelerating expansion of the universe. Dark matter and dark energy

are currently not well understood.

Atoms are baryonic matter because they have a nucleus consisting of two kinds

of baryons (Gk. baryos “heavy”), the positively charged proton and the neutral

neutron (collectively, nucleons). The number of protons in the nucleus, the atomic

number, determines the element. The number of neutrons in the nucleus determines

the isotope. The baryonic nucleus of an atom is surrounded by a cloud of negatively

charged leptons (Gk. leptos “light”), electrons, bound to the protons of the nucleus

by the electromagnetic force between their opposite charges. The baryonic nucleons
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are two hundred times more massive than the leptonic electrons.

The proton and neutron are not fundamental particles like the electron. The

proton and nucleon are each composed of three constituent particles called quarks

which are fundamental. The quarks are bound together by exchanging particles

called gluons. The force exerted by the gluons to bind the three quarks together

into a nucleon is so strong that its residue also binds the nucleons to one another

in the nucleus. The gluonic “strong” force is over one hundred times stronger than

the force of electromagnetic repulsion that would otherwise keep the protons apart.

The strong force is also called the color force. While the electromagnetic force has

only one kind of charge and anti-charge, the strong force has three, which are labeled

with colors: red, green, blue, anti-red, anti-green, anti-blue. When reactors unbind

the nucleons from each other in the process of nuclear fission, we are harvesting the

energy of the color force.

Figure 2.1: Schematic of the proton and neutron as three constituent quarks, bound
by gluons. Images created by Arpad Horvath for Wikipedia.

With the exception of the most energetic cosmic rays, or perhaps at the core of the

densest dead stars, there is no process in the universe today that can “melt” the glue

that binds the quarks into a nucleon. However, what nature may no longer do, human

beings have achieved. In the laboratories of high energy physics, scientists use particle
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colliders (“atom smashers”) to accelerate the nuclei of heavy atoms such as gold to

light speed before colliding them together, head-on. The unworldly combination of

pressure and temperature in the collision fireball melts the nucleons together into

a dense boiling droplet of nearly perfect liquid, a quark-gluon plasma or QGP. The

melting temperature of nuclear matter is a billion times hotter than the surface of the

Sun. The relevant physics however is not the melting temperature, which is merely a

number. What is significant is the phase change itself.

For an instant that recalls the beginning of the Universe, the collision releases the

quarks and gluons from their icy nucleon bonds to flow freely, unconfined. Many more

quarks and gluons (collectively, partons) are excited into creation from the vacuum

as the nucleons’ violent energy converts itself into equal amounts matter and anti-

matter according to Einstein’s formula E = mc2. The droplet then explodes and

refreezes into a shower of thousands of particles and light. The produced particles

are frozen states of quark matter called hadrons, and the freezing process is called

hadronization. Examples of hadrons are three-quark baryons, like the proton and

neutron, or quark-antiquark mesons, the most common of which is the pion. There

is also anti-matter produced such as the anti-proton consisting of three anti-quarks.

The process of hadronization, the reconfinement of partons into quark bound states,

is not fully understood.

The pattern of the produced particles preserves information about the behavior of

the color force in the domain of nuclear deconfinement at extremely high temperature

and pressure at the earliest stage of the collision. My analysis is a representation of

the produced particle pattern using three observables which rely on the method of

statistical correlations.
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2.2 The Forces of Nature

Science currently admits four fundamental forces of nature: gravity, electromag-

netism, the weak nuclear force and the strong nuclear force. The last three forces

are thought to be fully described by a comprehensive theory called the Standard

Model. The Standard Model uses quantum field theory to describe the interactions

between fundamental particles as an exchange, that is emission and absorption, of

force-carrying particles called vector bosons. The force-carrying vector boson of the

electromagnetic force is the massless quantum of light, the photon. The quantum

field theory of the electromagnetic force is called quantum electrodynamics or QED,

and its accuracy has been verified to fifteen decimal places, making it the most precise

theory in all of science. The theory of gravity, general relativity, currently lacks a

quantum theory of interaction, and the gravitational constant G is known to only six

decimal places. A summary of the four forces is shown in Figure 2.2.

Figure 2.2: The Four Fundamental Forces and the force carriers. Image courtesy of
PBS.
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The weak nuclear force has three massive force carriers, the neutral Z and the

charged W+ and W−. In 1979 Glashow, Weinberg and Salam received Nobel prizes

for showing that the electromagnetic force and weak nuclear force could be unified

in a single electroweak interaction in which linear combinations of the photon, Z,

W+ and W− bosons are the force carriers. The separateness of the two forces today,

and the cause of non-zero mass in some particles, is believed due to a spontaneous

symmetry breaking whose signature is the highly-sought Higgs boson.

Figure 2.3: The Standard Model: three generations of matter. Image courtesy of
Particle Data Group.

The fundamental particles which the forces affect, called fermions, are of two kinds,
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quarks and leptons. The quarks and leptons come in three families, or generations.

Within each quark or lepton family every particle belongs to a doublet, there is an

“up” sibling and a dual “down” sibling particle whose electromagnetic charge differs

by −1. The terms “up” or “down” derive by antonomasia from the names of the

up/down doublet of quarks in the first, lightest quark family. Quark mass increases by

orders of magnitude in the doublets of the second and third generation, strange/charm

and top/bottom. Quark particles have fractional electromagnetic charge. Up-type

quarks have charge +2/3 and down-type quarks have charge −1/3. The reality of

fractional charge suggests that quarks and leptons with charge greater than 1/3 may

not be fundamental.

Lepton particles also come in three families of doublets. Leptons do not have

color charge and so do not feel the strong nuclear force. “Down”-type leptons are

the electron, muon and tau, all with electromagnetic charge −1. The “up” siblings

in each doublet are (electron-, muon-, or tau-) neutrinos. In each family a neutrino

forms a doublet with a charged lepton, just as up- and down-type quarks form a

doublet in each quark family. Neutrinos have no electromagnetic charge and hence

feel only the weak force.

Every particle in the families of quarks and leptons also has an anti-particle in

an anti-family with electromagnetic charge of opposite sign, or zero if the particle

has charge zero. The three generations of matter particles and the force carriers are

shown in Figure 2.3. One seldom sees the chart for anti-particles, because the visible

Universe is predominantly made of matter.

The weak nuclear force can transmute a quark from one family into its dual, or

even into a quark of another family. Recent studies have shown that transmutation

also occurs among lepton families. Observed neutrino transmutation from one family

to another, called “mixing”, implies that neutrinos possess a small but non-zero

mass. They were originally supposed to be massless. Experiments are underway to
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determine if transmutation between charged leptons may also, though rarely, occur.

Evidence of transmutation between quark and lepton families themselves would be of

fundamental theoretical importance to our understanding of the Universe. None yet

exists.

2.3 The Strong Force

The quantum field theory of the strong force, or color force, is called quantum

chromodynamics or QCD. The theory of QCD was created by analogy with quantum

electrodynamics, or QED. The interactions of the Standard Model, electroweak and

strong nuclear, have analogous mathematical structure, they are gauge theories. Each

interaction gauge theory has a defining Lagrangian function that possesses a char-

acteristic symmetry, that is the theory is invariant under the action of a continuous

group of local transformations. The existence of a symmetry implies the existence

of conserved physical quantities, called currents. Each interaction has a set of ini-

tially massless particles, or Weyl neutrinos, that are solutions of Dirac’s equation and

which possess “charge” appropriate to the interaction. Each generator of the symme-

try group, or gauge group, corresponds to a gauge field. Each gauge field represents a

force-carrying particle, or gauge boson, of the interaction. The gauge bosons couple

to the massless particles of the interaction through a covariant derivative in the La-

grangian. The mathematical coupling models the physical interaction. The strength

of the interaction is determined by a coupling constant whose value, along with the

masses of the particles, must be determined empirically [1].

The group of symmetries for the electromagnetic interaction is U(1), the unitary

group represented by 1×1 complex matrices whose inverse is given by their conjugate

transpose. U(1) has a single generator, corresponding to the photon gauge field.

For the weak interaction the symmetry group is SU(2), the special unitary group

represented by the set of 2×2 complex unitary matrices with determinant unity.
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SU(2) has three generators corresponding to the Z, W+ and W− gauge fields of the

weak interaction. The unified electroweak interaction has as its symmetry the direct

product SU(2)× U(1) with four generators. The symmetry group of QCD is SU(3)

with eight generators that correspond to eight gluon fields. For the Standard Model

overall the symmetry group is the direct product SU(3)× SU(2)× U(1) [1].

In contrast to the electromagnetic charge of QED, the color charge of QCD that

quarks possess is not observable. Every quark individually has a charge of red, green

or blue, anti-quarks have color anti-red, anti-green or anti-blue. To mediate the color

interaction, the gluon force carriers must possess both color and anti-color. Naively,

nine gluons should exist as a direct product of the three colors and anti-colors, but

the SU(3) color symmetry of QCD produces an octet of gluon gauge bosons with

paired color and anti-color, or linear combinations of thereof, along with a singlet

state which is colorless and hence noninteracting. Thus only eight colored gluons

exist to mediate the strong interaction [2].

A striking characteristic of QCD is that all hadrons, the “frozen” bound states of

quark matter, must be colorless overall. A baryon must contain quarks of all three

colors, the quark and anti-quark in a meson must have a color and its anti-color.

The phenomenon of the strong interaction that every hadron be colorless is known

as quark confinement, or simply confinement. The color charge was first proposed

(with different terminology) by O. W. Greenberg in 1964 as a quantum number to

solve the apparent violation of the Pauli Exclusion Principle in symmetric baryon

resonances such as ∆++ (uuu), ∆− (ddd) and Ω− (sss) [3]. Fundamental particles

have an intrinsic angular momentum called “spin”, which may be half-integer or

integer in value, accordingly the particle is classified as a fermion or a boson. Quarks

and leptons are fermions with spin 1/2, and the Pauli Exclusion Principle excludes

identical fermions from occupying the same state, so color was proposed as a quantum

number to make the quarks within the baryon distinguishable.
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It was initially thought impossible to construct a color-based gauge field theory of

QCD, analogous to the gauge field theory of QED, because the asymptotic strength of

the strong interaction coupling was the reverse of the behavior of the running coupling

constant α in QED [4]. The term “running” means that the strength of the coupling

is a function of the distance at which the interaction takes place, or equivalently of

the momentum transferred in the interaction, with short distances corresponding to

high momentum and conversely. In QED, the bare charge of the electron becomes

infinite at the shortest distances (highest momentum transfer Q2), but is “screened”

due to an effect known as vacuum polarization, yielding a finite limit α ≈ 1/137. The

behavior of the QED and QCD coupling constants is contrasted in Figure 2.4.

Figure 2.4: QED and QCD coupling constants. Image from H.F. Wolfe, doctoral
dissertation, U. of Wisconsin (2008).

The small value of the QED coupling constant α � 1 means that interactions

in QED are perturbative; infinite series in α converge to give a finite result. The

calculation of perturbation series in QED is simplified because the U(1) gauge sym-

metry group of QED is commutative. Commutativity implies that photons do not

interact with each other. However the color interaction gauge symmetry group of

QCD, SU(3), is non-commutative, as a consequence gluons couple to one another to
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create an effect known as “anti-screening” [2]. The effect of non-commutativity is to

cause the QCD coupling constant αs to behave in a sense opposite to the α of QED:

the QCD constant shows strong coupling at low momentum, causing confinement of

quarks into colorless bound states, while at high momentum the coupling becomes

weak, a phenomenon called “asymptotic freedom.”

Gross, Politzer and Wilczek received Nobel prizes in 2004 for the discovery of

asymptotic freedom in the strong interaction. The asymptotically free, weak cou-

pling of the color force has as a consequence that QCD calculation is perturbative

and convergent for high-momentum transfer experiments such as deep inelastic pho-

ton scattering which probed the proton and revealed its partonic inner structure, but

calculations are divergent and nonperturbative for the low momentum transfer bulk

particle interactions of the strongly-coupled quark-gluon plasma. However, progress

in computability has allowed CPU-intensive direct calculations using a discrete ap-

proximation of the continuum, known as “lattice QCD”, to estimate the parameters

of the QCD phase diagram in the non-perturbative regime of thermal equilibrium [5].
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Chapter 3

The Experiment

3.1 Multiparticle Production

Quark-gluon plasma studies evolved naturally from a particular subfield of strong

interaction research, known as “multiparticle production,” which was underway well

before QCD, quarks or color were an established part of theory. The modern study of

particles is less than a century old. At the beginning of the quantum era only three

particles were known to scientists, these particles were considered fundamental, and in

order of discovery they were the electron, the proton and the neutron. Wolfgang Pauli

postulated a fourth particle, named by Enrico Fermi the neutrino or “little neutral

one”, in order to explain the measured distribution of momentum of the particles

(electrons) emitted in β-decay, a process now known to be an interaction of the weak

nuclear force that transforms a neutron into a proton, electron and anti-neutrino.

The underlying interaction is a transmutation of a neutron constituent “down” quark

into an “up” quark, thus turning the neutron into a proton.

Though evidence for the neutrino was not discovered until the 1950s, theoretical

arguments for its existence were sufficiently convincing for its acceptance as a fun-

damental particle. The quantum of light known as the photon was distinguished as

being radiation while the proton, neutron, electron and neutrino, all constituents of

the atom, were considered matter. Today, quarks and leptons are considered matter

while force-carriers, chiefly the photon because the force-carriers of the nuclear forces
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have exceedingly short range, are radiation. Because of the wave-particle duality

in quantum mechanics, however, the distinction between radiation and matter is no

longer so clear.

The stable particle inventory of the first half of the century changed rather sud-

denly just prior to the second World War when new particles were discovered by

scientists examining the traces left by cosmic rays on special photographic films. The

particles are now known as the muon and the pion. Cosmic ray events, however, were

too random a process for systematic study, so high-energy particle accelerators were

built to mimic the collisions of cosmic ray protons with the protons in our atmosphere.

In the early 1950s the Cosmotron at Brookhaven National Laboratory, a fixed target

proton synchrotron, achieved a then-record 3.3 GeV projectile energy while creating

“V -particles”. The name “V -particle”, typical of the descriptive nomenclature of the

time, reflects the track shape left in a bubble chamber by the two decay products of

an unknown uncharged, and hence undetectable, particle.

Other accelerators soon followed the Cosmotron, eventually adopting the “col-

lider” format, with particles accelerating in opposite directions at equal speed, in

order to increase the rest-mass energy of the collision. Scores, and then hundreds,

of new particles known as “resonances” were produced. While the muon and pion

brought Nobel prizes to their discoverers, soon scientists had added so many new

species to the growing inventory that a wag observed that the next discoverer of a

particle deserved a fine rather than a prize. The classification of these many new

particles was the chief task of the post-war particle theorists. The regularity of the

particle inventory led directly to Murray Gell-Man’s group-theoretical explanation

using SU(3) flavor symmetry acting on three quark constituents, up u, down d and

strange s (and the anti-particle anti-quarks u, d, s) which is at the heart of the

Standard Model.

Although the most energetic protons in the world by far (1010 GeV) still fall from
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Figure 3.1: Flavor symmetry: spin 1/2 baryon octet and spin 3/2 baryon decuplet
plotted on axes of isospin, strangeness and electromagnetic charge. Each baryon is
composed of u, d and s constitutent quarks.

the sky, ever since the Cosmotron multiparticle production has been an endeavor

pursued at government facilities, where multinational collaborations attend to hadron

colliders of ever-increasing center-of-mass energy (see Table 3.1).

However, from the beginning of the accelerator era there were scientists who were

interested not so much in the production of specific particles, but rather in what is

called the “underlying event”, the inclusive totality of particles produced, also known

as “multiparticle production”. Multiparticle production seeks to understand the same

underlying strong force interaction that is responsible for the inventory of resonances.

A simple observable of multiparticle production is the rapidity y (or pseudorapidity

η) distribution of charged particles, denoted variously as ρ(y) or dNch/dy. Rapidity

is a measure of the longitudinal velocity and pseudorapidity is an approximation to

rapidity used by experimentalists that is exact in the limit of massless particles. As

seen in Figure 3.1, multiparticle pseudorapidity distributions for p(p) + p collisions

show surprising similarity over a wide range of energies.

Hadron collisions eventually progressed beyond collisions of protons, that is hy-

drogen ions, to include heavier ions such as silicon, copper, gold and lead, always
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Accelerator/Collider (Organization) Epoch Energy (Species)

Cosmotron (BNL) 1947-1966 3.3 GeV (p)
PS Proton Synchrotron (CERN) 1959- 28 GeV (p)
AGS Alternating Gradient Synchrotron (BNL) 1960– 33 GeV (p)
U70 Serpukhhov (IHEP) 1967– 70 GeV (p)
ISR Intersecting Storage Rings (CERN) 1971-1984 30+30 GeV (p+ p)
SPS Super Proton Synchrotron (CERN) 1981-1984 400 GeV (p)
ISABELLE (BNL) aborted 1983 200+200 GeV (p+ p)
Tevatron (FNAL) 1987-2011 980-980 GeV (p+ p)
SSC Superconducting Super Collider (U.S.) aborted 1993 10+10 TeV (p+ p)
RHIC Relativistic Heavy Ion Collider (BNL) 2000– 100+100 GeV/N
LHC Large Hadron Collider (CERN) 2009 7+7 TeV (GeV/N)
VLHC Very Large Hadron Collider (?) (?)

Table 3.1: Partial listing of hadron accelerators and colliders. (PS and AGS acceler-
ators were recycled as first stages of later colliders.)

Figure 3.2: Pseudorapidity distributions for p(p)+p collisions at various
√
s energies.
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producing a similar spectrum of particle production as that seen in proton-proton.

Figure 3.1 shows rapidity distributions for Au+Au heavy ion collisions over a range

of energies, which have a natural Gaussian shape. The bimodal shape of the pseudo-

rapidity distribution present in the p + p plots is an artifact of the Jacobian for the

change of variable from rapidity y to pseudorapidity η.

Figure 3.3: Rapidity distributions for A + A heavy ion collisions at various
√
sNN

energies.

It was realized in the 1970s that particles from hadron collisions are well-modeled

assuming production in “clusters”. The idea of cluster production goes beyond the

idea of simple resonance decay. In cluster production, decay particles are produced

in discrete bunches, but without being traceable to a single invariant mass source as

in the case of a resonance. With higher energy and increased particle multiplicity,

it became feasible to treat the cluster phenomenon statistically, using correlation

methods.
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3.2 Two-Particle Correlations with R2

The historical observable of choice to investigate cluster production was the two-

particle correlation function known as R2. R2 will be discussed in detail later, indeed

it is the primary observable for our analysis, but briefly it is a function that measures

the ratio of correlated to uncorrelated pairs created in the collision event. R2 gives a

positive value when the number of produced pairs exceeds random expectations, and

a negative value otherwise. For random particle production R2 is identically zero.

To construct R2, begin with the one-particle rapidity (or pseudorapidity) dis-

tribution normalized to the mean number of particles per event; the two-particle

distribution is normalized to the mean number of pairs:

∫
ρ1(y)dy = 〈n〉 (3.1)∫

ρ2(y1, y2)dy1dy2 = 〈n(n− 1)〉 (3.2)

The cumulant correlation function C2 is then defined as the difference between cor-

related and uncorrelated, or same-event and mixed, pairs. The cumulant is designed

to vanish when the elements of the pairs are independent. It therefore measures the

degree and location of non-randomness in the collision.

ρ2(y1, y2) = ρ1(y1)ρ1(y2) + C2(y1, y2) =⇒ C2(y1, y2) = ρ2(y1, y2)− ρ1(y1)ρ1(y2) (3.3)

The correlation function R2 is created from C2 by normalizing by uncorrelated pairs.

Many detector artifacts and other sources of systematic error cancel in the ratio.

R2 =
C2(y1, y2)

ρ1(y1)ρ1(y2)
=

ρ2(y1, y2)

ρ1(y1)ρ1(y2)
− 1 (3.4)

To extract the maximum information from the data, the R2 correlation function
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is applied to particle pairs in various sign combinations. Rci
2 correlation (“charge-

independent”) includes all charged particle pairs; unlike- and like-sign correlations

R+−
2 , R++

2 , R−−2 are used to study charge conservation effects; Rh1h2
2 analyzes the

correlation between specific hadron types h1 and h2. When measuring correlations

with the R2 correlation function, a distinction is made between long-range and short-

range correlations. Intuitively, having selected a particle for consideration, a long-

range correlation affects all other produced particles, while a short-range correlation

involves only those particles which are nearby in momentum space.

Although the dividing line between long- and short-range is somewhat arbitrary,

the intention is to create a distinction between different mechanisms affecting the

distribution. Common “cluster” origin of produced particles creates short-range cor-

relations, while conservation laws (charge, momentum, isospin) enforce both short-

and long-range correlations [6].

Figure 3.4: Rπ+π−
2 and Rπ−π−

2 for
√
s = 27 GeV p+ p collisions at FNAL.

Plots of p+p collisions from the 1970s at FNAL and CERN ISR showed a persistent

pattern of short-range correlations, attributable to clusters, at various beam energies.

An example from p + p collisions at FNAL shows the R2 correlation function for
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like-sign and unlike-sign pion pairs (see Figure 3.4). The regions of enhanced R2

correlation levels for π+π− as opposed to π−π− indicate both short-range correlations

(at the central maximum) and long-range correlations (at the two secondary maxima).

Evidence of the mechanism is much diminished, but not absent, in the like-sign plot

[7].

Figure 3.5: Rcc
2 for p + p collisions at FNAL (a-b)and CERN ISR (c-d):

√
s = 13.7,

27, 23, 63 GeV.

Figure 3.5 shows Rcc
2 (Rci

2 ) for beam energy
√
s = 13.7, 27, 23 and 63 GeV. The

plots show a “mountain” with maximum Rcc
2 value ∼0.6 at (η1, η2) = (0, 0) holding

nearly constant along the y1 = y2 diagonal but falling off rapidly in the orthogonal
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∆y direction. As energy increases, the short-range positive correlations maintain the

same maximum value while extending further along the line y1 = y2. In the ∆y

direction correlations are smaller but still positive for y1 = −y2, indicating a “burst”

of particles of opposite rapidity.

As may be seen from the plots, as
√
s energy increases, the value of R2 becomes

nearly constant along diagonals of fixed ∆y, especially for values of |y1,2| < 2. For

this reason a transformation in rapidity (or rather pseudorapidity) space is usually

made to change the independent variables from (η1, η2) to (η̄,∆η).

The correlation plots above may be considered the Ur-plots for the “cluster” model

of multiparticle production. The defining features of the cluster model were collected

by in a review article that remains influential [6]:

• post-collision creation of “clusters” which subsequently decay into final-state

particles;

• absence of correlations among clusters;

• isotropic decay of clusters in their rest frames;

• Lorentz invariant translation of cluster distributions in pseudorapidity.

Though the cluster model has been superseded by the QCD language of color field

/ flux tube / string fragmentation, the underlying phenomenology is still a prime

motivation for two-particle correlation analyses.

My research captures the pattern of particle formation in heavy ion collisions us-

ing three different two-particle correlation observables in number and momentum, as

a function of relative azimuth, pseudorapidity and centrality. The patterns of real

data are then compared to simulations using RQMD data and data from a simple

“cluster” model. The intent of the analysis is not so much to discriminate among

phenomenological models as to offer canonical representations of the three observ-

ables.
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3.3 The RHIC Collider

The idea of heavy ion collisions, beyond their multiparticle production capability,

was proposed as early as 1975 by T.D. Lee to explore whether “at high densities

there may exist a new type of nuclear state” [8]. Later, theoretical work to create

a phase diagram for QCD indicated the possible existence of a phase transition at

high temperature and baryon density to a state of matter consisting not of nucleons

but of their deconfined constituent quarks and gluons, the quark-gluon plasma. Many

studies with heavy-ion collisions were performed at CERN in the eighties and nineties

but the most spectacular results awaited the construction and implementation of the

Relativistic Heavy Ion Collider at Brookhaven National Laboratory in eastern Long

Island, former home of the Cosmotron.

The Relativistic Heavy Ion Collider at Brookhaven National Laboratory (RHIC

at BNL) is a high energy particle accelerator commissioned in 2000 for the purpose of

reproducing in miniature a state of matter thought not to have existed since the initial

microseconds following “the Big Bang.” According to the standard cosmological

model, the “Big Bang” was the original singularity from which our expanding Universe

began its evolution over 13 billion years ago [9]. In the RHIC collider, gold nuclei are

accelerated to nearly light speed, attaining energies of 200 GeV per nucleon pair.

The most central Au+Au collisions create a “mini-Bang” droplet of primordial

matter that is characterized by extremely high temperature within a volume of a few

cubic fermi, the size of a single gold nucleus. Most of the energy deposited in the

volume is due to the kinetic energy of the nucleons. The resulting energy density,

up to 30 times that of the 1 GeV nucleon rest mass, causes the struck nucleons of

the colliding nuclei to dissolve. Following the collision, within a formation time of

order 1 fm/c, the deconfined quarks and gluons interact strongly, rapidly forming a

kinetically and chemically thermalized system, the quark-gluon plasma. The QGP

phase lasts of order 10−23 sec after which the intense pressure within the system causes
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a longitudinal and radial expansion accompanied by adiabatic cooling. Expansion and

cooling of the system continues until “freeze-out” temperature is reached, at which

time the quarks and gluons undergo a phase transition and the system of deconfined

partons recombines into a gas of hadrons.

Figure 3.6: Time evolution of the “Big Bang” singularity.

A thermalized system is by definition characterizable by a thermodynamic equa-

tion of state (EoS). The equation of state determines the quark matter phase diagram,

shown in Figure 3.8. Using the finite calculational methods of quantum chromody-

namics, called lattice QCD, the temperature of the phase boundary between partons

and hadrons has been estimated to be in the range 160-190 MeV [10][11]. (For com-
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Figure 3.7: Time evolution of a relativistic heavy ion collision.

parison, 100 MeV = 1.16 x 1012 K, with the temperature at the surface of the Sun

approximately 6000 K.) The lifetime of the thermalized system from QGP formation

to freeze-out has been estimated using the Hanbury-Brown/Twiss method of identical

particle pion interferometry, and is estimated to be of order of 10 fm/c [12][13].

After freeze-out interaction ceases and the newly-formed particles stream toward

the detectors. The majority of particles detected are light hadrons plus a small

percentage of direct photons and electron-positron pairs formed in the initial fireball

along with numerous leptons from hadronic resonance decays. Information regarding

the transient QGP phase is encoded in the detected particles which typically number

in the thousands. Due to the large number of particles created, complete event

reconstruction is problematic. Statistical methods are therefore the key tool for the

experimenter seeking to analyze the event phenomenology.

The term QGP is historic. Many scientists who anticipated heavy ion collisions

to produce deconfinement, expected it to be a weakly-interacting parton plasma. In-
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Figure 3.8: Phase diagram of nuclear matter.
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stead, the QGP was found to be a strongly-interacting, low-viscosity fluid, often called

the sQGP in recognition of this fact. The evidence for fluid behavior is of several kinds.

Foremost, the evolving system of the QGP up to freeze-out is well-approximated by

relativistic transport models of ideal hydrodynamic flow [14][15][16][17]. Two early

results from RHIC, elliptic flow and jet quenching, also provide strong evidence for

the fluidlike properties of the QGP.

Elliptic flow is a consequence of the spatial anisotropy of the overlap region of a

nucleus-nucleus collision. Given a uniform pressure gradient on the boundary of the

roughly elliptical overlap region involved in the collision, the spatial anisotropy of the

overlap converts to a momentum anisotropy due to greater pressure along the minor

axis of the ellipse. A schematic of the collision is shown in Figure 3.9.

Figure 3.9: Elliptic flow: integrated v2 as a function of collision centrality for various
energies.

The azimuthal momentum anisotropy due to the pressure gradient may be mea-

sured by the coefficients of a Fourier decomposition of the normalized particle distri-

bution in azimuth:

dN

dφ
= 1 + 2v1 cos(φ−ΨRP ) + 2v2 cos[2(ψ −ΨRP )] + · · · (3.5)
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where

vn = 〈cos(n(φ−ΨRP ))〉 (3.6)

Here, φ is the azimuthal angle in the detector and ΨRP is the reaction plane of

the collision, identified with the major axis of the elliptical overlap region. Elliptic

flow is represented by the second coefficient, v2. Though not present in p + p, and

weakest in the most central heavy ion collisions, v2 has a non-zero value for a range

of centralities and energies, as shown in Figure 3.10.

Figure 3.10: Elliptic flow: integrated v2 as a function of collision centrality for various
energies.

Extensive measurements of elliptic flow for identified particles have been con-

ducted at RHIC. Quite good agreement is obtained when the particle species are

divided by the number of quarks, a result known as quark-number scaling. Quark-

number scaling, that is to say quark flow, is consistent with QGP formation, with
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quark degrees of freedom replacing hadrons in the initial stages of the collision.

Jet quenching is measured by two-particle azimuthal correlations between a high-

pT “trigger” first particle and a second “associated” particle of similar or lower pT .

The plot in Figure 3.11 compares the distribution of trigger-and-associated pairs for

three collision combinations, p+ p, d+Au and Au+Au central [18]. In the latter the

correlations at ∆φ ∼ π, the so-called “away side”, are consistent with zero. The

away-side suppression is not seen in the d+Au collisions of “cold” nuclear matter,

indicating that “the suppression phenomena seen in central Au+Au collisions are due

to final-state interactions with the dense system generated in the collision” [18].

While the away-side suppression seen in azimuthal correlation plots reveals jet

quenching, an even more striking phenomenon of heavy ion collisions is revealed

on the near side of correlation plots that show both relative azimuth and relative

pseudorapidity, that is the so-called “ridge.”

3.4 The Ridge

A feature of primary interest to this analysis is the phenomenon, first observed in

heavy ion collisions at RHIC, known as “the ridge”. As in the study of jet quenching,

two-particle correlation plots for heavy ion collisions were constructed using “hard”

triggers and associated partners. The experimenters obtained a plot with enhanced

near-side yield at large |∆η|, in excess of the elliptic flow background and occurring

well beyond the region about zero where jet production usually locates. No similar

feature was seen in d+Au plots where correlations remained located in the region

about the origin. The normalized distribution functions for trigger-and-associated

pairs in Au+Au and d+Au collisions are shown in Figure 3.12.

The “ridge” plot has generated considerable interest not only for high-pT jet stud-

ies, where it is called the “hard” ridge, but also among experimenters studying low-

momentum “bulk” correlations, where it is seen as a “soft” ridge. The ridge was found
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Figure 3.11: Jet quenching: suppression of away-side correlations in heavy ion colli-
sions.
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Figure 3.12: Normalized distribution function for trigger-and-associated pairs at√
sNN = 200 GeV: (top row) central Au+Au 3 < pT < 4 GeV trigger, 4 < pT < 6

GeV trigger, (bottom row) d+Au 3 < pT < 4 GeV trigger, 4 < pT < 6 GeV trigger
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to be a feature not just of high-pT trigger-and-associated correlations but also of low-

pT correlations using particles restricted to pT < 2.0 GeV. Numerous hypotheses were

put forth to explain its appearance in heavy ion collisions:

• coupling to longitudinal flow of induced radiation of energetic partons propa-

gating through the medium [19];

• color field turbulence [20];

• anisotropic plasma [21];

• jet-quenching combined with strong radial flow [22];

• recombination of thermally enhanced partons [23].

Readers interested in a detailed account of ridge phenomenology are urged to

consult the doctoral dissertation of George Moschelli [24]. In a seminal paper using

a “blast wave” model Gavin and Moschelli provided support to Voloshin’s proposal

that radial flow created the ridge correlations through a kind of kinematic focusing

[25]. The authors were able to reproduce closely the ridge yield observed in STAR

data, as shown in Figure 3.13.

Moschelli argues for a single methodology of ridge creation, rather than separate

“hard” and “soft” ridge phenomena, and indeed we will find that the appearance of

the ridge does not depend strongly on the pT of the trigger.

Representative reference plots of the two-particle correlation function R2, weighted

by particle multiplicity, for p+p, Cu+Cu and Au+Au collisions are shown in in Fig-

ure 3.14. The correlation functions are constructed using inclusive charged particles,

with no momentum restrictions.

The ridge is seen to be less a phenomenon of trigger particle momentum, and

more a function of collision energy density. As the energy density increases, the p+ p

correlations shift from a broad ridge in ∆φ, narrow in ∆η, becoming for Au+Au a
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Figure 3.13: Height of the near side peak in Gavin and Moschelli’s blast wave model
vs. centrality for 200 GeV (top) and 62 GeV (bottom). STAR data points in red.

Figure 3.14: R2 correlation function weighted by event multiplicity for p+p, Cu+Cu,
and Au+Au 200

√
sNN = 200 GeV collisions.
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broad near-side ridge in ∆η, narrow in ∆φ. The Cu+Cu plot is intermediate between

the two. The Au+Au correlations show strong enhancement on the near and away

side, with maxima at ∆φ = 0 and ∆φ = π, due to elliptic flow. Taken together,

the three plots suggest a strong association between the presence of radial flow, as

proposed by Voloshin, and the appearance of the ridge in heavy ion collisions. We

shall see the pattern of R2 correlations seen here for collisions of different species

at the same energy is entirely recapitulated with Au+Au correlations as collision

centrality is increased.
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Chapter 4

Data and Observables

4.1 The STAR Detector

Until the Large Hadron Collider at CERN began Pb+Pb collisions in 2010, RHIC

at BNL held the record as the highest-energy accelerator of heavy ions. With two

concentric 3.7-km long acceleration and storage rings, RHIC achieves a center of mass

beam energy of
√
s = 200 GeV per nucleon pair in Au+Au collisions. The rings are

independent and may be used for collisions using other hadron species such as Cu+Cu,

p + p and d+Au for the purpose of taking baseline measurements. Using “Siberian

Snakes” technology, the RHIC collider also has presently the foremost capability in

the world to accelerate spin-polarized proton beams. When running p+ p, maximum

achievable center of mass beam energy is
√
s = 500 GeV per collision. Typically for

Au+Au heavy ion running, two beams each containing ∼60 bunches of 109 gold ions

circulate in opposite directions with peak luminosity ∼ 1030 cm−2s−1.

Collision points are designed at six crossing points about the ring, four of which

have hosted experiments: STAR, PHENIX, PHOBOS and BRAHMS. BRAHMS is

a small acceptance high precision hadron spectrometer designed to measure particle

multiplicity as a function of the scattering angle with respect to the beam axis.

PHOBOS is a large acceptance hadron spectrometer sensitive to unusual signatures

that may indicate QGP formation. (BRAHMS and PHOBOS have concluded taking

data and are now in data analysis mode exclusively.) PHENIX is a multi-purpose
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detector sensitive to event evolution observables, especially lepton pairs and direct

photons from the early thermalization phase.

My research was conducted as a member of the STAR collaboration. STAR

(Solenoidal Tracker at RHIC) is a massive cylindrical gas-filled object two stories

tall housing a magnetic field strong enough to levitate a workman’s wrench. As a

monument to collective human enterprise it is the modern analogue of a Gothic cathe-

dral. STAR has the largest acceptance overall of the four experiments. It can detect

a broad range of hadronic and leptonic observables using tracking, particle identifi-

cation and electromagnetic calorimetry with excellent capability to measure high-pT

jets [26].

The STAR detector is actually an ensemble of specialized subdetectors, nearly

all having full azimuthal acceptance. A complete categorical description of each

subdetector is beyond the scope of this work, but a review of their key features is

essential to understanding how the events of our data ensemble were recorded and

reconstructed.

At the heart of the STAR detector, situated in a room-temperature 0.5 Tesla

magnetic field, is the primary tracking device, the Time Projection Chamber or TPC.

The cylindrical TPC has radius 2.0 meters and length 4.2 meters, at the time of

its completion the largest such detector in the world [27]. The TPC is an axial

drift chamber that measures the momentum and energy loss of charged particles.

Combined with the SVT, momentum resolution within 2 percent is achievable for a

majority of tracks in the TPC [28]. While the pseudorapidity acceptance is reported as

+/- 1.8 units of pseudorapidity, in practice, due to variation in the collision z-vertex,

the effective acceptance is not more than |η| < 1.2, and quality cuts of |η| < 1.0 are

standard at STAR.

The Silicon Vertex Detector (SVT) and Forward Time Projection Chamber (FTPC)

provide additional tracking data at mid- and forward rapidity, respectively. The
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Figure 4.1: A schematic view of the STAR detector.

Figure 4.2: Cutaway view of the STAR detector
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FTPC is a radial drift time projection chamber consisting of two units with combined

acceptance in the range 2.5 < |η| < 4.0. Photons, electrons and positrons from the

electromagnetic decay of neutral hadrons are detected by the Barrel Electromagnetic

Calorimeter (BEMC) and a single Endcap Electromagnetic Calorimeter (EEMC).

The BEMC and EEMC together have a combined acceptance of −1.0 < η < 2.0 [28].

Essential to triggering and event characterization at STAR are the “fast” detec-

tors, the Central Trigger Barrel (CTB) and the Zero Degree Calorimeters (ZDC). The

CTB, with acceptance |η| < 1.0, surrounds the TPC to record the flux of charged

particles in an event. The ZDCs are calorimeters located at +/- 18 meters of the col-

lision to record the energy of undeflected remnant “spectator” neutrons. “Minimum

bias” events, such as used in this analysis, are triggered by a coincident signal larger

than one neutron in each of the two ZDCs. In the case of smaller impact parameter an

algorithm combining signals in the ZDC and CTB is employed for min-bias triggering

[28]. The ZDCs are also used to measure beam luminosity; each of the four RHIC

experiments has an identical pair of ZDCs[29].

For the purposes of this analysis the key particle observables are pseudorapidity

η, azimuthal angle φ, transverse momentum pT and electric charge, all of which rely

heavily on the capabilities of the TPC.

4.2 STAR Run IV Au+Au Data

The current analysis uses Au+Au collision data at
√
sNN = 200 GeV recorded

by the STAR experiment during year 2004 (Run IV). To minimize truncation of the

pseudorapidity distributions, events with collision z-vertex more distant than 25 cm

from the center of the TPC are excluded. (For some diagnostic studies, the exclusion

boundary was relaxed to 30 cm.) To insure track quality, particles are restricted to

the momentum range pT > 0.2 GeV/c. The particle detection efficiency of the TPC

falls off rapidly outside |η| = 1, so only particles recorded within the pseudorapidity
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Figure 4.3: Event distribution dNev/dN for |η| < 1.0 centrality definitions. Full Field
(left), Reverse Full Field (right).

range |η| < 1.0 are used. To minimize the effects of track splitting, each particle track

must have a minimum of 15 “fit” points in the TPC detector, and the ratio of actual

fit points to possible fit points must equal .52 or greater. The total number of usable

events in the analysis is nearly 14 million, 7,398,619 with the magnet at Full Field of

0.5 Tesla, and 6,582,704 with the field reversed.
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4.3 Statistical Distributions

Because the number of particles produced in a heavy-ion collision is so large, it is

feasible to study the event as a statistical ensemble. Historically, the functions most

used for such study were the C2 cumulant and the R2 correlation function, which is a

normalized version of the C2 cumulant. Cumulants have applications in many areas

of statistical physics. We begin with the definition and notation we will use for a

statistical distribution.

Let X be a random variable that expresses a global quantity associated with an

event in our data ensemble. The statistical distribution of X with respect to a point

x in momentum space is a function which gives a value proportional to the fraction of

the global quantity that occurs locally at x. Two global quantities of interest in this

analysis are the total number of charged particles in an event N and the total trans-

verse momentum of the charged particles in an event pT . The statistical distributions

used in this analysis are of two kinds, closely related: 1) an experimental, sampling

distribution determined event-by-event from the data ensemble on a discretized set of

points (“bins”), and 2) a theoretical, continuous analytical distribution that is sup-

posed to result in passing to the limit of infinitesimal binsize, infinite trial events and

100 percent detector efficiency.

We begin with the experimental, sampling distribution. Let Nev be the number

of events in our data ensemble and n
(α)
k be the number of particles in the kth event.

The superscript α represents the set of quality and kinematic criteria applied to the

particle. Choosing, for concreteness, the variable x in momentum space to be the

rapidity y, we define the sampling distributions of N (α) and P
(α)
T for a fixed finite bin,

denoted δy:

dN (α)

dy
(δy) =

1

Nev

Nev∑
k=1

n
(α)
k∑
i=1

n
(α)
ki (δy)

1

|δy|
(4.1)
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dP
(α)
T

dy
(δy) =

1

Nev

Nev∑
k=1

n
(α)
k∑
i=1

n
(α)
ki (δy)pT ki

1

|δy|
(4.2)

Here, n
(α)
ki is a Bernoulli random variable, with n

(α)
ki = 1 if the rapidity of the ith

(α-qualified) particle in the kth event is located in the interval δy, else n
(α)
ki = 0. pT ki

is the magnitude of the transverse momentum of the ith particle in the kth event.

Notation : Henceforth we omit the superscript α, except where needed as a re-

minder. The symbol N alone, as a default, will refer to all charged primary particles

satisfying a specified set of kinematic criteria. When a particular subset of charged

particles or charged pairs is intended the notation will so indicate, e.g . N+− or N++
2 .

We also substitute the point y for the finite bin δy with the understanding that for

sampling distributions the equations hold binwise rather than pointwise. Accordingly

we will omit the explicit division by the binsize |δy| that is required to convert the

histogram of recorded data to a sampling distribution; the context will generally make

clear when the binsize factor is necessary. Last, since the Leibniz notation displays the

independent variables in the denominator, the explicit functional dependence shown

in parentheses is redundant, and so will be omitted for the sampling distribution but

retained for the analytical distribution. The definitions then simplify:

dN

dy
=

1

Nev

Nev∑
k=1

n
(α)
k∑
i=1

nki(y) (4.3)

dpT
dy

=
1

Nev

Nev∑
k=1

n
(α)
k∑
i=1

nki(y)pT ki (4.4)

These formulas are by definition equivalent to, respectively, the ensemble sample

means of the number of particles per event and the transverse momentum per event,

recorded in bin δy, which is now represented by the point y:

dN

dy
= 〈nk(y)〉 (4.5)
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dpT
dy

= 〈pT k(y)〉 (4.6)

Passing to the limit of infinitesimal binsize, infinite events and ideal detector

efficiency gives us the continuous analytical distributions:

ρ1(y) = lim
|δy|→0
Nev→∞

dN

dy
(4.7)

ρpT1 (y) = lim
|δy|→0
Nev→∞

dpT
dy

(4.8)

We must keep in mind however that for a finite number of events Nev the sampling

distributions are only a statistical estimate of the analytical distributions. Also, in

our analysis we must take account of the detector inefficiencies. We define ε1(y) to

be the efficiency of the detector at (the bin containing) y, with respect to the given

distribution. The efficiency function ε for counting numbers of particles need not be

identical to the efficiency function for recording transverse momentum of particles.

With this understanding, to relate the sampling and analytical distributions for finite

Nev we use the expression:

ρ1(y) ∗ ε1(y) =
dN

dy
(4.9)

ρpT1 (y) ∗ ε1(y) =
dpT
dy

(4.10)

We proceed to the pair distributions. First we show the two-particle distributions

for number pairs and transverse momentum pairs:

ρ2(y1, y2) ≈ d2N2

dy1dy2

=
1

Nev

Nev∑
k=1

n
(α1)
k∑
i=1

n
(α2)
k∑
j 6=i

nki(y1)nkj(y2) (4.11)

ρ
pT 1pT 2
2 (y1, y2) ≈ d2pT 1pT 2

dy1dy2

=
1

Nev

Nev∑
k=1

n
(α1)
k∑
i=1

n
(α2)
k∑
j 6=i

nki(y1)nkj(y2)pT kipT kj (4.12)
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To define our third pair distribution we need the ensemble average particle mo-

mentum, defined by:

pT1(y1) =
ρpT1 (y1)

ρ1(y1)
≈ dpT/dy

dN/dy
=

Nev∑
k=1

n
(α)
k∑
i=1

nki(y1) ∗ pT ki

Nev∑
k=1

n
(α)
k∑
i=1

nki(y1)

(4.13)

We adopt the overline notation to indicate ensemble average per particle, since

we already use 〈 〉 to denote the ensemble average per event. Letting ∆pT ki =

pT ki−pT1(y1) denote the deviation of the transverse momentum of the ith first particle

in the kth event from the ensemble particle average at y1, and ∆pT kj = pT kj − pT1(y2)

denote the deviation of the transverse momentum of the jth second particle in the kth

event from the ensemble particle average at y2, we define the two-particle distribution

for transverse momentum variance, or ρ
∆pT 1∆pT 2
2 :

ρ
∆pT 1∆pT 2
2 (y1, y2) ≈ d2∆pT 1∆pT 2

dy1dy2

=
1

Nev

Nev∑
k=1

n
(α1)
k∑
i=1

n
(α2)
k∑
j 6=i

nki(y1)nkj(y2)∆pT ki∆pT kj

(4.14)

Each of the three two-particle distributions above, ρ2, ρ
pT 1pT 2
2 , and ρ

∆pT 1∆pT 2
2 con-

tains information about correlated, same-event particle pairs that will be incorporated

in our three correlation observables described in the next section.

Note that in the two-particle distributions we may have α1 6= α2, that is the sets

of kinematic criteria for the first and second particle may differ. In such analyses of

non-identical sets of particles the pair i = j is to be included in the sum.

As was the case for the single-particle distributions, the two particle distributions

may be written in the form of an ensemble sample mean:

d2N2

dy1dy2

= 〈n(α)
k (y1)(n

(α)
k (y2)− 1)〉 (4.15)
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d2N2

dy1dy2

= 〈n(α1)
k (y1)n

(α2)
k (y2)〉 (4.16)

The first equation holds when the criteria α are identical for the first and second sets

of particles, the second equation holds for α1 6= α2.

We write the relation between the two-particle sampling and analytical distribu-

tions as:

ρ2(y1, y2) ∗ ε2(y1, y2) =
d2N2

dy1dy2

(4.17)

It will be seen that, to first order, the two-particle detector efficiency factors into

a product of single-particle efficiencies:

ε2(y1, y2) = ε1(y1) ∗ ε1(y2) (4.18)

This fact will motivate the normalization of the C2 cumulant to form the R2 correla-

tion function in the next section.

Over all momentum space, the normalization for the one- and two-particle number

distributions is: ∫
dN

dy
dy = 〈nk〉 (4.19)

∫
d2N2

dy1dy2

dy1dy2 = 〈nk(nk − 1)〉 (4.20)

where nk is the number of particles in the kth event and 〈 〉 denotes the sample mean

taken over all the events in the data ensemble.

4.4 Correlation Cumulants

Correlation cumulants are a measure of the deviation from randomness of a mul-

tiparticle distribution. They are defined so as to vanish when no correlations exist
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between the particles.

Given a two-particle distribution ρ2, it is equal to a decomposition into a term

which is a product of the two single-particle distributions plus a balancing term known

as the C2 cumulant. For concreteness we again use rapidity y as the momentum space

variable.

ρ2(y1, y2) = ρ1(y1)ρ2(y2) + C2(y1, y2) (4.21)

We refer to the product of single particle distributions ρ1(y1)ρ1(y2) as the uncor-

related pair distribution and ρ2(y1, y2) as the correlated pair distribution. Using this

terminology, the C2 cumulant is equal to the correlated pair distribution minus the

uncorrelated pair distribution:

C2(y1, y2) = ρ2(y1, y2)− ρ1(y1)ρ1(y2) (4.22)

In this way, the properties of the two-particle distribution which pertain exclu-

sively to correlated pairs are relegated to a separate function, the C2 cumulant. Those

properties which are simply the random result of taking the product of the single-

particle distributions are subtracted away. In the event that the correlated pair

distribution is not different from the random, uncorrelated pair distribution, the C2

cumulant vanishes.

Higher order cumulants. Though we will not use them in this analysis, higher-

order cumulants may be defined similarly. Given a multivariate distribution of n

quantities, ρn, there is a decomposition of the distribution as a sum of products of

distributions and cumulants each with less than n quantities [30]. The number of

terms in the decomposition is equal to a partition of n.

For example, given a three-particle distribution ρ3, it is equal to a decomposition

where the terms on the right hand side are the three single-particle distributions

multiplied together, plus the first single-particle distribution multiplied by the two-
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particle cumulant of the second and third particle, plus a term which is the second

single-particle distribution multiplied by the two-particle cumulant of the first and

third particle, plus a term which is the the third single-particle distribution multiplied

by the two-particle distribution of the first and second particle, plus a final term, the

C3 cumulant, which contains all the properties of the three-particle distribution which

are not attributable to lower-order distributions or cumulants. Briefly:

ρ3(y1, y2, y3) = ρ1(y1)ρ1(y2)ρ1(y3) +
∑

(3
1)terms

ρ1(y1)C2(y2, y3) + C3(y1, y2, y3) (4.23)

The higher-order cumulants are obtained by inversion after substituting for all

lower-order cumulants:

C3(y1, y2, y3) = ρ3(y1, y2, y3)−
∑

(3
1)terms

ρ1(y1)ρ2(y2, y3) + 2ρ1(y1)ρ1(y2)ρ1(y3) (4.24)

Semi-inclusive vs. inclusive cumulants. Up to this point we have been dealing

with the inclusive C2 cumulant which is created from all collisions regardless of the

topological multiplicity n of the decay particles. We define the semi-inclusive C
(n)
2

cumulant to be the C2 cumulant created when a fixed number n of particles are

produced in an event.

C
(n)
2 (y1, y2) = ρ

(n)
2 (y1, y2)− ρ(n)

1 (y1)ρ
(n)
1 (y2) (4.25)

The inclusive C2 cumulant has an algebraic decomposition into a weighted sum

of the semi-inclusive C
(n)
2 cumulants plus a term that is the weighted sum of the

convolution product of the difference between the inclusive single-particle distribution
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and the single-particle distribution for fixed n.

C2(y1, y2) = 〈C(n)
2 〉+ 〈(ρ(n)

1 − ρ1)(ρ
(n)
1 − ρ1)〉 (4.26)

= CS + CL (4.27)

All instrinsic correlations must be present in the first CS term on the right hand

side, the weighted sum of semi-inclusive cumulants, since it is the only term which

contains same-event pairs. The second CL term on the right hand side contributes to

the C2 cumulant only by correlations between events with different multiplicity, i.e.

from the mixing of events. The subscripts S and L recall historical notation describing

the two terms as “short”- and “long”-range correlations respectively. More precise

terminology would call the first term the “intrinsic” term and the second term the

“multiplicity” term, since it depends on fluctuations in the multiplicity of particles n.

4.5 The Three Correlation Observables R2, ∆PT and C

The three correlation observables of our analysis are R2, ∆PT and C (RpT ). The

first and most important of the three is the R2 number correlation function. The R2

correlation is derived from the C2 cumulant by dividing by the product of the first and

second single-particle number distributions, that is the uncorrelated pair distribution

or mixed-event distribution.

R2 =
C2(y1, y2)

ρ1(y1)ρ1(y2)
(4.28)

From the definition of C2 it is clear that R2 is equal to the ratio of the correlated

to the uncorrelated pair distribution, minus one:

R2 =
ρ2(y1, y2)

ρ1(y1)ρ1(y2)
− 1 (4.29)

We define the semi-inclusive R
(n)
2 function as the semi-inclusive C

(n)
2 function
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normalized by the inclusive ρ1ρ1 uncorrelated pair distribution.

R
(n)
2 (y1, y2) =

C
(n)
2 (y1, y2)

ρ1(y1)ρ1(y2)
(4.30)

The inclusive R2 correlation function inherits from C2 the algebraic decomposition

into a same-event, intrinsic term, RS, and a mixed-event or multiplicity term, RL.

R2(y1, y2) =
〈C(n)

2 〉
ρ1(y1)ρ1(y2)

+
〈(ρ(n)

1 − ρ1)(ρ
(n)
1 − ρ1)〉

ρ1(y1)ρ1(y2)
(4.31)

=
CS

ρ1(y1)ρ1(y2)
+

CL
ρ1(y1)ρ1(y2)

(4.32)

= RS +RL (4.33)

The decomposition of R2 into RS and RL will be useful when we analyze simulated

data from a simple deterministic cluster model.

When the same-event pair distribution ρ2(y1, y2) contains no correlations, it then

factors into the product of the single-particle number distributions, ρ1(y1)ρ1(y2). In

that case the R2 correlation function becomes identically zero. This is the most com-

mon construction for the R2 correlation function. However, different normalizations

have historically been used for the R2 correlation function, depending on what nor-

malization is adopted for the particle distributions themselves. As stated previously

we normalize the single-particle distribution to equal the average number of particles

per event: ∫
ρ1(y)dy = 〈n〉 (4.34)

Similarly, the two-particle distribution function is normalized to equal the average

number of particle pairs per event in the ensemble, which is the average of n times

n− 1, since a particle is never paired with itself.

∫
ρ2(y1, y2)dy1dy2 = 〈n(n− 1)〉 (4.35)
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In some analyses correlations are made between sets of particles that are not

identical. In that case, the normalization for the two-particle number distribution

function ρ2 would equal the average of the product of the number of particles in the

first set times the number of particles in the second set, with the average being taken

over the entire ensemble.

∫
ρ2(y1, y2)dy1dy2 = 〈n1n2〉 (4.36)

Our second correlation observable is ∆PT , which measures transverse momentum

correlations, specifically the transverse momentum covariance per correlated pair. We

define

∆PT (y1, y2) =
ρ

∆pT 1∆pT 2
2 (y1, y2)

ρ2(y1, y2)
(4.37)

∆PT is positive when both particles of a pair are more likely to be both higher or

both lower than the average transverse momentum pT , and negative when a high pT

particle is more likely to be accompanied by a particle with pT lower than average.

Our third correlation observable C (RpT
2 ) is a hybrid that combines number and

transverse momentum correlations. The construction procedure follows that of the

two-particle number correlation observable R2, but with number distributions re-

placed by momentum distributions. We begin by constructing a cumulant, a trans-

verse momentum version of C2, call it CpT
2 , that is the correlated momentum pair

distribution minus the uncorrelated momentum pair distribution:

CpT
2 (y1, y2) = ρ

pT 1pT 2
2 (y1, y2)− ρpT 1

1 (y1)ρ
pT 2
1 (y2) (4.38)

As we did to construct R2, we normalize the cumulant by dividing by the uncor-



49

related (number) pair distribution,

RpT
2 (y1, y2) =

CpT
2

ρ1(y1)ρ1(y2)
=
ρ
pT 1pT 2
2 (y1, y2)− ρpT 1

1 (y1)ρ
pT 2
1 (y2)

ρ1(y1)ρ1(y2)
(4.39)

Since ρpT1 (y1)/ρ1(y1) = pT1(y1), this may be rewritten as

RpT
2 (y1, y2) =

ρ
pT 1pT 2
2 (y1, y2)

ρ1(y1)ρ1(y2)
− pT1(y1)pT2(y2) (4.40)

The relation between RpT
2 and R2 may be made explicit if we manipulate the

equation to show the transverse momentum correlations normalized with correlated

number pairs (as in the definition of ∆PT ):

RpT
2 (y1, y2) =

ρ
pT 1pT 2
2 (y1, y2)

ρ2(y1, y2)

ρ2(y1, y2)

ρ1(y1)ρ1(y2)
− pT1(y1)pT2(y2) (4.41)

=
ρ
pT 1pT 2
2 (y1, y2)

ρ2(y1, y2)
(R2(y1, y2) + 1)− pT1(y1)pT2(y2) (4.42)

The above relation is the justification for interpreting RpT
2 as a “transverse mo-

mentum current correlation.” From this point forward we will denote RpT
2 , the “trans-

verse momentum current correlation” observable, by the letter C in agreement with

the notation of Gavin et al. who used C to study viscosity of the strongly coupled

quark-gluon plasma [31].

Change of Independent Variable. In the derivations above, the independent vari-

able was taken for concreteness to be the rapidity y. In the analysis to follow, however,

all three correlation observables have relative pseudorapidity ∆η and relative azimuth

∆φ as independent variables. For brevity, the variables relative pseudorapidity and

relative azimuth are often referred to collectively as relative angle, since φ is a proper

angle and the pseudorapidity y is a hyperbolic function of the angle with respect to
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the z-axis. The observables in the relative angle variables are:

R2 =
ρ2(∆η,∆φ)

ρ1 ∗ ρ1(∆η,∆φ)
− 1 (4.43)

C =
ρ
pT 1pT 2
2 (∆η,∆φ)

ρ1 ∗ ρ1(∆η,∆φ)
− pT1 ∗ pT2(∆η,∆φ) (4.44)

∆PT =
ρ

∆pT 1∆pT 2
2 (∆η,∆φ)

ρ2(∆η,∆φ)
(4.45)

The adjustments necessary to construct R2, ∆PT and C (RpT
2 ) for the variables ∆η

and ∆φ are discussed in the next section.

Normalization by Npart. Both R2 and C (RpT
2 ) have the form of a same-event pair

distribution normalized by a mixed-event pair distribution. Such correlation observ-

ables show a dilution of signal with increasing centrality, since the total number of

same-event pairs has a linear dependence on the average charged particle multiplic-

ity, ρ2 ∼ 〈N〉, while the mixed-event pairs show a quadratic dependence on average

charged particle multiplicity, ρ1 ∗ ρ1 ∼ 〈N2〉. As different centrality percentile bins

have, by construction, different values of 〈N〉, correlation signal strength as a func-

tion of centrality varies accordingly. To offset the dilution caused by multiplicity, for

each centrality one can multiply the correlation observable by the average number of

participants 〈Npart〉 calculated for that bin to create new observables, R2(NP ) and

C(NP ). In the Results section we will show the R2(NP ) and C(NP ) for comparison

with R2 and C.

4.6 Computer Algorithm

We now describe the computer algorithm for the construction of the three corre-

lation observables R2, ∆PT and C as a function of the independent variables ∆η and

∆φ, that is the relative pseudorapidity and relative azimuth. We concentrate on the

R2 correlation function and only at the end will we note the slight modifications to
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the procedure that are needed to construct ∆PT and C. For simplicity, we first con-

struct our observable as if we had a 100 percent efficient, ideal detector. We assume

the ideal detector may detect all particles that are produced in the collisions. Later

when we perform our data analysis we apply corrections to the data that must be

made to compensate for the reality of our detector.

The quantities of interest for our three correlation observables are particle number

and transverse momentum. Each charged particle produced in the collision has a

momentum that is displayed by the radius of the path the particle traces by ionizing

the gas in the uniform axial magnetic field inside the detector. By fitting a curve to

the particle path and tracing backward along the trail of ions, the original angle in η

and φ of the track emerging from the collision may be calculated.

The dataset of our analysis comprises an ensemble of events. Each event is a

Au+Au heavy ion collision. We represent the total number of such events by Nev.

The total number of individual particles produced in event k is represented by nk.

Since we are interested in correlated pairs, we distinguish between “first” and “sec-

ond” particles when forming pairs from the nk particles in event k. In general, the

first and second particles considered belong to (possibly distinct) subsets of the total

number of particles nk produced in the event. The cardinality of the two subsets may

differ, n
(α1)
k 6= n

(α2)
k , as well as the composition. The subsets result from the appli-

cation of selection criteria such as track quality, kinematic and dynamic properties,

charge, particle species, etc. When studying the properties of “bulk” particles, the

two subsets have identical distributions. However, one could also choose for the first

distribution to represent a “trigger” particle chosen from a high-pT range and the

second distribution to represent an “associated” particle of lesser or equal transverse

momentum. In such case the first and second particle are from subsets of the event

with different kinematic properties. An even simpler example of non-identical subsets

is unlike-sign particle pairs.
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The basic structure of the analysis program to scan the data ensemble consists

of three nested loops. The three loops correspond to the three summations that

appear in the definition of the number and transverse momentum pair distributions.

The first, outer loop is taken over the number of events Nev in our ensemble. To

create the sampling distribution corresponding to ρ1, we construct the sample mean

of the number of particles per event as a function of the independent variables (η, φ),

represented by finite bins in a 2-dimensional histogram.

With each iteration over the index k of the outer loop of events, the next innermost

loop with index i completes a loop over the number of first particles n
(α1)
k in the event

that meet the requirements of the set of selection criteria α. At the completion of each

iteration of the i loop the number and transverse momentum pT for each particle are

recorded in “temporary” histograms labeled by charge and binned in pseudorapidity

η and azimuthal angle φ. After reaching the last particle index n
(α1)
k in the event, the

total number of particles and total momentum of the particles recorded for each bin is

added to a two-dimensional event-by-event histogram with the same partition of the

(η, φ) coordinate grid as the temporary histograms. The square of the total number

and total momentum in the event is also recorded in the histogram as “error” to later

calculate the sample variance needed to calculate the error on the sample mean. The

error on the sample mean for each bin, known as the standard deviation of the mean

or σm, is calculated at the conclusion of the outer event loop by dividing the sample

variance s2 by the number of events (Nev) and then taking the square root:

s2 =
1

Nev − 1

Nev∑
k=1

(xk − x)2 (4.46)

=
Nev

Nev − 1
[
Nev∑
k=1

(xk)
2 − (

Nev∑
k=1

xk)
2] (4.47)

σm =

√
s2

Nev

(4.48)
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with xk =
n
(α)
k∑
i=1

nki(y) in our notation.

To calculate the pair distribution ρ2, a second particle loop with index j (third

loop overall) is nested inside the first particle loop. The second particle loop with

index j is completed within every iteration of the particle index i. The second loop

runs over a second subset α2 of particles which, for bulk correlations, will be the same

subset α1 as the first particles. In the bulk particle case, when the two sets of particles

are the same, we omit the particle pair with j equal to i as this pair constitutes a

particle paired with itself rather than a pair of distinct particles.

Note that a pair distribution of identical particles has symmetry with respect to

the origin of the coordinate grid, since every pair appears twice, the second time with

the particle order reversed. Reversing the order of the particles causes a reflection

through the origin as the values of ∆η and ∆φ are multiplied by minus one. When

the first and second subsets of particles are different, however, this symmetry is not

present. Like-sign and unlike-sign correlations are the most common example of

identical and non-identical particle subsets.

In the limit as the number of events goes to infinity, for an ideal detector, there

should be absolute physical symmetry with respect to the origin, with respect to the

∆η-axis, and with respect to the ∆φ-axis. For a finite number of events Nev and for

non-identical particles, this symmetry is only approximate. For identical particles,

however, the symmetry with respect to the origin by construction is exact.

The particle pairs for a representative event may be visualized as an event matrix,

with each of the nk particles in the event appearing as both a row and column index.

In a bulk particle analysis, when the first and second set of particles forming the pairs

are the same, we do not include the self-pairs of particles along the diagonal (i, i) of

the event matrix. When the subsets of first and second particles are disjoint, no pairs

appear on the diagonal of the event matrix since the indices will always be distinct.

We may describe the set of same-event pairs as the direct product of the subset of
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first particles and the subset of second particles, minus the event diagonal in the case

of identical subsets.

Once the end of the nested loops of first and second particles is reached for the

event k, the number of pairs and their product momentum for each bin of the grid in

relative pseudorapidity ∆η and relative azimuth ∆φ are recorded in histograms along

with the squared value which, as stated above, is used to calculate the standard

deviation of the mean for the value of the average number of pairs.

When the outermost event loop reaches the end of the dataset and the full ensem-

ble of events has been scanned, the ρ1 single-particle distribution with its error σm,

and the ρ2 pair distribution with its error are calculated. The next step is to con-

struct the ρ1 ∗ ρ1 product distribution, also called the uncorrelated pair distribution

or mixed-event pair distribution, which is used to create the R2 correlation function

from the C2 cumulant. In a four-dimensional space of η1, η2, φ1, φ2, the product dis-

tribution would simply be the two single-particle distributions ρ1(η1, φ1), ρ1(η2, φ2)

multiplied together binwise. However, our independent variables are relative pseudo-

rapidity ∆η and relative azimuthal angle ∆φ, therefore the quantity we seek needs

to be the convolution of the first single-particle distribution ρ1(η1, φ1) with the sec-

ond single-particle distribution ρ1(η2, φ2). The convolution is achieved by means of

a quadruple loop undertaken after the scan of the event ensemble is completed: two

loops for the variables η and φ, two loops for the first and second particle distribu-

tions. The effect of the convolution is to gather into a single bin in (∆η,∆φ) pairs of

particles which have the same relative η and relative φ though they differ in absolute

η and absolute φ.

The formula for a convolution gives the distribution for the sum of two random

variables in terms of the individual distributions. A similar formula applies to the

difference of two random variables, in which case the convolution is more correctly

called a cross-correlation. The cross-correlation (denoted by ?) is simply a convolution
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(denoted by ∗) with a negative argument. Analytically, some care must be taken with

the variable φ, as the domain of integration is not an interval but a circle. However,

for a real variable η on a finite interval, the cross-correlation of ρ1(η1) and ρ1(η2) to

construct ρ1 ? ρ1(∆η), where ∆η = η2 − η1, is defined as:

ρ
(1)
1 ? ρ

(2)
1 (∆η) = ρ

(1)
1 (−η) ∗ ρ(2)

1 (η) (4.49)

=

∫ ηmax

ηmin

ρ(1)(−η′)ρ(2)(∆η − η′)dη′ (4.50)

=

∫ −ηmin
−ηmax

ρ(1)(η′)ρ(2)(∆η + η′)dη′ (4.51)

=

∫ ηmax

ηmin

ρ(1)(η′)ρ(2)(∆η + η′)dη′ (4.52)

The last equality holds because our histogram is defined for an interval in η that

is symmetric about zero. Going forward we will drop the pedantry and refer to the

product of single-particle distributions simply as the convolution ρ1 ∗ ρ1.

Many analyses would be content to stop at this step in the construction of ρ1 ∗

ρ1. However, to be absolutely correct, a small adjustment must be made since we

are dealing with a finite, sampling distribution rather than a theoretical, analytical

distribution: we wish to exclude those pairs of particles in the convolution which come

from the same event, since these are by definition correlated. Our ρ1 ∗ ρ1 convolution

should contain only mixed-event pairs of particles that are formed with the first and

second particle taken from different events. If our ensemble of events is visualized as

a matrix, the same-event matrices appear as Nev block matrices along with diagonal,

with the kth block having dimension nk × nk.

We omit from the ρ1 ∗ ρ1 convolution those pairs of particles from the same-event

block matrices along the diagonal of the event ensemble matrix, since these block

matrices on the diagonal contain only pairs formed from the same event. Those pairs

of same-event particles that we wish to omit from the ρ1 ∗ ρ1 convolution include
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the pairs that comprise the ρ2 pair distribution, since by construction it contains

all distinct pairs formed in the same event. However, we recall that ρ2 does not

contain same-event particle self-pairs, which should also be excluded from the ρ1 ∗ ρ1

convolution. Therefore the same-event particle pairs in the block matrices along the

ensemble diagonal must be excluded in their entirety in the creation of the ρ1 ∗ ρ1

convolution.

This correction to the ρ1 ∗ ρ1 convolution requires a corresponding slight change

in normalization, because the total number of event-event pairs is no longer (Nev)
2,

since we have omitted Nev events that lay on the diagonal of the event ensemble

matrix. Rather, the normalization factor will be Nev(Nev − 1). The resulting ρ1 ∗ ρ1

convolution represents the number of particle pairs we would find in an event if the

particles were completely uncorrelated. In some analyses, this normalized ρ1 ∗ ρ1

function, the uncorrelated or mixed-event pair distribution, is obtained by a mixing

procedure which takes particles from different events that have similar event param-

eters. The process of re-grouping according to similarity of parameters is known as

disaggregation, which will be discussed when we turn from an ideal detector to a real

one in the next section.

To construct the distributions for the C and ∆PT observables, two modifications

to the above algorithm are needed. First, a separate, preliminary event loop must

be run prior to the main event loop to produce the transverse momentum ensemble

averages per particle. For bulk correlations with α1 = α2 the averages are equal.

pT1(y1) =
ρpT1 (y1)

ρ1(y1)
(4.53)

pT2(y2) =
ρpT1 (y2)

ρ1(y2)
(4.54)

Once the transverse momentum ensemble averages per particle are obtained, they

are used in the main body of the program to construct ρ
∆pT 1∆pT 2
2 , which is needed
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for ∆PT .

Second, when the event loop in the main body completes, the transverse momen-

tum per particle convolution needed for C (RpT
2 ) is calculated:

pT1(y1) ∗ pT2(y2) =
ρ
pT 1
1 (y1) ∗ ρpT 2

1 (y2)

ρ1(y1) ∗ ρ1(y2)
(4.55)

The numerator and denominator are calculated separately and then divided bin-

wise.
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Chapter 5

Data Corrections

5.1 Event Disaggregation

We now describe various post-production programming routines which are neces-

sary to account for the fact that our detector is not ideal. Although the corrections

apply generally to all three correlation observables, our examples will show the R2

correlation function where the effect is most visible. The corrections employed are

mainly of two kinds: corrections with respect to events, and corrections with respect

to particles (tracks). The corrections with respect to events employ the technique

of disaggregation. Disaggregation is a common methodology in statistics that may

be simply characterized as “comparing apples to apples”. However, with apples and

oranges we have the advantage that the set of equivalence classes of fruit is finite;

the set of fruit does not form a continuum. However, when we disaggregate events in

order to compare them, we find that our event parameters vary continuously and to

disaggregate we must make an arbitrary partition to form equivalence classes of our

events. We will then compare events within an equivalence class with themselves.

5.2 Centrality Binning

The key parameter for our analysis is event centrality. The centrality of a colli-

sion is a geometric parameter with a continuous range. We separate our events into

percentiles of centrality based on the multiplicity of particles in the event. (Various
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methods of determination of centrality will be discussed later.) The idea of central-

ity is to show how heavy-ion collisions of the most peripheral kind resemble p + p

collisions, while as the centrality of the collision increases, heavy ion collisions show

characteristics indicative of the formation of a fluidlike medium, the quark-gluon

plasma. The first correction to our R2 correlation function will therefore be to dis-

aggregate events by centrality percentile. For illustrative purposes, throughout the

current section a centrality definition based on the Zero Degree Calorimeter is used

which divides the dataset into five percentiles, 0-5, 5-10, 10-20, and 30-100. Later,

in the analysis proper, results will be presented using a centrality definition based

on recorded primary particle multiplicity in the Time Projection Chamber range of

|η| < 1.0 for ten percentile bins 0-5, 5-10, 10-20, . . . , 70-80, 80-100.

5.3 z-vertex Binning

The next type of disaggregation concerns the fact that our detector has a finite

central axis. The z-vertex of the collision may occur at any point along the axis. The

efficiency of the detector at recording the tracks of the particles produced varies as

the location moves from the center of the cylinder away toward the edge. Figure 5.1

shows the tail of the event distribution recorded for three z-vertex bins of width 2.5

cm separated by a distance of 22.5 cm.

We observe that events with a z-vertex displaced from the center have fewer par-

ticles recorded than those that occur in the center. Such events, even when the geo-

metric impact parameter may be identical, will record different numbers of particles

produced and be assigned to different centralities, causing systematic error.

Additionally, a collision taking place at large positive z produces an asymmetric

distribution of particles shifted toward negative η, while a collision taking place at

large negative z will produce a distribution shifted toward positive η. Figure 5.2

shows the ρ1 distribution function for the 0-5 percent most central events for three
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Figure 5.1: Tail distribution of dNev/dN in three distinct z-vertex bins of width 2.5
cm, separated by 22.5 cm, showing reduced efficiency in peripheral bins.
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z-vertex bins of width 2.0 cm separated by a distance of 28 cm.
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Figure 5.2: Single-particle distribution ρ1(η) in three distinct z-vertex bins of width
2.0 cm, separated by 28 cm, showing shifted efficiency in peripheral bins.

The ρ1 single-particle distributions for the most peripheral of the three z-vertex

bins of collisions are shifted away from the center. As a result, when we form the

ρ1 ∗ ρ1 convolution, particle pairs for large ∆η will be constructed that cannot phys-

ically exist in a single event because the spread in η exceeds the range of acceptance

of the detector. Such pairs introduce undesirable “pseudocorrelations” into our R2

observable. To avoid these pseudocorrelations, we partition the z-axis into bins of

equal width, and calculate ρ1, ρ2, and ρ1 ∗ ρ1 independently for each bin in z. Each

bin in the partition of the z-axis represents an equivalence class of events and the

R2 correlation function is calculated for that bin. The final R2 correlation function

is then taken as the weighted average of the R2 correlation functions calculated in

each separate bin in z, weighted by the number of events occurring in that bin. The
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effect of such z-binning may be clearly seen in Figure 5.3 thru Figure 5.6 which show

plots of R2 before and after z-binning correction. The deficit of correlations, previ-

ously concealed, that appears at ∆η = 0 after correction, as shown in Figure 5.4 and

Figure 5.6, is due to track merging, which will be discussed in the next section.

Figure 5.3: Before z-binning (3-d view): two-particle correlation function R2(∆η,∆φ)
calculated using a single z-vertex bin of width 60.0 cm. Pseudocorrelation artifacts
due to mixing of events occurring at widely separated z-vertices appear near 0 and
at large |∆η|.

Figure 5.3 and Figure 5.5 shows the R2 correlation function calculated for a single

equivalence class comprising the entire z-axis within 30 cm of the origin. There is only

one z-bin, all events (at the given centrality shown) belong to the same equivalence

class. In Figure 5.4 and Figure 5.6, the z-axis has been partitioned into thirty 2-

cm bins. The R2 correlation function is calculated separately for each bin, then the

individual functions are summed weighted by the number of events occurring in each
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Figure 5.4: After z-binning (3-d view): two-particle correlation function R2(∆η,∆φ)
calculated using thirty z-vertex bins of width 2.0 cm each. Pseudocorrelation artifacts
due to mixing of events occurring at widely separated z-vertices are eliminated.
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Figure 5.5: Before z-binning (2-d view): two-particle correlation function R2(∆η,∆φ)
calculated using a single z-vertex bin of width 60.0 cm. Pseudocorrelation artifacts
due to mixing of events occurring at widely separated z-vertices appear near 0 and
at large |∆η|.
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Figure 5.6: After z-binning (2-d view): two-particle correlation function R2(∆η,∆φ)
calculated using thirty z-vertex bins of width 2.0 cm each. Pseudocorrelation artifacts
due to mixing of events occurring at widely separated z-vertices are eliminated.
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z-bin. The same procedure is applied separately to the Full Field dataset and the

Reverse Full Field dataset; the correlation observables for each bin are weighted by

the number of events and re-summed. In this way we correct the R2 correlation

function to eliminate unwanted pseudocorrelations due to variation in the collision

z-vertex.

In order to determine an optimal number of bins to use for the disaggregation of

the z-vertex, we use an iteration procedure. We begin with a single bin over the full

range in z and create the corresponding R2 correlation function. We then double the

number of bins and create the weighted R2 function following the procedure described

above. At each doubling of bin number we take the ratio of the more finely binned

R2 with the previous R2. We stop the process when the number of bins is fine enough

that the magnitude of the ratio becomes sufficiently small. Since the correlated pair

distribution ρ2 does not mix events with different z-vertices, there is no effect if the

z-binning procedure is applied to it. However, the binning procedure may be applied

to the mixed-event, uncorrelated pair distribution, ρ1 ∗ ρ1. Figure 5.7 shows the ratio

of ρ1 ∗ ρ1 to itself for successive doublings of the number of z-bins. For a binsize of 2

cm versus 4 cm the ratio is of order 10−5.

Because the efficiency of the detector varies as the z-vertex of the location of

the collision is displaced from the center of the detector, each event properly sees a

different detector, with a different efficiency. The efficiency is highest for collisions

at the center of the detector and falls off as one moves away from zero in z. If the

centrality of an event is determined by the multiplicity of particles recorded in a range

in η, the multiplicities recorded for events at the periphery of the detector are not

strictly comparable with those from events occurring at the center. Strictly speaking,

every point on the z-axis has its own set of multiplicities corresponding to centrality

percentiles, reflecting the efficiency of the detector at that point. However, if we were

to continue to increase the number of z-vertex bins indefinitely the improvement in
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Figure 5.7: Ratio of the mixed-event distribution ρ1 ∗ ρ1(∆η) to itself for successive
doublings of the number of z-bins.
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R2 would be offset by the decrease in statistics per bin. Higher statistics permit finer

binning. For this analysis, we have selected as optimal a z-bin size of 2.0 cm for the

z-vertex range of |z| < 30 cm used to investigate systematic error and a z-bin size of

2.5 cm for the z-vertex range |z| < 25 cm used for the analysis proper.

5.4 Track Merging

We now turn from the subject of disaggregation of events in our dataset ensemble

to corrections that must be made to tracks within an event. The chief correction of this

kind is for track merging. Track merging results from the fact that our detector, far

from being an ideal detector with infinite spatial resolution, in fact has finite resolution

and cannot resolve two individual tracks that occur within a certain distance of each

other. As a result, the “hit” points of ions from two separate tracks may be recorded

as being from a single track, leading to a deficit of tracks at certain bin combinations

in ∆η, ∆φ which are susceptible to such merging. The areas prone to track merging

differ for different charge combinations of pairs, due to the fact that the curvature

of the tracks has different convexity depending on whether the charge is positive or

negative.

We first discuss the case of track merging that occurs in unlike-sign pairs, as it

is simplest. In unlike-sign track merging, the sign of the charges and thus the sign

of the curvature differs for the two tracks. They cross one another. For merging to

occur, the two tracks must have ∆η equal to zero and ∆φ not equal to zero, as the

tracks cannot be produced at the same angle and still cross. In order for the tracks to

be confused as a single track, their pT , transverse momentum must be similar enough

that the tracks will re-cross, thus appearing to the detector as a single track. For this

merging the pT of the two particles need not be exactly the same, but the greater

the difference in pT , the more likely the detector will be able to resolve them into

distinct tracks due to the difference in curvature. The bins affected by unlike-sign
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track merging are thus the bin with ∆η equal to zero, along with the bins offset to

one side of zero in ∆φ, lasting over an area of four or five bins out of a total of 36.

Figure 5.8 and Figure 5.9 show uncorrected track merging in plots of R+−
2 (∆η,∆φ)

and R−+
2 (∆η,∆φ) respectively. The second plot is a reflection of the first through

the origin.

Figure 5.8: Plot of R+−
2 (∆η,∆φ) with uncorrected track merging at ∆η = 0, in ∆φ

bins offset from zero.

The situation with particles of the same sign is easier to visualize but unfortunately

more difficult to correct by symmetry methods. It begins with the ansatz of two

particles of the same sign, and similar η, φ and pT up to a small quantity ε that

is less than the resolution of the detector. Such a pair may be recorded as a single

merged track in the (0, 0) bin. If we increase ∆η, the particle pair will tend to

unmerge quickly. However, if we increase ∆φ while also decreasing the pT of one of

the particles, we find that the change in curvature compensates for the change in ∆φ,

the tracks will remain close together, and the pair will again be recorded as a merged
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Figure 5.9: Plot of R−+
2 (∆η,∆φ) with uncorrected track merging at ∆η = 0, in ∆φ

bins offset from zero. Plot is a reflection through the origin of R+−
2 (∆η,∆φ) in the

previous figure.
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track. Thus for like-sign track merging, we find that the deficit starts at ∆φ equal to

zero and includes a few bins in ∆φ to one side of zero, depending on the shared sign

of the two tracks, in contrast to unlike-sign merging where the deficit is offset from

zero in ∆φ.

Figure 5.10: Plot of R++
2 (∆η,∆φ) with uncorrected track merging at ∆η = 0, in

∆φ bins both above and below zero. Natural symmetry of the like-sign plot creates
reflection of values through the origin.

In both the unlike- and like-sign cases there is a visible deficit for several contiguous

bins in ∆φ with ∆η equal to zero. The track merging is clearly visible in our R2

correlation function, because as a same-event phenomenon it affects the ρ2 numerator

but is not present in the ρ1∗ρ1 convolution in the denominator. No track merging can

be present in the convolution since it is by construction formed from mixed events.

The correction employed for track merging uses the symmetry of the plots, al-

though rather more effectively in the case of unlike-sign track merging than for like-

sign track merging. In the case of unlike-sign we have by construction that the R2 plot
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of the +/- charge combination is the reflection through the origin of the -/+ charge

combination. Therefore, where one of the two will have a track merging deficit, the

other will be whole. To apply the correction, we simply replace those bins with a track

merging deficit with the bins from the reflected plot. This is equivalent to replacing

the merged bins with the bins in the same plot that are symmetric with respect to the

origin. Figure 5.11 and Figure 5.12 show plots of R+−
2 (∆η,∆φ) and R−+

2 (∆η,∆φ)

respectively, corrected using the reflection technique. The second plot is a reflection

of the first through the origin.

Figure 5.11: Plot of R+−
2 (∆η,∆φ) with track merging at ∆η = 0 corrected using a

reflection technique.

The validity of this procedure, which is almost 100 percent effective in restoring

the affected bins, is allowable given our assumption that the overall properties of

the R2 correlation function, in the limit of infinite events, should be symmetric with

respect to the ∆η and ∆φ axes. We do not expect to see different physics in different

quadrants of the ∆η, ∆φ coordinate grid, and therefore the reflection procedure may
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Figure 5.12: Plot of R−+
2 (∆η,∆φ) with track merging at ∆η = 0 corrected using a

reflection technique. Plot is a reflection through the origin of R+−
2 (∆η,∆φ) in the

previous figure.
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be considered a valid one.

The track merging situation for like-sign plots is complicated by the fact that our

like-sign plots, by construction, have absolute symmetry with respect to the origin.

Any track merging deficit in a given bin on one side of the origin will show the same

deficit in the mirror bin where the particle order is reversed. Therefore we do not

have available, as in unlike-sign merging, an intact part of the plot with which to

replace our affected bins. To remedy this, we must impose an artificial asymmetry

on the like-sign plot. This is done by changing our original computer algorithm to

calculate an asymmetric ρ2. Rather than form all of the like-sign pairs in the event

excluding the self-pairs with i equal to j, we create a ρ2 that takes only the upper

diagonal where j is greater than i. Then we re-label the order of the particles in the

like-sign pair so that the first particle always has the greater transverse momentum.

In our event block matrix, this is equivalent to listing the particles in each event in

order of decreasing momentum and then taking only the pairs of the upper diagonal

where j is greater than i.

The result of the momentum ordering is to create a like-sign plot of R2 that has

half the number of pairs as the symmetric version, but for which the track merging

now appears entirely on one side of the origin. Because of the nature of like-sign track

merging, the bin at the origin always contains a pair deficit. Unfortunately, the pair

deficit at the origin is not correctable by the reflection method because the mirror bin

is antipodal and not useful. A plot of the symmetric like-sign R2 plot showing the

deficit due to track merging above and below zero is shown in Figure 5.13. A plot of

the reduced, asymmetric like-sign R2 plot is shown in Figure 5.14 with track merging

above and including zero, but not below.

Note that in the asymmetric plot of Figure 5.14 the twelve sector boundaries of

the detector are readily apparent, forming a saw-tooth pattern with a period of three

bins over the 36 bins in ∆φ. Because of the strong periodicity of the sector boundaries
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Figure 5.13: Plot of symmetric R++
2 (∆η,∆φ) with uncorrected track merging at

∆η = 0, in ∆φ bins above and below zero. Natural symmetry of the like-sign plot is
due to each particle pair occurring twice, the second time with particle order reversed.
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Figure 5.14: Plot of asymmetric R++
2 (∆η,∆φ) with uncorrected track merging at

∆η = 0, in ∆φ bins above and including zero, but not below. Natural symmetry of
the like-sign plot has been removed by ordering particles within pairs by decreasing
transverse momentum.
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in the asymmetric like-sign plot, we cannot simply replace a bin that shows a deficit

with its mirror value. A more accurate technique, used in this analysis, is to replace

the deficit with the value not from the mirror bin, but from the nearest neighbor

of the mirror bin that has the same value (mod 3) as the original bin. For like-sign

track merging, the mirror bin neighbor is a more accurate replacement for the original

bin. Using the mirror bin neighbor instead of the mirror bin itself takes advantage

of symmetry but also respects the modular systematic error caused by the sector

boundaries of the detector.

To complete the track-corrected like-sign R2 correlation function, after the re-

placement of bins affected by track merging with their mirror bin neighbors, we add

to it a copy of the corrected plot reflected through the origin, thus restoring the ab-

solute symmetry with respect to the origin. A procedure analogous to that used for

R++
2 is used to correct track merging in R−−2 .

Because the reflection method cannot remedy the track merging deficit at zero

that occurs for like-sign plots, a simple expedient is employed in order to obtain a

smooth graph. Namely, the zero bin is set set equal to the average of its neighbors in

∆y. For consistency, this is also done for unlike-sign plots.

While the method of correction for track merging by reflection is somewhat in-

trusive and not completely satisfying, it is likely less intrusive than track merging

methods which use arbitrary pair cuts to the mixed-event denominator. For our pur-

poses of analyzing global properties of the correlation function, the symmetry method

here adopted is sufficient.

5.5 Centrality Definition

We turn now to a discussion of the key feature of the analysis, namely the variation

of the correlation observables with centrality. The most important fact is that collision

centrality is not directly observable. If we consider two nuclei in collision, there will
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Figure 5.15: Plot of symmetric R++
2 (∆η,∆φ) with track merging at ∆η = 0 corrected

using a reflection technique, except for bin at ∆φ = 0. Natural symmetry of the like-
sign plot has been restored by adding together the previous plot plus a copy of itself
reflected through the origin.
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be an overlapping area, and we may define the geometric parameter b as the distance

between the centers of the two nuclei. For perfectly spherical nuclei, the values of b

form a continuous interval ranging from zero for a collision with perfect overlap up

to the diameter of the nucleus species, at which point the two nuclei make contact at

a single point.

To understand the evolution of the collision properties as a function of impact

parameter, we wish to construct an observable measure of centrality that has a strong

correlation to the linear ordering of the impact parameter b. The difficulties in doing

so are immediately seen. For one, our nuclei are not perfectly spherical, thus even for

identical values b the nuclei themselves may have different shapes and the collision

different properties. Second, particle production is not a deterministic process but

rather a quantum mechanical one, and quantum variations will cause fluctuations

in the number of particles produced even for identical initial conditions. Even if

two collisions produced an identical number of particles, all of them recorded by the

detector, there would be a natural variation in the underlying collision parameter

due to both the quantum variation of the process and the nonspherical shape of the

nuclei. Third, using the multiplicity of particles produced as a proxy for impact

parameter, we must recognize that our real detector only records a sample of the

particles produced, rather than recording the full topological cross-section. Thus in

all methods of determining centrality based on multiplicity there will be a sampling

bias due to the choice of the region of the detector in which particles are counted.

The most widely used measure of centrality in the STAR collaboration is the

observable known as Reference Multiplicity (RefMult), which is a quantity derived

from a Monte Carlo simulation based on the Glauber model of particle production in

heavy ion collisions [32]. The number of particles produced in the simulation that fall

within the psueodrapidity range |η| < .5 is declared to be the Reference Multiplicity

and an array of multiplicity breakpoints representing the centrality percentiles is
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obtained by integrating the distribution of simulated data.

An alternative method of determining centrality is to count, not the multiplicity of

particles N which are produced from the participant nucleons of the collision, counted

as Npart, but to measure instead the residue of energy of the spectator nucleons,

or more precisely spectator neutrons, since the spectator protons of the collision

cannot be detected since their charge causes them to be deflected from the beamline.

Spectator neutrons are not deflected and leave energy in the zero-degree calorimeters.

The values of multiplicities used to determine centralities in RefMult are theoret-

ical rather than experimental quantities. However, we may reproduce them experi-

mentally to good accuracy using recorded events, as follows. We record the number

of primary charged particles for each event in our Au+Au dataset that fall within

the range |η| < .5 and then integrate the distribution to determine the breakpoint

multiplicities for the percentile bin ranges 0-5, 5-10, etc.. We do not, however, obtain

the same RefMult breakpoints as were determined theoretically. To reproduce the

RefMult percentiles we must first account for “lost events”. Lost events are events

for which the post-production track reconstruction algorithm could not converge on a

z-vertex for the collision within acceptable bounds, therefore the event is not labeled

as a good event in the dataset. The event is recorded but no vertex is assigned. Lost

events are assumed to be peripheral and the failure of reconstruction due to the lack

of sufficient tracks in the event, on the order of 10 or less. For the Full Field dataset

in Run IV, the proportion of lost events is 8.3 percent of the total and for the Reverse

Full Field dataset the proportion is 7.3 percent of the total.

If we allow for lost events by including multiplicative factors of 1.083 and 1.073

when we integrate the Full Field and Reverse Full Field event distributions respec-

tively, we come very near to the theoretical multiplicity percentiles determined using

the Glauber model. The percentiles and the multiplicity breakpoints for RefMult and

the loss-corrected Full Field and Reverse Full Field recorded multiplicities for Run 4



81

Au+Au 200 Gev collisions are shown in Table 5.1.

Percentile 5 10 20 30 40 50 60 70 80

RefMult 520 441 319 222 150 96 57 31 14
FF, |η| < 0.5 (loss corrected) 518 441 319 225 153 98 59 31 14
RFF, |η| < 0.5 (loss Corrected) 519 442 320 226 154 99 59 32 15

Table 5.1: Comparison of Reference Multiplicity (RefMult) breakpoints with loss-
corrected Full Field and Reverse Full Field recorded |η| < 0.5 multiplicities for STAR
Run IV Au+Au

√
sNN = 200 GeV event centrality.

This procedure suggests a method for determining custom centralities based on

different ranges in η within the acceptance of the TPC. For example, we may count

tracks that fall within |η| < .75, or |η| < 1.0, or even at the limits of the TPC

acceptance, |η| < 1.3. We then integrate the event distribution dNev/dN using the

same Run IV factors of lost events determined above for RefMult. The resulting

multiplicities found from integration are used as the percentile breakpoints, creating

a custom centrality definition based on a given acceptance range in η. Table 5.2

shows multiplicity breakpoints for standard percentile bins obtained for the custom

centrality defined by tracks in the range |η| < 1.0 .

Percentile 5 10 20 30 40 50 60 70 80

FF, |η| < 1.0 (loss corrected) 1028 869 622 436 295 189 112 60 27
RFF, |η| < 1.0 (loss corrected) 1029 870 624 438 297 190 114 61 28

Table 5.2: Breakpoints for loss-corrected Full Field and Reverse Full Field recorded
|η| < 1.0 multiplicities for STAR Run IV Au+Au

√
sNN = 200 GeV event centrality.

The correlation observable calculated using the custom centrality can then be

compared to the one formed using standard RefMult centrality. The comparison

reveals that the appearance of two-particle correlations is highly dependent on the

centrality definition. To analyze this dependence, we begin by looking at examples

of the ρ1 single-particle distribution for different definitions of centrality.
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Figure 5.16 shows the ρ1 distribution for the most central 0-5 percent events for

four different definitions of centrality. So that there is no mixing of z-vertices, the

distributions are all recorded in a single z-vertex bin of width 2.5 cm that surrounds

the mean z-vertex for the event ensemble. Three definitions are based on the TPC

with increasing range in η, and one is based on the ZDC which depends on spectators

rather than participants, and thus has no bias with respect to the number of particles

recorded in the TPC.
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Figure 5.16: dN+/dη, the uncorrected number distribution by pseudorapidity for pos-
itively charged bulk particles for four different centrality definitions. The distributions
are calculated for a single z-vertex bin 2.5 < z < 5.0 cm.

Because of the sampling bias, each of the TPC centrality definitions shows a

surplus of particles with respect to the ZDC centrality. The bias is made more explicit

if we divide the three TPC-based multiplicity distributions by the ZDC distribution,

after normalizing to agree with ZDC in the bin for η = 0, as shown in Figure 5.17.



83

η
-1 -0.5 0 0.5 1

 r
at

io
η

/d+
d

N

0.99

1

1.01

RefMult / ZDC
|<.75 / ZDCη|
|<1.0 / ZDCη|

Figure 5.17: Ratios of three TPC-based dN+/dη distributions in the previous figure
to the ZDC-based distribution, after normalizing to agree with ZDC in the bin for
∆η = 0.
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We see similar behavior at large ∆η for the ρ2 function as was seen for ρ1. Fig-

ure 5.18 shows for ρ2 the ratios of the three TPC-based definitions to the ZDC-based

distribution, after normalizing to agree with ZDC in the bin for ∆η = 0.
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Figure 5.18: Ratios of three TPC-based dN++/dη distributions to the ZDC-based
distribution, after normalizing to agree with ZDC in the bin for ∆η = 0.

The centrality artifacts persist when one forms the ratio ρ2/ρ1 ∗ ρ1 and constructs

R2. In Figure 5.19 and Figure 5.20 we show near-side projections of the R2 correlation

function for the same four centrality definitions for 0-5 percent most central events

and 20-30 percent, respectively. The fluctuation in the R2 correlation function is

greatest for the the centrality definition that is least constrained in η, namely the

RefMult centrality based on multiplicity in the range |η| < .5.

As the η range of the centrality definition is increased to include the full acceptance

of the TPC we see that the artifacts at large ∆η are more controlled and more

resemble those of the ZDC centrality, which unlike the TPC has no sampling bias
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Figure 5.19: Near-side projection of the R2 correlation function for 0-5 percent most
central events, shown for three TPC-based and one ZDC-based centrality definitions,
normalized to RefMult amplitude at ∆η = 0.
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Figure 5.20: Near-side projection of the R2 correlation function for 20-30 percent most
central events, shown for three TPC-based and one ZDC-based centrality definitions,
normalized to RefMult amplitude at ∆η = 0.
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in η. Furthermore, even though the differences in the centrality definitions are most

apparent in the 0-5 percent most events, at the extreme boundary of our centrality

bin range, nevertheless the R2 artifacts persist at 20-30 percent and, indeed, over

every percentile centrality. Since the TPC centrality definition with |η| < 1.0 most

closely resembles that for the TPC-neutral ZDC centrality, we have chosen |η| < 1.0

as the centrality definition for this analysis.

Due to acceptance limitations of the TPC, |η| < 1.0 is the closest we can ap-

proach to the ideal of counting the topological multiplicity of particles produced in

the collision. Unfortunately the ZDC energy does not have a monotonic correlation

with TPC multiplicity so may not be used to construct a full range of centrality

percentiles. However, a hybrid centrality definition using the ZDC detector and the

Central Trigger Barrel is discussed in Appendix B.

Each of the different centrality definitions above, the three TPC centralities based

on ranges in η and the ZDC centrality, represents a different ordering from most

central to most peripheral of the events in the dataset. Even if we were to make the

percentile ranges finer and finer, assuming infinite data so that we would not run short

on statistics, we would find that as the percentile ranges became smaller and smaller,

each of the four centrality definitions would still offer different representations of the

two-particle correlations, since each centrality definition mixes events in its own way.

5.6 Finite Centrality Binning Factor

To motivate the correction for finite centrality binning, we recall that when no

correlations are present in the R2 correlation function, it should vanish. Specifically,

for stochastically independent pair production, the pair distribution ρ2 should factor

into the product of single-particle distributions ρ1 ∗ ρ1, and the ratio of the pair

distribution to the product of single-particle distribtions will equal unity. Let us

assume the pair distribution factors into the product of the first and second particle
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distributions, ρ2 = ρ(1)ρ(2). If we integrate the factored pair distribution weighted

by the centrality density 1/Nev dNev/db, then divide by the product of the weighted

integral of the first particle distribution times the weighted integral of the second

particle distribution, suitably normalized, we find that this ratio, the integral being

taken over a finite interval in centrality, is not equal to one.

〈 ρ(1)(b)ρ(2)(b) 〉
〈 ρ(1)(b) 〉 〈 ρ(2)(b) 〉

=

∫
n

(1)
1 n

(2)
1

1
Nev

dNev
db
db∫

n
(1)
1

1
Nev

dNev
db
db
∫
n

(2)
1

1
Nev

dNev
db
db

(5.1)

where n(1) = dN (1)/db, the number distribution of primary charged particles with

respect to centrality (similarly n(2)).

The quantity may be abbreviated as 〈n(1)n(2)〉/〈n(1)〉〈n(2)〉, calculated over a fixed

range of impact parameter b. The ensemble mean 〈 〉 is taken with respect to dNev/db,

that is the distribution of events with respect to the particular centrality definition

being used (usually charged particle multiplicity). As discussed in the previous sec-

tion, in this analysis the event distribution used is dNev/dN , with N representing the

number of primary charged particles per event with |η| < 1.0. If we calculate the

ratio 〈n(1)n(2)〉/〈n(1)〉〈n(2)〉 for each of the centrality percentile bins in our study, for

the |η| < 1.0 centrality we obtain the values shown in Table 5.3:

Percentile 0 5 10 20 30

FF, |η| < 1.0 (loss corrected) 1.003 1.002 1.009 1.010 1.012
RFF, |η| < 1.0 (loss Corrected) 1.003 1.002 1.008 1.010 1.012

40 50 60 70 80

FF, |η| < 1.0 (loss corrected) 1.016 1.023 1.032 1.052 1.23
RFF, |η| < 1.0 (loss Corrected) 1.016 1.022 1.032 1.050 1.23

Table 5.3: Finite centrality binning correction factors for loss-corrected Full Field
and Reverse Full Field recorded |η| < 1.0 multiplicities for STAR Run IV Au+Au√
sNN = 200 GeV event centrality.

The correction factors thus cover two orders of magnitude. For a given centrality,

the factor is of the same order as the correlation strength. By applying the appropriate
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correction factor for a given centrality to the correlation observables which have the

ρ1 ∗ ρ1 convolution appearing in the denominator, the effect caused by binning into

finite percentage ranges is mitigated. For each centrality bin, the correction removes

a pedestal from the amplitude of the correlations. After the correction, the absolute

level of correlations which had previously been positive definite for every centrality

becomes signed. The plot is not qualitatively altered, but positive and negative

values are now present, signifying the regions of surplus and deficit of same-event

pairs formed in the collision, relative to the random expectation.

Historically, it was early noted that values in the semi-inclusive, fixed multiplicity

two-particle correlation function, denoted R
(n)
2 , are inherently signed. However, when

events with different multiplicity are combined in the inclusive R2 function a pedestal

is added to the correlations so that they become positive. The results from the cluster

model simulation data in Chapter 7 will provide us with further insight into the shape

of the pedestal in R2 that results from combining events with different multiplicity.

From the normalization of the R2 correlation function the following formula should

hold globally:

〈 ρ2(∆η,∆φ)〉
〈 ρ1 ∗ ρ1(∆η,∆φ)〉

=
〈N(N − 1)〉
〈N〉2

(5.2)

= 1− 1

〈N〉
(5.3)

If we integrate the numerator and denominator of the R2 function corrected for

finite centrality binning, we should recover the value of the normalization, namely

−1/〈N〉. The values of −1/〈N〉, based on the dNev/dN distribution for each of

the centrality percentile bins used in the analysis, obtained by integration of the

R++
2 correlation function after correction for finite centrality binning, are shown in

Table 5.4.
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Percentile 0 5 10 20 30

FF, |η| < 1.0 -.0012 -.0014 -.0018 -.0026 -.0037
RFF, |η| < 1.0 -.0012 -.0014 -.0018 -.0026 -.0037

40 50 60 70 80

FF, |η| < 1.0 -.0057 -.0091 -.0160 -.0314 -.0800
RFF, |η| < 1.0 -.0056 -.0090 -.0157 -.0309 -.0776

Table 5.4: Calculated value of −1/〈N〉 for R++
2 correlation function after correction

for finite centrality binning.
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Chapter 6

Plots of the Three Correlation Observables

We now present the plots of the three correlation observables for Run IV Au+Au

√
sNN = 200 GeV data. We define “bulk” two-particle correlations as correlations

between pairs of primary charged particles with pT < 2.0 GeV/c, passing track qual-

ity cuts. For “inclusive” correlations we remove the pT restriction. “Triggered”

correlations are here obtained by taking the difference between inclusive and bulk

correlations. Comparison of bulk and triggered correlations for the three correlation

observables are shown in Appendix C.

Centrality bins are defined using the multiplicity of all charged primary particles

recorded in the region |η| < 1.0. For correlation purposes, particles with |η| > 1.0

or pT < .02 GeV/c are rejected. Correlations are constructed as a weighted average

of Full Field and Reverse Full Field events. Corrections for z-vertex variation, track

merging, and finite centrality binning are made as described in the chapter on data

corrections. Sign combinations are defined as follows: ls “like sign” is the average of

++ and −− correlations, us “unlike sign” is the average of +− and −+ correlations,

cd “charge dependent” is the difference of us minus ls, ci “charge independent” is the

average of us and ls.

We show first the plots with the best statistics, a comparison of the charge in-

dependent bulk correlations for R2, C, ∆PT . We then proceed to each observable

separately, first studying the basic plots ++, +− and −−, followed by the sign com-



92

binations ls, us and cd. All plots have been symmetrized in the independent variables.

Three representative centralities, peripheral, mid-central and most central, are shown.

6.1 Charge Independent Bulk Correlations for R2, C, ∆PT

The key features of the three correlation observables are similar at each centrality.

The amplitude of correlations is greatest for R2, decreases by half in C, and further

decreases by an order of magnitude in ∆PT . All show expected dilution of correlations

from peripheral to central. Peripheral correlations have a prominent near-side peak

centered at (0, 0) and a low ridge on the away side, broad in azimuth, extending to

the limits of acceptance in pseudorapidity. In central correlations the near-side peak

is enveloped by a high ridge, narrow in azimuth, extended in pseudorapidity.

Elliptic flow modulates the plots most prominently in mid-central events, where it

is almost perfectly symmetric in ∆φ, less prominently in central events, and is scarcely

noticeable in peripheral. Peripheral events for all three observables strongly resemble

the 200 GeV p + p plot shown in Figure 3.14. The broadness in pseudorapidity

of the away-side correlations for each observable and centrality reflects momentum

conservation effects. Particles emitted back-to-back enhance correlations at ∆η = 0,

∆η = π but are not constrained in pseudorapidity due to longitudinal boosting when

colliding partons carry different momentum fractions x.

Differences between the observables are also found. The away-side for peripheral

R2 and C has two local minima that persist in mid-central then merge into a saddle

point in central, while the away side of ∆PT has a small maximum that becomes

constant in mid-central and a small minimum in central. The ridge formation in C

as a function of centrality is more convex than in R2 and ∆PT , which are similar.

In C, the ridge and peak begin to combine in mid-central events and actually merge

together in central events. In central C it is not determinable whether the jet has

broadened or the ridge has risen around it. The correlations in the ∆PT plot, because



93

they are constructed from the square of the momentum deviation, that is to say a

quantity that fluctuates around zero, are not as smooth and show larger error than

those of the other two observables.

Overall, the most prominent effects in all plots is the modulation by elliptic flow,

greatest at mid-centrality, the appearance of the near-side ridge at mid-centrality,

and the dominance of the ridge relative to the away side in central events. In the

chapter on simulated data, we will produce a near-side ridge by applying a transverse

boost, as a proxy for radial flow, to a longitudinally boosted cluster decay.

6.2 Charge Dependent R2

Of the four basic sign combinations, ++, +−, −− and −+ the last contains no

independent information since it is a reflection of the +− plot through the origin.

Thus it is sufficient to look for variation within the first three. As seen in Figure 6.2,

the amplitude of the unlike-sign +− plot is more than double that of the ++ and

−− plots. Thus the features of the charge independent ci plot, discussed above,

must be inherited primarily from the +− plot. The two like-sign plots, ++ and −−,

are virtually indistinguishable, in fact a difference plot of ++ and −− reveals only

statistical noise. The plots of ++ and +− are very similar for peripheral events, with

+− showing overall greater amplitude as well as broader features, particularly in the

near-side peak at (0, 0) and the smaller prominence at (0, π). Charge conservation in

addition to momentum conservation is responsible for the enhancement.

Charge conservation in collimated emission is present in all centralities of +−,

with a round near-side peak and a smaller round prominence on the away side. The

dominance of the near-side peak over the smaller prominence on the away side in-

creases with centrality and is likely due to “kinematic focusing”, that is when a

cluster of correlated particles is given a transverse boost by radial flow to form short-

range correlations in azimuth and pseudorapidity. In contrast, the ++ plot, which
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Figure 6.1: Correlation functions Rci
2 (∆η,∆φ) (left), Cci(∆η,∆φ) (center),

∆P ci
T (∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0

GeV/c for three representative collision centralities.
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Figure 6.2: Near- (red) and away-side (blue) projections of the correlation functions
Rci

2 (∆η,∆φ) (left), Cci(∆η,∆φ) (center), ∆P ci(∆η,∆φ) (right), for charged particles
in the ranges |η| < 1.0, 0.2 < pT < 2.0 GeV/c for three representative collision
centralities.
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for peripheral events is generally similar to +− but with diminished amplitude, as

centrality increases we see the local maxima of correlations about (0, 0) and (0, π)

disappear completely; that is, at short range in pseudorapidity there is evidently an

anti-correlation of like-sign particles on both the near- and away-side in the most

central events. Overall, the presence of charge conservation in the +− plot provides

smoother correlations compared to ++.
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2 (∆η,∆φ) (center),
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The plots of like-sign ls and unlike-sign us show with better statistics the features

of the ++ and +− plots. As remarked earlier, the presence of charge conservation

in addition to momentum conservation in the unlike-sign plot provides an overall

surplus of correlations relative to like-sign. The charge dependent cd plot gives the

location of the surplus; it is primarily on the near side in peripheral events, and

becomes exclusively so in central, to the extent that the away-side is virtually flat.

Evidently charge conservation provides no added probability of penetrating the fluid

medium that is created as the centrality of the collision increases. The presence of a

“caldera” in peripheral cd shows where the narrower near-side like-sign peak has been

subtracted, while the remnant peak in the most central cd is a consequence of the

disappearance, already noted, of short-range correlations on the near side in central

same-sign events, leaving the unlike-sign peak alone to remain in central cd.
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Figure 6.5: Correlation functions Rls
2 (∆η,∆φ) (left), Rus

2 (∆η,∆φ) (center),
Rcd

2 (∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0
GeV/c for three representative collision centralities.
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6.3 Charge Dependent C

In the section on the construction of the three correlation observables it was noted

that C has the form of a cumulant for transverse momentum that is normalized by

the uncorrelated pair distribution. As such it is a version of R2 constructed to show

transverse momentum current. The relation to R2 may be made explicit:

C = RpT
2 (∆η,∆φ) =

CpT
2

ρ1 ∗ ρ1(∆η,∆φ)
(6.1)

=
ρ
pT 1pT 2
2 (∆η,∆φ)− ρpT 1

1 ∗ ρpT 2
1 (∆η,∆φ)

ρ1 ∗ ρ1(∆η,∆φ)
(6.2)

=
ρ
pT 1pT 2
2 (∆η,∆φ)

ρ1 ∗ ρ1(∆η,∆φ)
− pT1 ∗ pT2(∆η,∆φ) (6.3)

=
ρ
pT 1pT 2
2 (∆η,∆φ)

ρ2(∆η,∆φ)

ρ2(∆η,∆φ)

ρ1 ∗ ρ1(∆η,∆φ)
− pT1 ∗ pT2(∆η,∆φ) (6.4)

=
ρ
pT 1pT 2
2 (∆η,∆φ)

ρ2(∆η,∆φ)
(R2(∆η,∆φ) + 1)− pT1 ∗ pT2(∆η,∆φ) (6.5)

Since R2, or rather R2 normalized to unity instead of zero, appears as a factor in

C, we may expect that the plots of C will inherit from the plots of R2 in key ways,

and indeed the features are in general quite similar. There are differences, but subtle

ones. Unlike R2 which has signed correlations, C is positive due to the momentum

entering quadratically. For like-sign plots, it is clear in the ∆η projections that the

difference in the amplitude of correlations for the near and away-side at all centralities

is much more pronounced for C than for R2. For like-sign plots the local maximum at

(0, π) on the away side is slightly less convex for C than for R2. Regarding unlike-sign

plots, other than the different range of values for R2 and C, the shapes are similar

other than a slight broadening of the near-side peak of C in the most central events.
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Figure 6.7: Correlation functions C++(∆η,∆φ) (left), C+−(∆η,∆φ) (center),
C−−(∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0
GeV/c for three representative collision centralities.
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Figure 6.8: Near- (red) and away-side (blue) projections of the correlation functions
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Figure 6.9: Correlation functions C ls(∆η,∆φ) (left), Cus(∆η,∆φ) (center),
Ccd(∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0
GeV/c for three representative collision centralities.



105

η∆
-2 -1 0 1 2

0.0002

0.0023

0.0044

0.0065

0.0086

C(ls), 70-80%C(ls), 70-80%

η∆
-2 -1 0 1 2

0.002

0.0025

0.003

C(ls), 30-40%C(ls), 30-40%

η∆
-2 -1 0 1 2

0.0004

0.0006

0.0008

0.001

C(ls), 00-05%C(ls), 00-05%

η∆
-2 -1 0 1 2

0.01

0.02

C(us), 70-80%C(us), 70-80%

η∆
-2 -1 0 1 2

0.002

0.003

0.004

0.005

C(us), 30-40%C(us), 30-40%

η∆
-2 -1 0 1 2

0.0005

0.001

C(us), 00-05%C(us), 00-05%

η∆
-2 -1 0 1 2

0

0.005

0.01

C(cd), 70-80%C(cd), 70-80%

η∆
-2 -1 0 1 2

0

0.001

0.002

C(cd), 30-40%C(cd), 30-40%

η∆
-2 -1 0 1 2

0

0.5

-310×
C(cd), 00-05%C(cd), 00-05%

Figure 6.10: Near- (red) and away-side (blue) projections of the correlation functions
C ls(∆η,∆φ) (left), Cus(∆η,∆φ) (center), Ccd(∆η,∆φ) (right), for charged particles
in the ranges |η| < 1.0, 0.2 < pT < 2.0 GeV/c for three representative collision
centralities.
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6.4 Charge Dependent ∆PT

In contrast to R2 and C (RpT
2 ), ∆PT is normalized by the same-event, correlated

pair distribution rather than the uncorrelated mixed-event distribution. We recall

∆PT is defined by

∆PT (∆η,∆φ) =
ρ

∆pT 1∆pT 2
2 (∆η,∆φ)

ρ2(∆η,∆φ)
(6.6)

where ∆pT i is the deviation of the ith particle from the ensemble mean transverse

momentum per particle.

As stated earlier in the chapter on the three correlation observables, ∆PT is pos-

itive when both particles of a pair are more likely be both higher or both lower than

the average transverse momentum pT , and negative when a high pT particle is more

likely to be accompanied by a particle with pT lower than average. Larger positive

values are obtained when the particles of a pair have transverse momentum that is

nearly equal than when the same momentum is shared unequally.

For all sign combinations, the amplitude of correlations in ∆PT is an order of

magnitude less than for the other two observables R2 and C. The momentum corre-

lations values are everywhere positive, indicating that pairs are more likely to have

momentum above or below the ensemble mean per particle. The unlike-sign plots of

∆PT for all centralities have a near-side prominence centered at (0, 0) that is nearly

conical in peripheral events, but becomes wider in η as centrality increases, with the

appearance of the ridge underneath. The same effect was seen for unlike-sign plots

in the transverse moment current correlations of C.

The like-sign plots ∆PT at all centralities have an unexpected peak centered at

∆η = ∆φ = 0. No charge conservation effect is available in the like-sign plot to enforce

such strong correlations on the near side, as is the case in the unlike-sign plots of all

three observables. The peak may be due to nearly equal momentum in particles

of a cluster that is subject to kinematic focusing. Another hypothesis would be a
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Figure 6.11: Correlation functions ∆P++
T (∆η,∆φ) (left), ∆P+−

T (∆η,∆φ) (center),
∆P−−T (∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0
GeV/c for three representative collision centralities.
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possible enhancement of signal due to the HBT effect. When two identical particles

are bosons, such as the pions which make up the vast majority of particles created

in heavy ion collisions, their correlation signal can be enhanced due to constructive

interference if the four-momentum difference q between them is sufficiently small, an

effect known as HBT after its discoverers Hanbury-Brown and Twiss [33]. Further

study is underway to determine if the narrow like-sign peak in ∆PT may be eliminated

by cutting on pairs of particles with very small q.

As with R2 and C, the charge dependent cd plot of ∆PT is consistent with zero

almost everywhere except in the neighborhood of the origin. However, the cd plot for

∆PT has a much smaller remnant region than the cd plots of R2 and C, indicating

that charge conservation is less of a factor. Also, due to the anomalous narrow peak

in the like-sign plot of ∆PT , the cd values at the origin become pointedly negative,

exactly the reverse of the situation in the cd plots of R2 and C where the unlike-sign

peak due to charge conservation dominates.
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Figure 6.12: Near- (red) and away-side (blue) projections of the correlation functions
∆P++

T (∆η,∆φ) (left), ∆P+−
T (∆η,∆φ) (center), ∆P−−T (∆η,∆φ) (right), for charged

particles in the ranges |η| < 1.0, 0.2 < pT < 2.0 GeV/c for three representative
collision centralities.
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Figure 6.13: Correlation functions ∆P ls
T (∆η,∆φ) (left), ∆P us

T (∆η,∆φ) (center),
∆P cd

T (∆η,∆φ) (right), for charged particles in the ranges |η| < 1.0, 0.2 < pT < 2.0
GeV/c for three representative collision centralities.
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Figure 6.14: Near- (red) and away-side (blue) projections of the correlation functions
∆P ls

T (∆η,∆φ) (left), ∆P us
T (∆η,∆φ) (center), ∆P cd

T (∆η,∆φ) (right), for charged par-
ticles in the ranges |η| < 1.0, 0.2 < pT < 2.0 GeV/c for three representative collision
centralities.
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6.5 Fourier Decomposition of R2, C, ∆PT

Recent research on two-particle correlations has emphasized the role of lumpy

initial conditions causing the appearance of higher harmonics in the Fourier decom-

position of R2 [34]. The v3 amplitude may explain certain features on the away-side

of the most central events, so-called “Mach cone” effects. Presented in Figure 6.15

through Figure 6.19 are graphs of the first six Fourier coefficients for the three ob-

servables R2, C, ∆PT taken from slices in ∆η that are then projected in ∆φ and

fitted.
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Figure 6.15: Fourier coefficients for Rci
2 (∆φ). Slices of R2 in ∆η are projected in ∆φ

and then fitted.

The Fourier coefficients to the observables R2(NP ) and C(NP ) are also shown

immediately following R2 and C. R2(NP ) and C(NP ) are versions of R2 and C where

the cumulants C2 and CpT
2 , respectively, in the numerator have been multiplied by

the average number of nucleon participants, 〈Npart〉, for each centrality. Multiplica-
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Figure 6.16: Fourier coefficients of R2(NP )ci(∆φ). R2 is multiplied by the average
number of participants 〈Npart〉 in each centrality bin. Slices of R2(NP )ci in ∆η are
projected in ∆φ and then fitted.
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tion by 〈Npart〉 removes the effect of dilution of correlations with increasing centrality.

The procedure does not apply to ∆PT since it is normalized by the correlated pair

distribution, whereas R2 and C are normalized using the uncorrelated pair distribu-

tion ρ1 ∗ ρ1. The values of the coefficients and their ordering by centrality are seen to

change after multiplication by 〈Npart〉.

Because the Fourier coefficients {bn} have been extracted from a fit to R2, rather

than the particle spectrum dN/dφ, they are not strictly comparable to the flow pa-

rameters {vn}. However, the behavior of the values of b2 is similar to those of the

elliptic flow parameter v2 shown in Figure 3.10, with flow greatest at mid-centrality.

The comparison with elliptic flow is more clear in the fit to R2(NP ) and C(NP ),

where the values of b2 for all slices are uniformly ordered by centrality.

Overall, with the exception of b0 which is a pedestal, the trend of the coefficients

{bn} for the three observables is quite similar as a function of ∆η.

η∆
0.5 1 1.5 2

0.005

0.01

0.015

0.02

0
C(ci), b

00-05%

10-20%

30-40%

50-60%

70-80%

η∆
0.5 1 1.5 2

-0.004

-0.002

0

0.002

0.004

1
C(ci), b

00-05%

10-20%

30-40%

50-60%

70-80%

η∆
0.5 1 1.5 2

0.002

0.004

0.006

2
C(ci), b

00-05%

10-20%

30-40%

50-60%

70-80%

η∆
0.5 1 1.5 2

0

0.0005

0.001

0.0015

0.002

3
C(ci), b

00-05%

10-20%

30-40%

50-60%

70-80%

η∆
0.5 1 1.5 2

0

0.0005

0.001
4

C(ci), b
00-05%

10-20%

30-40%

50-60%

70-80%

η∆
0.5 1 1.5 2

0

0.5

-310× 5
C(ci), b

00-05%

10-20%

30-40%

50-60%

70-80%

Figure 6.17: Fourier coefficients for Cci(∆φ). Slices of C in ∆η are projected in ∆φ
and then fitted.
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Figure 6.18: Fourier coefficients of C(NP )ci(∆φ). C is multiplied by the average
number of participants 〈Npart〉 in each centrality bin. Slices of C(NP )ci in ∆η are
projected in ∆φ and then fitted.
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Figure 6.19: Fourier coefficients for ∆P ci
T (∆φ). Slices of ∆PT in ∆η are projected in

∆φ and then fitted.
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Chapter 7

Comparison with Simulated Data

To investigate the features of the R2 correlation function on real data, two simu-

lated sets of data were produced, and the R2 correlation function was constructed for

each simulated data set. The first set of simulted data was produced using Relativistic

Quantum Molecular Dynamics (RQMD) simulation. RQMD incorporates quantum

mechanical processes in the production of particles which are then propagated using

hydrodynamic transport subroutines [35]. The second set of data was a simple clus-

ter model in which an invariant mass was decayed in its rest frame and then boosted

first lontigudinally and then transversely. Simulated data for the cluster model was

produced both with and without the additional transverse boost.

For the first set of simulated data, using RQMD, the R2 correlation function shows

all of the expected effects of charge conservation, momentum conservation, cluster

production, but no near-side “ridge” of enhanced correlations in rapidity. For the

second set of simulated data, using a simple cluster model, the correlation function

shows no quantum mechanical effects (no such effects are expected since the particle

production model is classical and deterministic), however, it does show a near-side

“ridge”. The ridge is only present for the variant of the cluster model which contains

a transverse boost in addition to the longitudinal boost.
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7.1 RQMD Plots

We present here the plots from RQMD simulated data. In Figure 7.1 et seq. are

shown the R2 plots for like-sign and unlike-sign particle pairs. The plots shown were

obtained from a dataset of 329,601 RQMD simulated Au+Au
√
sNN = 200 GeV

collision events. The R2 plots compare central collisions with impact parameter 0 <

b < 2 fermi with more peripheral collisions of 4 < b < 6 fermi. Cuts on particles with

pT > 2.0 GeV restricts particle pairs to the domain of bulk multiparticle production.

After the pT cuts, the mean multiplicity of charged and uncharged particles for central

and mid-central collisions was, respectively 〈N+〉 = 1138, 〈N−〉 = 1106 and 〈N+〉 =

730, 〈N−〉 = 710. Though neutral particles were created in the simulation, they are

omitted from the RQMD plots to facilitate comparison with plots from data.

Figure 7.1: R++
2 for central (0 < b < 2) Au+Au 200 GeV RQMD events.

For all RQMD plots the correlations are rather narrow in ∆η relative to the

available phase space. The axis of correlations is predominantly in the ∆φ direction.

For all plots the away side shows the correlations expected from global conservation of

momentum, but they are no broader than on the near side. For the unlike-sign plots,

enhanced correlations from charge conservation in back-to-back particle production
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Figure 7.2: R+−
2 for central (0 < b < 2) Au+Au 200 GeV RQMD events.

Figure 7.3: R++
2 for mid-central (4 < b < 6) Au+Au 200 GeV RQMD events.
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Figure 7.4: R+−
2 for mid-central (4 < b < 6) Au+Au 200 GeV RQMD events.

are also present on the away side. For both central (0 < b < 2) and more peripheral

collisions (4 < b < 6), the unlike-sign R+− plots show strongly enhanced short-

range positive correlations in the neighborhood of (∆y,∆φ) = (0, 0) (Figure 7.2

and Figure 7.4). Such correlations are expected due to charge conservation within

produced clusters. As expected, the like-sign R2 plots lack the enhanced correlations

in the neighborhood of the origin due to charge conservation seen in the unlike-sign

plots. Looking for cos(2∆φ) modulation as evidence of elliptic flow, none is seen in

the RQMD plots.

In short we find that many key features of the R2 correlation function apparent

in plots from Run IV data, such as a narrow peak around (0, 0) in more peripheral

events, the formation of the ridge at mid-centrality and the presence of elliptic flow

at mid-centrality, are not reproduced by RQMD simulations.

7.2 Cluster Model

We turn now to the simple deterministic cluster model. As an event generator,

we consider the simple cluster model as a cartoon or caricature of reality made with
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as few brushstrokes as possible, yet each brushstroke in the model adds a crucial

element present in the plots of real data. Though the model is quite basic, it succeeds

in reproducing key features of hadronic collisions. Throughout, we will show the R2

correlation function in two plots, using the decomposition R2 = RS + RL described

earlier, as it provides insight into the origins of the correlations.

The parameters of the model are as follows: a cluster, that is an invariant mass

in the range 2 < meff < 4 GeV with mean 〈meff〉 = 3 GeV, decays in its rest frame

into a random number of particles between 2 and 5 each with pion mass 140 MeV,

with Poisson distribution. The simulated decay into particles is accomplished using

the TGenPhaseSpace class of ROOT software. The decay process conserves energy

and momentum. The invariant mass is not boosted. In each collision, a single cluster

forms and decays. The plots of RS and RL for this simulation, labeled p+ p (1a), are

shown in Figure 7.5.
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Figure 7.5: RS, RL for simulated p+ p with no boosts (model 1a).

This is the first, broad stroke, and the portrait is very crude. At ∆φ equal to

π there is a binning anomaly attributable to the n equals 2 decay mode, which is a

back-to-back decay into two collinear particles. For such decays, the ∆η bin cannot
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vary in integer increments, but must change by an even number of bins. The reader

is invited to make a mental correction at ∆φ = π so that each bin is filled, but at

half the amplitude shown. As TGenPhaseSpace conserves energy and momentum, so

they are conserved in this plot as well.

The next brushstroke in our cartoon is to add a longitudinal boost to the invariant

mass prior to its decay. The boost in rapidity, sampled from a uniform distribution

on the interval (−3, 3), is intended as a proxy for the disparity in the fraction x of

longitudinal momentum carried by the colliding partons in a nucleon-nucleon collision.

The plots of RS and RL for this simulation, labeled p+p (1b) are shown in Figure 7.6.
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Figure 7.6: RS, RL for simulated p + p. A single cluster decays per event, with
longitudinal boost (model 1b).

The binning anomaly at ∆φ equal to π is now resolved, and the R2 plot has become

somewhat more realistic, beginning to resemble an R2 plot for p + p collisions using

real data. We now increase the number of clusters, from a single cluster per event to

a Poisson distribution with a mean of six. We observe the effect of the increase in

clusters on RS and RL respectively in Figure 7.7. This is model p+ p (2).

As expected from simple superposition, increasing the number of clusters per event

by a factor of six has diluted the intrinsic correlations RS by the same factor. The
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Figure 7.7: RS, RL for simulated p+p. Six clusters decay per event, each with distinct
longitudinal boost (model 2).

multiplicity correlations RL have the same shape that is seen when we subtract the

Au+Au R2 plots for two different multiplicity centralities |η| < 0.5 and |η| < 1.3,

as shown in Figure 7.8. (In this example the plots were multiplied by the average

number of participants in each centrality bin, 〈Npart〉, prior to subtraction.) We infer

that the different defintions of centrality affect RL, but not RS, since RS disappears

for all centrality bins when the two definitions are subtracted.

We add another brushstroke. An examination of the pT plot at left in Figure 7.9

shows a sharp, unphysical cutoff. To achieve a more realistic pT distribution, a small

transverse “thermal” motion is applied to each invariant mass, before applying the

longitudinal boost.

The pT distribution now takes on a more realistic exponential shape, as seen in

Figure 7.9 at right. This is p+ p model (3). A comparison of the RS plots before and

after the addition of thermal motion is shown in Figure 7.10.

Using the simulated data from the “thermal” p+ p simulation (model 3), we now

construct R2 according to the same formula used for the PHOBOS R2 observable

in Figure 3.14, which we have labeled R2[NP ]. R2[NP ] is a weighted average over
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Figure 7.8: Difference plot that results from subtraction of Au+Au R2(∆η,∆φ) plots
using two different multiplicity centralities, |η| < 0.5 and |η| < 1.3. Note similarity
to RL plots in cluster model simulated data.
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Figure 7.9: Change in pT distribution after addition of thermal motion to each cluster.
Model p+ p (2) (left), model p+ p (3) (right). See text for details.
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Figure 7.10: RS for simulated p+ p. Change in RS after addition of thermal motion
to each cluster. Model p+ p (2) (left), model p+ p (3) (right). See text for details.
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multiplicity that uses distribution functions normalized to unity. (Note: R2[NP ]

differs from R2(NP ) in the section on Fourier coefficients). The formula for R2[NP ]

is given by:

R2[NP ] =

〈
(n− 1)

(
ρ(n)

n(n− 1)

〈n〉2

ρ1 ∗ ρ1

− 1

)〉
(7.1)

As shown in Figure 7.11, the R2[NP ] plot using simulated p+ p model (3) repro-

duces well the key features of the published PHOBOS p+ p correlation plot based on

real data. This remarkable result has been obtained with only the simplest assump-

tions, that of cluster production of particles, absence of correlation between clusters,

isotropic rest frame decay, and a modest accommodation of quantum physics by the

addition of the thermal motion.

Figure 7.11: Comparison of PHOBOS R2 for 200 GeV p+p collisions with “thermal”
p+ p simulation (model 3).

Our last brushstroke adds a transverse boost. To recap: we have an average of six

clusters per event, each cluster is given a random transverse thermal motion, followed

by a random longitudinal boost in rapidity, then all six clusters are given either

an individual or a collective transverse boost according to a linear distribution. The

transverse boost is intended to model radial flow, and the linear distribution supposes
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the flow is proportional to the transverse radial distance from a hypothetical collision

center. The plots for individual (model 4a) and collective (model 4b) transverse

boosts are shown in Figure 7.12.

η∆
-4 -3 -2 -1 0 1 2 3 4

φ∆

-1
0

1
2

3
4

-0.2
-0.15

-0.1
-0.05

0
0.05

0.1
0.15

-0.15

-0.1

-0.05

0

0.05

0.1

, n = 02-84
1

ρ*
1

ρ>/(n)
2 = <CSR , n = 02-84

1
ρ*

1
ρ>/(n)

2 = <CSR

η∆
-4 -3 -2 -1 0 1 2 3 4

φ∆

-1
0

1
2

3
4

-0.4

-0.2

0

0.2

0.4

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
, n = 02-83

1
ρ*

1
ρ>/(n)

2 = <CSR , n = 02-83
1

ρ*
1

ρ>/(n)
2 = <CSR

Figure 7.12: RS plots for individual (model 4a) and collective (model 4b) transverse
boosts.

The effect of giving each individual cluster a transverse boost is to produce an

away-side dip at ∆φ ∼ π. The effect of giving all clusters an identical transverse

boost is to produce a near-side ridge of enhanced correlations in ∆η.

One would infer from the dramatic effect of the transverse boost to produce a ridge

in our simple model (4b) that the observed difference between the R2 correlation

plots of p + p and heavy ion collisions, or between peripheral and central Au+Au

collisions, is likewise due to the addition of radial boost. Our cluster model result

is thus consistent with the interpretation of ridge formation as a consequence of the

appearance, once a threshold energy density has been achieved, of radial flow due to

the creation of a fluid-like state of matter.
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Figure 7.13: Comparison of triggered ridge at STAR with p + p simulation with
longitudinal and collective transverse boost (model 4b).
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Chapter 8

Summary

We have presented three bulk correlation observables involving number and trans-

verse momentum denoted R2, C, and ∆PT as a function of centrality and charge com-

bination. The analysis is based on nearly 14 million STAR Run IV Au+Au collisions

at
√
sNN = 200 GeV beam energy. Data corrections were made to remove artifacts

due to centrality definition, detector effects, collision z vertex variation, and finite

centrality binning.

Plots of the three observables differ quantitatively, with R2 having greatest am-

plitude and ∆PT the least, but all show a ridge in central and mid-central collisions.

Modulation by elliptic flow is the dominant effect in mid-central collisions, with pro-

nounced cos(2∆φ) variation in all three observables.

Like-sign and unlike-sign correlations show similar evolution with centrality, with

unlike-sign correlations having additionally a robust near-side peak around the origin

that is attributable to charge conservation. However, the effect of charge conservation

is seen to be local. Accordingly, charge dependent plots formed from the difference of

unlike- and like-sign plots are statistically zero except at the origin, where the robust

unlike-sign peak survives.

The three observables exhibit somewhat different behavior about the origin in

(∆η,∆φ) space, where the combined effects of resonance decays, charge conservation,

Hanbury-Brown/Twiss quantum interference and uncorrected track merging compli-
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cate interpretation. A narrow peak at the origin in the like-sign plot of ∆PT , not

found in R2 or C, is likely attributable to HBT enhancement.

We have shown that simple kinematic cluster models reproduce well the qualitative

features of two-particle correlations in p + p and Au+Au data. Simulated particle

production using decay of an invariant mass “cluster” that is longitudinally boosted

creates Gaussian correlations in ∆η that are similar to p + p data correlation plots.

Adding a radial tranverse boost collectively to several clusters at once produces an

extended Gaussian ridge in ∆η that is similar to the “ridge” seen in Au+Au data

correlation plots. The comparison with p + p and Au+Au data is remarkable given

that there are no QCD effects in the cluster model, only kinematic effects are used.

In the children’s story Pinocchio we are told that “Lies are of two kinds: there are

lies that have short legs, and lies that have a long nose.” If the converse statement

applies to Truth, then may it be said that we have tried in this work to produce

results with long legs, not to shorten any noses.
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Chapter 9

Appendices

9.1 Appendix A. Kinematic Variables

Kinematic variables commonly used in laboratory analysis of multiparticle pro-

duction [7] are transverse momentum pT , transverse mass mT and rapidity y. With

angle θ taken with respect to the beam axis and c=1 we have:

pT = |p| sin θ (9.1)

mT ≡
√
m2 + p2

T (9.2)

Transverse mass amounts to a repartition of the energy-momentum relation in terms

of more convenient observables:

m2
T + p2

L = m2 + p2
T + p2

L = E2 (9.3)

Rapidity is a logarithmic re-scaling of the longitudinal velocity βL = pL/E:

y ≡ tanh−1
(pL
E

)
=

1

2
log

E + pL
E − pL

=
1

2
log

1 + βL
1− βL

≈ βL (βL � 1) (9.4)

Rapidity has a simple transformation property under a Lorentz boost yβ: y′ =

y+yβ. Then dy′ = dy, consequently distributions with respect to rapidity are Lorentz
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invariant. Substituting p for E one obtains the pseudorapidity η:

η ≡ tanh−1(pL/p) = tanh−1(cos θ) = − log(tan(θ/2)) (9.5)

For m2�E2 pseudorapidity is an excellent approximation to the rapidity, and has

the advantage of depending on a simple geometric observable.

The key quantity of interest in the study of inclusive distributions of the form

A + B−→C + X, with projectile A a hadron such as proton, pion or kaon and B

a fixed proton target, is the Lorentz invariant differential cross-section. Writing the

kinematic dependences explicitly gives:

EC
σtot(sAB)

dσ(pC , sAB)

d3pC
(9.6)

The total cross-section σtot is related to the elastic scattering amplitude fAB−→AB

via the optical theorem:

σtot = 4π2ImfAB−→AB |Q2=0 (9.7)

The desired normalized distribution function is then obtained by dividing by the

total cross-section:

ρ(p) ≡ E

σtot

dσ

d3p
(9.8)

In 1969 R.P. Feynman proposed a “scaling hypothesis”: with increasing beam en-

ergy, production cross-sections should depend only on the produced particle’s fraction

of the projectile longitudinal momentum, rather than directly on beam energy [36].

One commonly finds in the literature the Feynman scaling variable xF :

x ≡ pCML
pCMmax

≈2pCML√
s

(9.9)
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Depending on the kinematic variables used for the momentum space volume ele-

ment, the differential cross-section may take many equivalent forms:

E
dσ

d3p
=
E

π

d2σ

dpLdp2
T

=
1

π

d2σ

dydp2
T

=
ECM
πpCM

d2σ

dxdp2
T

(9.10)

The one- and two-particle rapidity densities may be defined analytically in terms

of the differential cross-section:

ρ1(y) =
dN

dy
=

1

σ

∫
dσ

dp2
Tdy

dp2
T (9.11)

ρ2(y1, y2) =
d2Npair

dy1dy2

=
1

σ

∫
dσ

dp2
T1
dy1

dσ

dp2
T2
dy2

dpT1dp
2
T2

(9.12)

Azimuthal densities are defined similarly. Due to detector constraints, the exper-

imentalist works not with the differential cross-section (E/σ)dσ/d3p but rather with

the charged particle multipicity distribution d3N/d3p, with N being the number of

charged particles. In practice the most commonly encountered global observable is

the charged particle pseudorapidity distribution dN/dη acting as a proxy for dN/dy.
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9.2 Appendix B. The R2 bulk correlation function with a hybrid centrality

In this appendix we present the R2 correlation function using a hybrid centrality

based on both the Zero-Degree Calorimeter (ZDC) and the Central Trigger Barrel

(CTB) detectors. A histogram of the number of Reverse Full Field events using the

ZDC/CTB is shown below.

Figure 9.1: d2Nev/d(ctb)d(zdc)), Reverse Full Field

It may be seen that there is not a monotonic correlation between energy deposited

in the ZDC and energy recorded by the CTB. Rather, the correlation changes sign

from the most peripheral events, where CTB deposition is small and the correlation

with ZDC is positive, to the most central events at the right of the plot, where the

correlation between CTB and ZDC becomes negative. This degeneracy prevents us

from using the ZDC alone as a measure of centrality over a full range of percentiles.

For the most central events where the correlation is weakly negative, we may
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integrate out the Central Trigger Barrel data, and the remaining ZDC dependence

can then be integrated to form the centrality percentile ranges for 0-5 percent most

central, 5-10 percent, 10-20 percent, but no further. (This procedure was followed in

the chapter on Data Corrections to create a ZDC centrality limited to the most central

events.) However, we cannot extend this procedure beyond the point of the graph

where the sign of the correlation changes since, as the slope is zero, there is effectively

no correlation between the ZDC and CTB in that region. Alternatively we might use

the same procedure but begin at the other end of the plot, calculating percentiles for

the most peripheral centralities where the correlation is strongly positive. However,

we cannot continue the procedure beyond the mid-central percentiles; the degeneracy

of the plot is fundamental, and we cannot extract a one-parameter set of centrality

percentiles based on the ZDC alone. However, we can employ a ruse that utilizes the

ZDC and CTB together to establish a complete set of centrality percentiles in the

following way.

We choose a point on the CTB axis (for convenience we choose the mean value

7410 of the CTB recorded energy) and from that point we extend a ray at a fixed

angle to the CTB axis that crosses the band of ZDC/CTB data points. When a

radius is drawn in this way, from a midway point on the CTB axis, it crosses the two

dimensional band of the histogram nearly orthogonal to the contour path that follows

the maxima of the ZDC/CTB distribution. Thus for any fixed angle, the width of the

distribution of ZDC/CTB points is minimized because the subtending radius crosses

the maximum contour approximately parallel to the gradient, and perpendicular to

the level contour of the maximum.

Those points along the radial segment for fixed values of the angle can be taken

together to form a single centrality. As we vary the angle from 0 to 180 degrees the

entire two-dimensional distribution is scanned from most central to most peripheral.

If we take the cosine of the angle and plot the distribution, we obtain the plot of
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dNev/d(cz) shown in Figure 9.2.
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Figure 9.2: dNev/d(cz), Reverse Full Field

If we now integrate the dNev/d(cz) plot from most central to peripheral, we define

a hybrid centrality based on information from both the ZDC and the CTB that

may be used as a centrality definition for the R2 correlation function. The plots

and projections for R2 sign combinations ls, us, ci, and cd are shown in Figure 9.2

through Figure 9.2. The same data corrections are applied as was done for the

|η| < 1.0 multiplicity centrality definition used for R2, C and ∆PT .

The purpose of showing R2 for this hybrid centrality is to make the point that

every centrality definition is a different ordering of the events of the data ensemble.

The most central and mid-central events of our hybrid centrality closely resemble

those of the |η| < 1.0 multiplicity centrality used in our analysis. However, upon

reaching the peripheral events, something new is seen. No plot published to date of
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peripheral collisions for Au+Au
√
s = 200 GeV RHIC collisions more resembles a

p+ p plot than do the ci plots for 70-80 percent centrality shown in Figure 9.2.

The plots for 80-100 percent centrality are anomalous, resembling a simple same-

event pair distribution as seen in ρ2.
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2 (∆η,∆φ)
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9.3 Appendix C. Comparison of bulk and triggered correlations for R2, C, ∆PT

Triggered correlations are obtained by subtracting the bulk correlation function

for particles in the range 0.2 < pT 1, pT 2 < 2.0 GeV/c from the inclusive correlation

function which has no upper pT limit.

Some immediate observations:

• In R2 and C the amplitude of the triggered correlations is an order of magnitude

lower than for bulk, however in ∆PT the amplitude of correlations is nearly

equal.

• For all three observables, the charge-dependent cd plot has a narrower peak in

triggered than bulk correlations, likely due to greater collimation at high pT .

• With the exception of amplitude, C changes very little from bulk to triggered

correlations.

• The unexpected narrow near-side peak noted in like-sign ∆PT bulk correlations

is not present in the triggered correlation, as a result the charge dependent cd

plot for triggered correlations is no longer inverted at (0,0), and thus closely

resembles the cd plots of R2 and C.
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Figure 9.7: Bulk (left) and triggered (right) correlation functions Rci
2 (∆η,∆φ), for

three representative collision centralities.
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Figure 9.8: Bulk (left) and triggered (right) correlation functions Rls
2 (∆η,∆φ), for

three representative collision centralities.
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Figure 9.9: Bulk (left) and triggered (right) correlation functions Rus
2 (∆η,∆φ), for

three representative collision centralities.
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Figure 9.10: Bulk (left) and triggered (right) correlation functions Rcd
2 (∆η,∆φ), for

three representative collision centralities.
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Figure 9.11: Bulk (left) and triggered (right) correlation functions Cci(∆η,∆φ), for
three representative collision centralities.
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Figure 9.12: Bulk (left) and triggered (right) correlation functions C ls(∆η,∆φ), for
three representative collision centralities.
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Figure 9.13: Bulk (left) and triggered (right) correlation functions Cus(∆η,∆φ), for
three representative collision centralities.
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Figure 9.14: Bulk (left) and triggered (right) correlation functions Ccd(∆η,∆φ), for
three representative collision centralities.
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Figure 9.15: Bulk (left) and triggered (right) correlation functions ∆PT
ci(∆η,∆φ),

for three representative collision centralities.
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Figure 9.16: Bulk (left) and triggered (right) correlation functions ∆PT
ls(∆η,∆φ),

for three representative collision centralities.
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Figure 9.17: Bulk (left) and triggered (right) correlation functions ∆PT
us(∆η,∆φ),

for three representative collision centralities.
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Figure 9.18: Bulk (left) and triggered (right) correlation functions ∆PT
cd(∆η,∆φ),

for three representative collision centralities.
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Figure 10.1: ρ+
1 (η, φ)



157

50

100

150

200

250

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 00-05%
1

ρ*
1

ρ (++), 00-05%
1

ρ*
1

ρ

20

40

60

80

100

120

140

160

180

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 05-10%
1

ρ*
1

ρ (++), 05-10%
1

ρ*
1

ρ

20

40

60

80

100

120

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 10-20%
1

ρ*
1

ρ (++), 10-20%
1

ρ*
1

ρ

10

20

30

40

50

60

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 20-30%
1

ρ*
1

ρ (++), 20-30%
1

ρ*
1

ρ

5

10

15

20

25

30

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 30-40%
1

ρ*
1

ρ (++), 30-40%
1

ρ*
1

ρ

2

4

6

8

10

12

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 40-50%
1

ρ*
1

ρ (++), 40-50%
1

ρ*
1

ρ

1

2

3

4

5

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 50-60%
1

ρ*
1

ρ (++), 50-60%
1

ρ*
1

ρ

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 60-70%
1

ρ*
1

ρ (++), 60-70%
1

ρ*
1

ρ

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 70-80%
1

ρ*
1

ρ (++), 70-80%
1

ρ*
1

ρ

0.01

0.02

0.03

0.04

0.05

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 80-100%
1

ρ*
1

ρ (++), 80-100%
1

ρ*
1

ρ

Figure 10.2: ρ+
1 ∗ ρ+

1 (∆η,∆φ)



158

0.55

0.6

0.65

0.7

0.75

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 00-05%
T

p (+), 00-05%
T

p

0.55

0.6

0.65

0.7

0.75

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 05-10%
T

p (+), 05-10%
T

p

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 10-20%
T

p (+), 10-20%
T

p

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 20-30%
T

p (+), 20-30%
T

p

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 30-40%
T

p (+), 30-40%
T

p

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 40-50%
T

p (+), 40-50%
T

p

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 50-60%
T

p (+), 50-60%
T

p

0.54

0.56

0.58

0.6

0.62

0.64

0.66

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 60-70%
T

p (+), 60-70%
T

p

0.52

0.54

0.56

0.58

0.6

0.62

0.64

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 70-80%
T

p (+), 70-80%
T

p

0.5

0.52

0.54

0.56

0.58

0.6

0.62

1
η

-1-0.8-0.6-0.4-0.2 0 0.20.40.60.8 1

1φ

-3

-2

-1

0

1

2

3

(+), 80-100%
T

p (+), 80-100%
T

p

Figure 10.3: p+
T (η, φ)



159

0.372

0.374

0.376

0.378

0.38

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 00-05%
T

*p
T

p (++), 00-05%
T

*p
T

p

0.37

0.371

0.372

0.373

0.374

0.375

0.376

0.377

0.378

0.379

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 05-10%
T

*p
T

p (++), 05-10%
T

*p
T

p

0.364

0.365

0.366

0.367

0.368

0.369

0.37

0.371

0.372

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 10-20%
T

*p
T

p (++), 10-20%
T

*p
T

p

0.357

0.358

0.359

0.36

0.361

0.362

0.363

0.364

0.365

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 20-30%
T

*p
T

p (++), 20-30%
T

*p
T

p

0.348

0.349

0.35

0.351

0.352

0.353

0.354

0.355

0.356

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 30-40%
T

*p
T

p (++), 30-40%
T

*p
T

p

0.337

0.338

0.339

0.34

0.341

0.342

0.343

0.344

0.345

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 40-50%
T

*p
T

p (++), 40-50%
T

*p
T

p

0.324

0.325

0.326

0.327

0.328

0.329

0.33

0.331

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 50-60%
T

*p
T

p (++), 50-60%
T

*p
T

p

0.309

0.31

0.311

0.312

0.313

0.314

0.315

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 60-70%
T

*p
T

p (++), 60-70%
T

*p
T

p

0.29

0.291

0.292

0.293

0.294

0.295

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 70-80%
T

*p
T

p (++), 70-80%
T

*p
T

p

0.232

0.2325

0.233

0.2335

0.234

0.2345

0.235

0.2355

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 80-100%
T

*p
T

p (++), 80-100%
T

*p
T

p

Figure 10.4: p+
T ∗ p

+
T (∆η,∆φ)



160

50

100

150

200

250

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 00-05%
2

ρ (++), 00-05%
2

ρ

20

40

60

80

100

120

140

160

180

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 05-10%
2

ρ (++), 05-10%
2

ρ

20

40

60

80

100

120

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 10-20%
2

ρ (++), 10-20%
2

ρ

10

20

30

40

50

60

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 20-30%
2

ρ (++), 20-30%
2

ρ

5

10

15

20

25

30

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 30-40%
2

ρ (++), 30-40%
2

ρ

2

4

6

8

10

12

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 40-50%
2

ρ (++), 40-50%
2

ρ

1

2

3

4

5

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 50-60%
2

ρ (++), 50-60%
2

ρ

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 60-70%
2

ρ (++), 60-70%
2

ρ

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 70-80%
2

ρ (++), 70-80%
2

ρ

0.01

0.02

0.03

0.04

0.05

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

(++), 80-100%
2

ρ (++), 80-100%
2

ρ

Figure 10.5: ρ++
2 (∆η,∆φ)



161

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.002

0

(++), 00-05%2R (++), 00-05%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4
-0.0049

-0.0026

-0.0002

0.0022

0.0046

(++), 05-10%2R (++), 05-10%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.005

0

0.005

(++), 10-20%2R (++), 10-20%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.01

0

0.01

(++), 20-30%2R (++), 20-30%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.02

(++), 30-40%2R (++), 30-40%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.02

0

0.02

(++), 40-50%2R (++), 40-50%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.02

0

0.02

(++), 50-60%2R (++), 50-60%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.02

0

0.02

(++), 60-70%2R (++), 60-70%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4

-0.05

0

(++), 70-80%2R (++), 70-80%2R

η∆
-2

-1
0 1

2
φ∆

0
2

4
-0.15

-0.1

-0.05

0

(++), 80-100%2R (++), 80-100%2R

Figure 10.6: R++
2 (∆η,∆φ) = ρ++

2 (∆η,∆φ)/ρ+
1 ∗ ρ+

1 (∆η,∆φ)− 1



162

20

40

60

80

100

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 00-05%
T

p
T

(p
2

ρ )(++), 00-05%
T

p
T

(p
2

ρ

10

20

30

40

50

60

70

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 05-10%
T

p
T

(p
2

ρ )(++), 05-10%
T

p
T

(p
2

ρ

5

10

15

20

25

30

35

40

45

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 10-20%
T

p
T

(p
2

ρ )(++), 10-20%
T

p
T

(p
2

ρ

2
4
6
8
10
12
14
16
18
20
22

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 20-30%
T

p
T

(p
2

ρ )(++), 20-30%
T

p
T

(p
2

ρ

2

4

6

8

10

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 30-40%
T

p
T

(p
2

ρ )(++), 30-40%
T

p
T

(p
2

ρ

0.5

1

1.5

2

2.5

3

3.5

4

4.5

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 40-50%
T

p
T

(p
2

ρ )(++), 40-50%
T

p
T

(p
2

ρ

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 50-60%
T

p
T

(p
2

ρ )(++), 50-60%
T

p
T

(p
2

ρ

0.1

0.2

0.3

0.4

0.5

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 60-70%
T

p
T

(p
2

ρ )(++), 60-70%
T

p
T

(p
2

ρ

0.02

0.04

0.06

0.08

0.1

0.12

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 70-80%
T

p
T

(p
2

ρ )(++), 70-80%
T

p
T

(p
2

ρ

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 80-100%
T

p
T

(p
2

ρ )(++), 80-100%
T

p
T

(p
2

ρ

Figure 10.7: ρ
p+T p

+
T

2 (∆η,∆φ)



163

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.001

0.002

C(++), 00-05%C(++), 00-05%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.002

C(++), 05-10%C(++), 05-10%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.005

C(++), 10-20%C(++), 10-20%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.005

0.01

C(++), 20-30%C(++), 20-30%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.005

0.01

C(++), 30-40%C(++), 30-40%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.01

C(++), 40-50%C(++), 40-50%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.01

0.02

C(++), 50-60%C(++), 50-60%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.01

0.02

C(++), 60-70%C(++), 60-70%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.01

0.02

C(++), 70-80%C(++), 70-80%

η∆
-2

-1
0 1

2
φ∆

0
2

4

0.02

0.04

0.06

C(++), 80-100%C(++), 80-100%

Figure 10.8: C++(∆η,∆φ) = ρ
p+T p

+
T

2 (∆η,∆φ)/ρ+
1 ∗ ρ+

1 (∆η,∆φ)− p+
T ∗ p

+
T (∆η,∆φ)



164

0

0.02

0.04

0.06

0.08

0.1

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 00-05%
T

p∆
T

p∆(
2

ρ )(++), 00-05%
T

p∆
T

p∆(
2

ρ

0

0.02

0.04

0.06

0.08

0.1

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 05-10%
T

p∆
T

p∆(
2

ρ )(++), 05-10%
T

p∆
T

p∆(
2

ρ

-0.02

0

0.02

0.04

0.06

0.08

0.1

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 10-20%
T

p∆
T

p∆(
2

ρ )(++), 10-20%
T

p∆
T

p∆(
2

ρ

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 20-30%
T

p∆
T

p∆(
2

ρ )(++), 20-30%
T

p∆
T

p∆(
2

ρ

-0.01

0

0.01

0.02

0.03

0.04

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 30-40%
T

p∆
T

p∆(
2

ρ )(++), 30-40%
T

p∆
T

p∆(
2

ρ

0

0.005

0.01

0.015

0.02

0.025

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 40-50%
T

p∆
T

p∆(
2

ρ )(++), 40-50%
T

p∆
T

p∆(
2

ρ

0

0.002

0.004

0.006

0.008

0.01

0.012

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 50-60%
T

p∆
T

p∆(
2

ρ )(++), 50-60%
T

p∆
T

p∆(
2

ρ

0

0.001

0.002

0.003

0.004

0.005

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 60-70%
T

p∆
T

p∆(
2

ρ )(++), 60-70%
T

p∆
T

p∆(
2

ρ

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 70-80%
T

p∆
T

p∆(
2

ρ )(++), 70-80%
T

p∆
T

p∆(
2

ρ

0

0.05

0.1

0.15

0.2

0.25

0.3

-310×

η∆
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

φ
∆

-3

-2

-1

0

1

2

3

)(++), 80-100%
T

p∆
T

p∆(
2

ρ )(++), 80-100%
T

p∆
T

p∆(
2

ρ

Figure 10.9: ρ
∆p+T∆p+T
2 (∆η,∆φ)



165

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.2

0.4

-310×

(++), 00-05%T P∆ (++), 00-05%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.5

-310×

(++), 05-10%T P∆ (++), 05-10%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.5

-310×

(++), 10-20%T P∆ (++), 10-20%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.0005

0.001

(++), 20-30%T P∆ (++), 20-30%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.001

(++), 30-40%T P∆ (++), 30-40%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.001

0.002

(++), 40-50%T P∆ (++), 40-50%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.001

0.002

(++), 50-60%T P∆ (++), 50-60%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.002

(++), 60-70%T P∆ (++), 60-70%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.002

0.004

(++), 70-80%T P∆ (++), 70-80%T P∆

η∆
-2

-1
0 1

2
φ∆

0
2

4

0

0.005

(++), 80-100%T P∆ (++), 80-100%T P∆

Figure 10.10: ∆P++
T = ρ

∆p+T∆p+T
2 (∆η,∆φ)/ρ++

2 (∆η,∆φ)



166

10.2 Bulk Correlations, Full Field +-
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Figure 10.13: p−T (η, φ)
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Figure 10.15: ρ+−
2 (∆η,∆φ)
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10.3 Bulk Correlations, Both Fields, ls/us/ci/cd
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Figure 10.22: Rls
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Figure 10.24: Rus
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Figure 10.25: Rci
2 (∆η,∆φ)
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Figure 10.26: Rci
2 (∆η)
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Figure 10.39: ∆PT
us(∆η,∆φ)
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Figure 10.41: ∆PT
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10.4 Inclusive Correlations, Both Fields, ls/us/ci/cd
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Figure 10.49: Rci
2 (∆η,∆φ)
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Figure 10.51: Rcd
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Figure 10.52: Rcd
2 (∆η)
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Figure 10.53: C ls(∆η,∆φ)
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Figure 10.54: C ls(∆η)
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Chapter 11

Catalog of Distributions, Convolutions and Plots of Cluster Model

Simulation

Data generation is based on Foa’s review criteria: 1) absence of correlations among

clusters, 2) isotropic decay of clusters in their rest frames, and 3) energy independence

of decay parameters [6]. Event generation is done using a Root version of GENBOD,

CERNLIB w515. Model parameters consist of: distribution of clusters, cluster effec-

tive mass, decay particle mass. Clusters receive a longitudinal or radial transverse

boost, either randomly by cluster or identically for all clusters created in the event.

Cluster model simulation parameters have been chosen for broad physical plausi-

bility, primarily for illustrative purposes, without attempting to fine-tune the param-

eters to match the existing data. In all models, an event consists of 1 collision which

produces clusters that decay into 2-5 particles. The effective mass of each cluster is

from 2-4 GeV with mean 3 GeV. The distribution of clusters may be one single cluster

per collision or a Poisson distribution with mean 6. The distribution of particles in a

cluster is approximately Poisson with mean 4.

The following simulated p+ p datasets were created:

• Model pp1a: A single cluster decays in its rest frame.

• Model pp1b: A single cluster decays in its rest frame, then is boosted longitu-

dinally with rapidity distributed uniformly on (-3,3).

• Model pp2: Same as pp1b, but with cluster distribution Poisson(6) (not shown).
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• Model pp3: Same as pp2b, but with transverse momentum added in the rest

frame of each individual cluster, distributed normally with variance 1 GeV.

• Model pp4a: Same as pp2b, but with a transverse rapidity boost in the rest

frame of each individual cluster, distributed linearly on (0,0.7).

• Model pp4b: Same as pp4a, but the boost is applied collectively to all clusters

in a collision, rather than individually.

Model pp1a is highly unphysical and is included primarily as a reference. The unusual

”rake”-like formation at ∆φ equal to π is due to a binning anomaly of two-particle

back-to-back decays when symmetric binning about the value zero is used. Model

pp1b, with an added longitudinal rapidity boost of the cluster, immediately produces

nearly Gaussian correlations in R2(∆η).

With Model pp2 the Poisson(6) cluster distribution generates realistic particle

multiplicities, however the transverse momentum spectrum is highly unphysical, ter-

minating abruptly at 2 Gev. As a remedy Model pp3 introduces a thermal-type mo-

tion that produces a more physical pT spectrum that decreases exponentially; Model

pp3 is used as a proxy for p+ p in this paper.

To build a model for A + A events, we add a radial transverse boost to a p + p

collision. Model pp4a applies a random radial transverse boost to each individual

cluster in a collision; Model pp4a reproduces the away-side dip seen in most central

A + A events characterized by v3. Model pp4b applies the same radial transverse

boost as pp4a identically to all clusters in a collision. For both, the boost is in units

of rapidity distributed linearly on (0,0.7). On this interval rapidity is approximately

equal to velocity (in natural units), so the rapidity distribution models a physical sit-

uation in which the transverse velocity of a cluster is proportional to r, the transverse

radial distance of the cluster from the “center” of the event.

The collective radial transverse boost of Model pp4b produces the R2 correlation
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with the feature we seek to model, namely the appearance of a longitudinal ridge

extended in ∆η that is amplified about (0,0).

11.1 p+ p (1a)

Model pp1a: A single cluster decays in its rest frame.
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11.2 p+ p (1b)

Model pp1b: A single cluster decays in its rest frame, then is boosted longitudi-

nally with rapidity distributed uniformly on (-3,3).
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Figure 11.9: C2(∆η,∆φ)
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11.3 p+ p (3)

Model pp3: Same as pp2b, but with transverse momentum added in the rest frame

of each individual cluster, distributed normally with variance 1 GeV.
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Figure 11.23: R
(n)
2 = C

(n)
2 (∆η,∆φ)/ρ1 ∗ ρ1(∆η,∆φ)
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11.4 p+ p (4a)

Model pp4a: Same as pp2b, but with a transverse rapidity boost in the rest frame

of each individual cluster, distributed linearly on (0,0.7).
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Figure 11.25: C2(∆η,∆φ)
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Figure 11.31: R
(n)
2 = C

(n)
2 (∆η,∆φ)/ρ1 ∗ ρ1(∆η,∆φ)
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11.5 p+ p (4b)

Same as pp4a, but the boost is applied collectively to all clusters in a collision,

rather than individually.
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Figure 11.39: R
(n)
2 = C

(n)
2 (∆η,∆φ)/ρ1 ∗ ρ1(∆η,∆φ)
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ABSTRACT

CENTRALITY DEPENDENCE OF TWO-PARTICLE NUMBER
AND TRANSVERSE MOMENTUM CORRELATIONS
IN
√
sNN = 200 GeV Au+Au COLLISIONS AT RHIC

by

LAURENCE TARINI

August 2011

Adviser: Dr. Sergei Voloshin

Major: Nuclear Physics

Degree: Doctor of Philosophy

We present plots of the pattern of particle formation in
√
sNN = 200 GeV Au+Au

heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) using three different

two-particle correlation measurements of number and transverse momentum as a

function of relative azimuth, pseudorapidity and centrality. All three observables show

the onset with increasing centrality of a near-side “ridge” of enhanced correlations in

pseudorapidity . The plots of real data are compared to plots of simulations using

RQMD data and data from a simple “cluster” model. RQMD (relativistic quantum

molecular dynamics) program uses a transport theoretical model of hadron collisions.

The “cluster” dataset is a simplistic cartoon of a decay event involving an invariant

mass that receives a longitudinal and then transverse Lorentz boost. The effect of

radial flow on clusters is shown with a radial boost applied both collectively and

to individual clusters. We find that the kinematic effect of radial flow in simulated

cluster data produces a near-side “ridge” similar to that seen in the data.
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