Di-jet Hadron Correlations in Au+Au Collisions at STAR at √s_{NN} = 200 GeV

Nick Elsey for the STAR Collaboration Wayne State University

Jets in the QGP

hard scattering happens early internal probe of the QGP

partonic energy loss

broadening & softening

3

Jets in the QGP at STAR

enhancement of recoil jet low p_T constituents

suppression of recoil jet high p_T constituents

how to measure jet-by-jet energy loss?

jet-hadron correlations

STAR, PRL 112, 122301 (2014)

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh

Hard core jets at STAR

in a heavy ion background

large background energy density

Hard core jets at STAR

in a heavy ion background

6

Hard core jets at STAR

Di-jet imbalance at STAR

hard core di-jets imbalanced with respect to p+p

> when soft constituents are included: balance restored to the level of p+p in R=0.4

more differential

di-jet hadron correlations

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh

Di-jet hadron correlations

Correlations in $\Delta \eta$

fit with a constant+gaussian constant subtracted as background

11

Correlations in $\Delta \phi$

Correlations in $\Delta \phi$

use sideband subtraction to account for flow in underlying event

14

jet signal centered at (0,0)

underlying event

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh

17

Consistent with A_J?

How is the energy distributed?

minimal modification at high p_T for both trigger & recoil jets

possible enhancement at low p⊤ in recoil jet

A_J enhances sensitivity to modification effect is diluted in ensemble measurements like di-jet hadron correlations

Why a small effect?

Conclusions

"Hard-Core" di-jets at STAR:

energy recovered within R=0.4

hint of modification of A_J jets on recoil side

towards the future: large new data set

systematically explore di-jet cuts to constrain path length of jet in medium

Thank you :)

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh

Event mixing

|η^{assoc}| < 1.0 |η^{trigger}| < 1.0 - R

example:

jet-hadron event mixing |η^{assoc}| < 1.0 |η^{trigger}| < 1.0

example:

hadron-hadron event mixing