Longitudinal Spin Transfer of Hyperons in Polarized Proton-Proton Collisions

Outline:

- Introduction to Proton Spin Structure
- Gluon Polarization at RHIC
- Quark Polarization at RHIC
- Concluding Remarks

DNP 2008 Oakland, California History - Magnetic Moment

• The magnetic moment $\vec{\mu}$ of a particle is related to its spin \vec{S} according to:

$$\vec{\mu} = g \frac{e}{2mc} \vec{S}$$
 $\vec{g} = 2$ for Dirac particles

⊗

• 1933 - Frisch and Stern:

$$\vec{\mu}_p = 5.8 \frac{e}{2mc} \vec{S}_p$$
 - Proton has (spin-)substructure

But, what is it?

History - early DIS

Circa 1970 - Scaling and the Callan-Gross relation:

Quarks are spin-1/2

History - polarized DIS

Circa 1985 - European Muon Collaboration:

The sum of Quark Spins contribute little to the proton spin, Strange quarks are negatively polarized, $\Delta s < 0$

Nucleon Spin Structure - Present

Frontier questions in nucleon spin structure,

- gluon polarization (gluons are numerous, $\alpha_s \Delta G \propto {\rm constant}, ...)$
- flavor composition of quark spins ($\Delta s < 0$, cancellation, symmetries, ...),
- orbital momenta, $J_q(\infty) : J_g(\infty) \sim 1 : 1$ as for ordinary momenta, ...

Need for *complementary* methods/techniques,

World-wide Quest

27 GeV e⁺/e⁻ beam of HERA ep collider

Longitudinally polarized muons 160 GeV/c 2.10⁸ μ / spill (4.8s / 16.2s) P_B= -80% Longitudinally or transversely polarized deuteron target : ⁶LiD P_T= 50% Luminosity: ~ 5.10³² cm²s¹ COMPASS at CERN SPS

World-wide Quest

RHIC - Polarized Proton-Proton Collider

Unique opportunities to study spin in QCD:

at hard (perturbative) scales with good systematic controls, e.g. bunch pattern: beam-2

Longitudinal performance (STAR recorded):	2003-2004	2005	2006	2009 (request)	
Versus $\sqrt{s} = 200 \text{ GeV}$	0.3 pb ⁻¹	2 pb-1	5 pb-1	50 pb ⁻¹	Luminosity
	30-45%	50%	~55%	60%	Polarization
	0.01 pb ⁻¹	0.1 pb ⁻¹	0.5 pb ⁻¹	6 pb ⁻¹	FoM

RHIC - Inclusive Cross Sections

Longitudinal Spin Asymmetries and Inclusive Channels (jets, pions)

Sensitivity to:

with large partonic asymmetries at 'midrapidity',

and, in the case of (unbiassed) jets, without fragmentation uncertainties,

$$A_{LL} \propto rac{\Delta f_a}{f_a} rac{\Delta f_b}{f_b} \hat{a}_{LL}$$

RHIC - First Gluon Asymmetries

Disfavor maximal gluon polarization

RHIC - From First Gluon Asymmetries to Physics Answers

Measure double longitudinal spin asymmetries and establish the factorized framework,

$$A_{LL} \equiv \frac{\sigma^{\uparrow\uparrow} - \sigma^{\downarrow\downarrow}}{\sigma^{\uparrow\uparrow} + \sigma^{\downarrow\downarrow}} \stackrel{!}{=} \sum \frac{\Delta f_1}{f_1} \otimes \frac{\Delta f_2}{f_2} \otimes \hat{a}_{LL} \otimes \text{(fragmentation functions)}$$

Start with abundantly produced jets at mid-rapidity, where the partonic asymmetries are sizable.

Pursue precision, coverage, sensitivity to initial kinematics, and selective probes,

 $\vec{p} + \vec{p} \rightarrow \text{jet}(s) + X$ $\vec{p} + \vec{p} \to \gamma + \text{jet} \qquad \vec{p} + \vec{p} \to c\bar{c}, b\bar{b} + X$ Covered in the next talks, e.g. precision: ΔG Jacobs, Grebenyuk - jets, π^0 ΔG ΔG initial kinematics through di-jets ΔG_{56666} ΔG_{66} Δq ΔG Sowinski, selectivity through heavy flavor, Kurnadi, Wang $\mathcal{L} \simeq 3 - 8 \cdot 10^2 \,\mathrm{pb}^{-1}, \ P = 0.4 - 0.7, \ \sqrt{s} = 200 - 500 \,\mathrm{GeV}$ time Best knowledge from global analyses of *complementary* data Current State of the Art:

De Florian et al, PRL 101, 072001

RHIC - Possibilities to Access Quark Polarization

 $\sqrt{s} = 500\,{
m GeV}$ use W-bosons as quark polarimeters,

$$\sqrt{s}=200\,{
m GeV}$$
 Hyperon polarization measurements?

Lambda and anti-Lambda Hyperons in STAR

for $|\eta| \leq \sim 1.3$

Differential Cross Section

Factorized framework,

 $f, \Delta f \otimes \hat{\sigma}, \Delta \hat{\sigma} \otimes D, \Delta D$

enables perturbative description.

Agreement of STAR data and theory, for a suitable choice of D, is a necessary condition for interpretation.

D_{LL} - Longitudinal Spin Transfer

At RHIC,

$$D_{LL}^{\Lambda} \equiv \frac{\sigma_{p+p \to \Lambda+X} - \sigma_{p+p \to \Lambda^{-}X}}{\sigma_{p+p \to \Lambda+X} + \sigma_{p+p \to \Lambda^{-}X}} = P_{\Lambda}^{+}$$

that is, the longitudinal polarization of the Λ for a specific beam-helicity configuration.

This polarization can be determined in the usual way,

$$\frac{dN}{d\Omega} \propto A(\cos\theta^*)(1+\alpha P_\Lambda\cos\theta^*)$$

from the angular distribution of the $p + \pi$ decay mode with B.R. ~64%.

Here,

A is the detector acceptance,

 θ^* is the angle defined by the Λ momentum and the *p* direction in the Λ rest frame, $a = 0.642 \pm 0.013$ is the decay parameter.

D_{LL} - Longitudinal Spin Transfer

Expectations at LO show sensitivity of D_{LL} for the $\overline{\Lambda}$ to the \overline{s} helicity distribution, $\Delta \overline{s}$,

more so than to the fragmentation in this model.

The ΛD_{LL} is less sensitive to Δs , partly due to larger *u* and *d* quark fragmentation contributions.

Promising measurement: neither the role of (anti-)strange quarks nor polarized fragmentation is well known/understood - effects are potentially large enough to be observed.

Note: predictions include decay contributions, e.g. $\Sigma \rightarrow \Lambda$

STAR Data - 2005

~3.10⁶ events collected with a beam-collision trigger (minimum bias, bandwidth limited),

 $<|x_{\rm F}|>\approx 0.008$

Analysis Features

Uses the $\Lambda \rightarrow p + \pi$ weak decay mode,

$$\frac{dN}{d\Omega} \propto A(\cos\theta^*)(1+\alpha P_\Lambda\cos\theta^*)$$

Restrict $\cos\theta^*$ to eliminate K_S^0 background caused by misidentified π (cuts ~40%).

Use beam spin configurations and symmetries to (largely) cancel $A(cos\theta^*)$ and extract,

$$D_{LL}^{\Lambda} = \frac{1}{\alpha \cdot P_b \cdot \langle \cos \theta^* \rangle} \cdot \frac{N_{\Lambda}^+ - N_{\Lambda}^-}{N_{\Lambda}^+ + N_{\Lambda}^-}$$

in small $cos\theta^*$ intervals. Here, $N_{\Lambda}^+ = N_{\Lambda}^{++} \cdot \frac{\mathcal{L}^{--}}{\mathcal{L}^{++}} + N_{\Lambda}^{+-} \cdot \frac{\mathcal{L}^{--}}{\mathcal{L}^{+-}}$ and $N_{\Lambda}^- = N_{\Lambda}^{-+} \cdot \frac{\mathcal{L}^{--}}{\mathcal{L}^{-+}} + N_{\Lambda}^{--}$

The luminosity ratios are measured at STAR and beam polarization in RHIC.

Analysis (continued)

The extracted D_{LL} exhibits the expected statistical variation with time.

Control-measurement with the more abundant and spin-less K_s^0 shows no evidence for experiment systematics larger than ~0.01.

First Spin Transfer Results at RHIC

Need better precision and higher p_T

STAR Triggered Data - 2005

STAR was triggered on energy deposits in jet-patches of the Barrel E.M. Calorimeter,

Although this is <u>not</u> a "Hyperon Trigger", it did record a (biased) sample of Λ and $\overline{\Lambda}$ candidates with considerably higher p_T ; focus on $\overline{\Lambda}$ here.

First Spin Transfer Results at RHIC

Systematic Uncertainty Estimates:

5% RHIC measurement of P_b, 2% residual transverse pol. at STAR,

2% decay parameter a,

< 0.01 relative luminosity measmnt,

< 4% event pile-up in TPC,

- < 5% background,
- <15% trigger bias (MC simulation).

RHIC - W-boson Polarimetry to access Quark Polarizations

 $\Delta \sigma^{\text{Born}}(\vec{p}p \to W^+ \to e^+\nu_e) \propto -\Delta u(x_a)\bar{d}(x_b)(1+\cos\theta)^2 + \Delta \bar{d}(x_a)u(x_b)(1-\cos\theta)^2$

Spin Measurements:

$$A_L(W^+) = \frac{-\Delta u(x_a)\bar{d}(x_b) + \Delta \bar{d}(x_a)u(x_b)}{u(x_a)\bar{d}(x_b) + \bar{d}(x_a)u(x_b)} = \begin{cases} -\frac{\Delta u(x_a)}{u(x_a)}, & x_a \to 1\\ \frac{\Delta \bar{d}(x_a)}{\bar{d}(x_a)}, & x_b \to 1 \end{cases}$$

$$A_L(W^-) = \begin{cases} -\frac{\Delta d(x_a)}{d(x_a)}, & x_a \to 1\\ \frac{\Delta \bar{u}(x_a)}{\bar{u}(x_a)}, & x_b \to 1 \end{cases}$$

Experiment Challenges: charge-ID at large Irapidityl electron/hadron discrimination luminosity hungry!

Talks by: Balewski,CF00006 Page, HG00003

STAR - W-boson Polarimetry to access Quark Polarizations

Talks by: Balewski,CF00006 Page, HG00003

300pb-1, 70% pol., includes expected det. resp. and bg.

Illustrates sensitivity to $\Delta \bar{u}$

Concluding Remarks

- RHIC-spin is fully online,
- Cross sections for jets and other "workhorse" probes are well reproduced in NLO-pQCD over many orders of magnitude,
- Initial longitudinal spin results with 0.01 pb⁻¹ FoM disfavor maximal ΔG ,
- Data from up to ~5 pb⁻¹ FoM have been analyzed,
 - \bullet result in greatly improved precision and p_T coverage,
 - enable a *start* with more selective, but less abundant, probes and processes,

 e.g. Λ-D_{LL} - sensitive to Δs and polarized fragmentation at ~10⁻² level, STAR has performed a proof-of-principle measurement; find consistency with DIS-based expectations, but the data do not (yet) discriminate between quark polarization scenarios,

- are still not sufficient to resolve the kinematic dependence $\Delta G(x)$ via 2-jet events,
- Clear need for ~50 pb-1 FoM STAR beam-use-request for upcoming beam-period,
- Eagerly anticipate also 500 GeV center-of-mass energy.

next talks in this session