Di-jet Hadron Correlations in Au+Au Collisions at STAR at $\sqrt{s_{NN}} = 200$ GeV

Nick Elsey for the STAR Collaboration
Wayne State University
Jets

theory: $X \rightarrow q\bar{q}$ (or g)

experiment: collimated shower of hadrons

theory \rightarrow jet finding \rightarrow experiment

jets are calculable: pQCD

experimental agreement with theoretical predictions

FastJet

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh
Jets in the QGP

hard scattering happens early
internal probe of the QGP
partonic energy loss
broadening & softening

jet production probes medium evolution
Jets in the QGP at STAR

Δφ

jet-hadron correlations

enhancement of recoil jet low p_T constituents

suppression of recoil jet high p_T constituents

how to measure jet-by-jet energy loss?
Hard core jets at STAR

in a heavy ion background

large background energy density
Hard core jets at STAR

in a heavy ion background

$p_T^{\text{const}}>2 \text{ GeV/c cut}$ removes almost all background
Hard core jets at STAR

in a heavy ion background

\(p_T^{\text{Cut}} = 2 \text{ GeV/c} \)
\(p_T^{\text{Lead}} > 20 \text{ GeV/c} \)
\(p_T^{\text{SubLead}} > 10 \text{ GeV/c} \)
\(|\Delta \phi - \pi| < 0.4 \)
\(\text{anti-kt } R=0.4 \)

\(p_T^{\text{const}} > 2 \text{ GeV/c cut} \)
removes almost all background

geometric matching
no combinatoric jets, recover all constituents

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh
Di-jet imbalance at STAR

Hard core di-jets imbalanced with respect to p+p

When soft constituents are included: balance restored to the level of p+p in R=0.4

More differential di-jet hadron correlations
Di-jet hadron correlations

di-jet definition
\[p_T^{\text{Cut}} = 2 \text{ GeV/c} \]
\[p_T^{\text{Lead}} > 20 \text{ GeV/c} \]
\[p_T^{\text{SubLead}} > 10 \text{ GeV/c} \]
\[|\Delta \phi - \pi| < 0.4 \]
anti-\(k_T \) \(R = 0.4 \)

correlations
\[\Delta \eta = \eta^{\text{jet}} - \eta^{\text{track}} \]
\[\Delta \phi = \phi^{\text{jet}} - \phi^{\text{track}} \]

Au+Au
0-20% central
\(1.0 < p_T^{\text{assoc}} < 2.0 \text{ GeV/c} \)

systematic uncertainties
- tracking efficiency (±5%)
- relative jet energy scale
- relative tracking efficiency (±7%)
- relative tower energy scale (±2%)

jetfinding correlations & yields

detector level
particle level

Trigger jet
Recoil jet

STAR Preliminary
Correlations in $\Delta \eta$

project onto $\Delta \eta$

jet signal centered at (0,0)

underlying event

fit with a constant+gaussian
constant subtracted as background
Correlations in $\Delta\eta$ for $1.0 < p_{T,assoc} < 2.0$ GeV/c

$|\Delta\phi| < 0.71$

projection range

yield contained within jet radius $R=0.4$
Correlations in $\Delta \eta$

3.0 < p_T^{assoc} < 4.0 GeV/c

projection range

$|\Delta \phi| < 0.71$

yield contained within jet radius R=0.4
Correlations in $\Delta \phi$

- Project onto $\Delta \phi$
- Jet signal centered at (0,0)
- Underlying event
- Modulation in $\Delta \phi$
Correlations in $\Delta \phi$

use sideband subtraction to account for flow in underlying event
Correlations in $\Delta\phi$

$1.0 < p_T^{\text{assoc}} < 2.0 \text{ GeV/c}$

projection range

$|\Delta\eta| < 0.45$

yield contained within jet radius $R=0.4$

similar to $\Delta\eta$

~ circular jets

STAR Preliminary

$1.0 < p_T^{\text{assoc}} < 2.0 \text{ GeV/c}$

$p+p$ eff. corrected to $Au+Au$ 0-20%

$|\Delta\eta|<0.45$

trigger jet

recoil jet
Correlations in $\Delta \phi$

$3.0 < p_T^{assoc} < 4.0$ GeV/c

trigger jet

3.0 < p_T^{assoc} < 4.0 GeV/c

$p+p$ eff. corrected to Au+Au 0-20%

$|\Delta \eta| < 0.45$

projection range

$1/N \cdot dN/d\Delta \phi$

$1/\langle N_{dijets} \rangle$

 STAR Preliminary

- Au+Au HT 0-20%
- $p+p$ HT
- tracking unc. Au+Au
- tracking unc. $p+p$
- relative JES unc.

recoil jet

3.0 < p_T^{assoc} < 4.0 GeV/c

$p+p$ eff. corrected to Au+Au 0-20%

$|\Delta \eta| < 0.45$

$|\Delta \eta| < 0.45$

projection range

$1/N \cdot dN/d\Delta \phi$

$1/\langle N_{dijets} \rangle$

 STAR Preliminary

- Au+Au HT 0-20%
- $p+p$ HT
- tracking unc. Au+Au
- tracking unc. $p+p$
- relative JES unc.

yield contained within jet radius R=0.4

similar to $\Delta \eta$

~ circular jets

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh
Jet constituent Yields

yields consistent between $\Delta \phi$ & $\Delta \eta$

yield contained within $R=0.4$

trigger jet: unmodified

"surface bias"

recoil jet: hint of modification for $p_T^{assoc}<2.0$ GeV/c
Consistent with A_J?

How is the energy distributed?

minimal modification at high p_T for both trigger & recoil jets

possible enhancement at low p_T in recoil jet

A_J enhances sensitivity to modification

effect is diluted in ensemble measurements like di-jet hadron correlations

Why a small effect?

Conclusions

“Hard-Core" di-jets at STAR:

- energy recovered within $R=0.4$
- hint of modification of A_J jets on recoil side

Towards the future:

- large new data set
- systematically explore di-jet cuts to constrain path length of jet in medium
- “jet geometry engineering”
Thank you :)

Nick Elsey, DNP Meeting Oct 2017, Pittsburgh
Event mixing

flattened triangle in signal effect of pair acceptance

Division

Mixed Events Au+Au HT 0-20% Trigger jet-hadron

Corrected Signal Au+Au HT 0-20% Trigger jet-hadron

Max bin in $\Delta \eta$ projection normalized to unity

Correlation signal Au+Au HT 0-20% Trigger jet-hadron

$1.0 < p_{T}^{assoc} < 2.0$ GeV/c

STAR Preliminary
Event mixing

$|\eta^{\text{assoc}}| < 1.0$

$|\eta^{\text{trigger}}| < 1.0 - R$

dexample:
jet-hadron

event mixing

$|\eta^{\text{assoc}}| < 1.0$

$|\eta^{\text{trigger}}| < 1.0$

dexample:
hadron-hadron

event mixing