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How.does the proton spin?

In a simple model of the nucleon, the proton’s
spin structure can be decomposed into four parts:
S. = l A Z +AG+ L1+ LG = l DSSV analysis includes : NLO pQCD calculations
2 - “ 2 with fits to polarized (semi)-inclusive DIS and
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Polarized DIS : ~ 0.3 B Poorly Constrained




Why photon+jet channel?

\ o » Direct y dominated (~ 90% of yield) by QCD
1 5 Compton process: q+g — g+y, with large LO
=3¢ _°9/ =P € gluon spin sensitivity
./f’\ > Inclusive y cannot compete statistically with incl.

jet A ... but y-jet conic. meas. a “golden channel”

ALL = O++ _O+— x AfaAfb &LL 1

O + O fafb 0‘75E

> Select kinematics to optimize AG(x) sensitivity: =
high x, = high Af,/ f, (large quark polarization); / :

0l

. W (cross section also peaks here!)

0.60|~ 0 = 50 GeV* 1 > For y-jet coincidences, p;’, M, MNjet = Xq5 Xo and
~ _ 0.40- . the angle 6" can be determined event-by-event.
= | from DIS

0.20

» One uses high-x quarks (where most polarized)
0.00

10° 10’ 10' 10 to probe low-x gluons (where they are abundant)
X quark

» above: very asymmetric collisions = y’s boosted into STARhEndcap EMC
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How do we reconstruct photon+jet?
STAR Detector Endcap Electromagnetic Calorimeter

NN T 7 vz
Time Projection Chamber
Inl <1.3

0
o
beam direction H
~— - l‘ ns ;3
e e *,—z_" 2 ““ 5 / \ / wavelength-
A "'--3_‘\’700 ‘ CACSIERRZ shifting fiber
27 [iet 78N W (SRR
Q’/ d 7 \:}‘:\ \ p N > mm|*—

7 Barre l \'*.j:jjl " z SS plastic scint,

(extruded strips)

Discriminates between
® Coverage: 1.086<n<2.0, 0<(p<2n' single photan VS photon pairs

12 sectorsx5 subsectorsxn-bins=720 towers

z vertex cut : -100cm <z< 100cm
photon : 1.08< n <2 p\Y>7 GeV
o 1tower=24 layers:

jet :In;,l< 0.8 p/**>5 GeV > Layer 1=preshower-1

Lover 2-oreshowerz|  V/TE discrimination
photon and jet are back-to-back R

cos(@;.,— ¢, ) <-0.8 o Layer-24=postshower e* / hadron discrimination

Away side jet neutral fraction < 0.9
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Run 6 pnoton+jet analysis

2006 Data : 3.1 pb™* taken during RHIC Run 6

Trigger : High tower with 3.8 GeV E; and associated

3x3 patch with 5.2 GeV

2006 Simulation

6 STAR MC productions for prompt photon and 4 STAR

Sincle Tower Eneray > 3.8 GeV
+ Tower + Paich Energy > 5.2 GeV

MC productions for QCD background with partonic 3x3 tower “trigger patch” showing

p;2-35 GeV

configuration of L2y trigger condition

PYTHIA 6.410 ProPT, tune (pytune 329) T. Sjostrand and
P.Z. Skands, Eur. Phys. J C39, 129 (2005).
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Y/r0 discrimination in Endcap SMD :

Maximum Sided Residual

Basic idea:

SMD energy per strip

Look at transverse shower profile in the SMD
y and e transverse shower profile = single peak
n°>yy = double peak structure

Fit main peak and compute residual=data-fit on each side of main peak = pick
maximum residual
For given energy E, ° should have more residual thany

Single photon response Multi photon response

0.035( 0.012

~1 Fit \\Q
/ o.oosf—
Maximum 0.0061
0.01;-
ot AN

residual 0.0041
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)ato !Z(“I“;““&“U!I“G
Transverse shower profile in the shower maximum detector

I.II:I= # pp2006
VoL QCD : ProPT0_official
E 4 vy jet: ProPTO_official
o=
—._E!E Ee=
107" " o
C i -
- e & '4':":—;— |
B LT, -
RS 1
__I_ |1 + -+ B |
+ + 4 T4
1071 l +'+’T‘ %
SN  Prel=0, Pre2=0
i L + | 1 1 1 I L 1 1 1 1 L 1 | 1 1 1 I 1
-10 -5 5 10
u strip

Direct photon rich

<E >

& pp2006

- QCD : ProPT0_official

4 Y jet: ProPT0_official

Background dominated

Background : multi-photon production processes,

such as ° -> YY

Events pre-sorted into four different categories :
(a) E,re1 = E,ep =O(direct photon rich)

(b) Eprel
(c) O<E
(d) 4<E

=O' Epre2>o
<4MeV
<10 MeV

prel
prel

(background dominated)

Transverse shower profile
fitted by the sum of three
common-centroid gaussians
with independent widths

and scaling with some skewness

added to the third gaussian
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%2 I ndf 40.81/24
Prob 0.01748
po 0.8089+ 0.0392
— p2 0.6654 + 0.0277
F p3 0.1646+ 0.0139
r pé 0.02052+ 0.00241
p8 6.869+ 0.331

0.07537 + 0.01129

Strip number
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Y/r0 discrimination in Endcap

* Challenges:
— signal statistics, low Signal/Background ratio

— To suppress more background & keep high Signal efficiency, rely on
advanced techniques such as boosted decision trees

= Why not neural networks or linear discriminants?

= ANN : Very good with non-linear correlations but black box, needs tuning

= Fisher : Very fast and transparent but fails if PDFs have same mean, and if
non-linear correlations

* Boosted Decision Trees (BDT)
* Non-linear combination of input variables such as
1. Energy deposited in different preshower, postshower layers
2. EMC (Barrel, Endcap) towers fired around photon candidate
3. Charged tracks around photon candidate (r=0.7)
4. Energy fraction in the 3x3 tower and smaller clusters
5. SMD shower shape response parameters
* Great performance for large number of input variable
 Powerful and stable by combining many decision trees to
make a “majority vote”

8
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Schematic View of a Decision Tree

XJ>C2 XJ<C2 [x;>c3 XJ<c3J

B Q B
16

Sequence of binary splits using the discriminating
variables x

Each split uses the variable that at this node gives the
best separation between signal and background when
being cut on

Leaf nodes at the bottom labeled “S” and “B” on the
majority of events in the respective nodes

Boosting : Weights of misclassified events in current
tree are increased, the next tree is built using the same
events but with new weights

9
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Boosted Decision Trees Output

= The MC samples are split into two halves, one for training, the
other for test

" Training Events — selected randomly 1858 signal and 11857
background events

= 15 variables for training
= Testing Events — compare training and test samples (Kolmogorov-

Simirnov test) Good separation between signal and background
Background rejection versus Signal efficiency TMVA TMVA overtraining check for classifier: BDT
5 ! - ﬁ-_:___'_:; ' = -’é _ S'ign'al dest'sar'npl'e) B -'Siénal (tréini'ng Eanllplé) = 3
E 0.9 - . E 4 /| Background (test sample) a Background (training sample)—|
- . T -
e E E — ﬂ(olmogorov-Smimov test: signal (background) probability = 0.808 (0.781) =
- 08— \ - EN 5 C 1+ [ -
c - \ ] = - ]
3 - \ ] 3 —
5 0.7 | \ ] ”s - 12
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Signal efficiency BDT response
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Conclusions
+*»* Simulations reproduce the experimental conditions quite well
** Implementation of a BDT classifier, including (SMD) shower shape and

other discriminating variables, provides us with a powerful tool for
background rejection

What's next?

** Run BDT classifier on real data
»* Refine purity/efficiency analysis with MC and data
¢ Extract signal/background vs. photon p;, n etc.

+*» Yields/photon-jet cross section
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Thank You

"LeTs SEE \F WE COULD PUTA SPIN ONIT
AND GET THe PUBLIc INTERESTED,"
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BACKUP SLIDES



Asymmetric layout of the SMD sublayers

Layer

Layer 1
Z=278327

View from outside of detector

Layer 2

Z2=279542

z

3
= 280.757

Sector-dependent structure of SMD in the EEMC

Sector | 1 2 3 4 5 6 7 8 Q 10 11 12
Layerl |V U Space | V Space | V U Space | V U Space
Layer2 | Space | V U Space | V U Space | V Space | V U
Layer3 (U Space | V U Space | V U Space |V U Space | V

Layer 1 :u(2,5,8,11)+u(3,6,9,12)+v(1,4,7,10)
Layer 2 : v(2,5,8,11)+v(3,6,9,12)+u(1,4,7,10)
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Y/r0 discrimination in Endcap SMD :

| y events from pp — y+jet+X(2006) |
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Decision Trees & Boosting Algorithms

=» Decision Trees have been available about two decades, they are known to
be powerful but unstable, i.e., a small change in the training sample can

give a large change in the tree and the results.
Ref: L. Breiman, J.H. Friedman, R.A. Olshen, C.J.Stone, “Classification and Regression Trees”, Wadsworth,
1984.

=» The boosting algorithm (AdaBoost) is a procedure that combines many

“weak” classifiers to achieve a final powerful classifier.

Ref: Y. Freund, R.E. Schapire, “Experiments with a new boosting algorithm”, Proceedings of COLT, ACM
Press, New York, 1996, pp. 209-217.

=» Boosting algorithms can be applied to any classification method. Here, it is
applied to decision trees, so called “Boosted Decision Trees”, for the

MiniBooNE particle identification.

* Hai-Jun Yang, Byron P. Roe, Ji Zhu, " Studies of boosted decision trees for MiniBooNE particle
identification", physics/0508045, NIM A 555:370,2005

* Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, lon Stancu, Gordon McGregor," Boosted decision trees as an
alternative to artificial neural networks for particle identification", NIM A 543:577,2005

* Hai-Jun Yang, Byron P. Roe, Ji Zhu, “Studies of Stability and Robustness of Artificial Neural Networks and
Boosted Decision Trees”, NIM A574:342,2007
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How to Build A Decision Tree?

1. Put all training events in root node,
then try to select the splitting variable
and splitting value which gives the

best signal/background separation.

2. Training events are split into two parts,
left and right, depending on the value

of the splitting variable.

3. For each sub node, try to find the best
variable and splitting point which gives
the best separation. Radius?
4. If there are more than 1 sub node, pick
one node with the best signal/background 71 2/9
separation for next tree splitter.

5. Keep splitting until a given number of
terminal nodes (leaves) are obtained, or
until each leaf is pure signal/background,
or has too few events to continue.

* If signal events are dominant in one

leaf, then this leaf is signal leaf (+1);
otherwise, backgroud leaf (score= -1).
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Criterion for “Best” Tree Split

* Purity, P, is the fraction of the weight of a
node (leaf) due to signal events.

 Gini Index: Note that Gini index is O for all
signal or all background.

i
Gini = () W,)P(1-P)
=1
* The criterion is to minimize
Gini_left node+ Gini_right _node.
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Criterion for Next Node to Split

* Pick the node to maximize the change in Gini
index. Criterion =

Giniparent_node T Giniright_child_node T Ginileﬂ_child_node
 We can use Gini index contribution of tree

split variables to sort the importance of input
variables.

 We can also sort the importance of input
variables based on how often they are used as

tree splitters.
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Signal and Background Leaves

* Assume an equal weight of signal and
background training events.

* |f event weight of signal is larger than 2 of the
total weight of a leaf, it is a signal leaf;
otherwise it is a background leaf.

* Signal events on a background leaf or
background events on a signal leaf are
misclassified events.
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How to Boost Decision Trees ?

=>» For each tree iteration, same set of training events are

used but the weights of misclassified events in previous
iteration are increased (boosted). Events with higher
weights have larger impact on Gini index values and
Criterion values. The use of boosted weights for

misclassified events makes them possible to be correctly
classified in succeeding trees.

Typically, one generates several hundred to thousand trees
until the performance 1s optimal.

The score of a testing event 1s assigned as follows: If it
lands on a signal leaf, 1t 1s given a score of 1; otherwise
-1. The sum of scores (weighted) from all trees 1s the final
score of the event.
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Weak = Powerful Classifier

=» The advantage of using boosted decision trees is that it
combines many decision trees, “weak” classifiers, to
make a powerful classifier. The performance of BDT i1s
stable after few hundred tree 1terations.

=» Boosted decision trees focus on the misclassified events
which usually have high weights after hundreds of tree
iterations. An individual tree has a very weak
discriminating power.
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Two Boosting Algorithms

e AdaBoost Algorithm:
1. Initialize the observation weights w; = 1/n,i=1, 2,..., n
2. Form =1 to M:
2.a Fit a classifier T},,(z) to the training data using weights w;

2.b Compute
~ Yimiwil(yi # Tn(xi))

errm = =

I =1, if a training

event is misclassified,
i=1 e Otherwise, I = 0

2.c Compute amm = 6 X log((1 — errm)/errm)

2.d Set w; «— w; X exp(aml(y; # Tm(x;))), i=1, 2,...,n

2.e Re-normalize w; = w;/ > | w;
3. Output T(x) = SM_ 0, T} (2)

e e—boosting Algorithm:
1. Initialize the observation weights w; = 1/n,i=1, 2,..., n
2. For m = 1 to M:

2.a Fit a classifier T, (x) to the training data using weights w;

2.b Set w; +— w; X exp(2el(y; # Tm(x;))), i=1, 2,...,n

2.c Re-normalize w; = w;/ >0 w;
3. Output T(x) = S M_ €T} (x)
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e “Combine” all input
variables into one output
variable

e Supervised learning
means learning by
example: the program
extracts patterns from
training data

What is a multi-variate

analysis?

[_TMVA Input Vari al

o5 i‘Sigﬁal '

0a Background

> BZ7] Background

H™ ] Signdl ~

0 0.2 04 0.6 0.8 1
MLP
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Is crucial

Choice of input
variables } Physics input -

Define preselection
Choice of MVA method
Training the MVA

oical multi-variate anal

TMVA Input Variable: varl+v:

SIS steps

method using samples A ottt L -
with known signal/ o]
background g
Choice of working
point . ‘-
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