$^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H Lifetime Measurements in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV with the STAR detector

2020 Fall Meeting of the APS Division of Nuclear Physics

Session RB: The Chiral Magnetic Effect and Strangeness

Virtual meeting Hyatt Regency Hotel in New Orleans, LA

- Yue-Hang Leung for the STAR collaboration
- Lawrence Berkeley National Laboratory
- 2020-11-1

Supported in part by:

Introduction (Physics motivation)

- <u>Hypernuclei can serve as an experimental probe to study the</u> <u>hyperon-nucleon (YN) interaction</u>
 - Modelling the EOS of astrophysical objects like neutron stars
 - Precise measurements of hypernuclei lifetime, branching ratios, and binding energy provide key information to understand the YN potential
- ${}^{3}_{\Lambda}$ H (Λpn) is the lightest hypernuclei
 - Binding energy~0.4MeV
 - Theory predicts lifetime close to the free lambda lifetime

Phys.Lett. B797 (2019) 134905

Introduction (STAR BES-II)

- Hypernuclei abundantly produced at low beam energies.
 - Baryon density increases as beam energy decreases
- ~250M events taken at $\sqrt{s_{NN}} = 3.0$ GeV with <u>STAR fixed target mode</u>

STAR

Analysis outline

STAR

- 1. Measure the signal counts as a function of $L/\beta\gamma$
 - 2-body decay channel

$$L/\beta\gamma = ct$$

 L : decay length
 t : proper time

	Signal counts (S)	Significance (S/S+B)
$^{3}_{\Lambda} H$	982	11.0
$^{4}_{\Lambda}\mathrm{H}$	3962	27.2

 ${}^{3}_{\Lambda}H \rightarrow {}^{3}He + \pi^{-}$ ${}^{4}_{\Lambda}H \rightarrow {}^{4}He + \pi^{-}$

Analysis outline (cont.)

- 2. Correct for efficiency as a function of $L/\beta\gamma$
 - From GEANT4 simulations
 - Apply weighting to simulations to describe p_T and rapidity distributions in real data

• 3. Fit with an exponential to extract the lifetime $N(t) = N_0 e^{-t/\tau} = N_0 e^{-L/\beta\gamma c\tau}$

Fit results

• Yields of Λ , ${}^3_{\Lambda}H$, ${}^4_{\Lambda}H$ as a function of $L/\beta\gamma$.

Distributions well described by exponential functions.

- Lifetime extracted with χ^2 fit.
 - Statistical uncertainty assigned to be the difference between the lifetime value corresponding to minimum χ^2 (red dashed) and the lifetime values corresponding to minimum $\chi^2 + 1$ (red dotted)
- Extracted Λ lifetime $(265.0 \pm 2.2)[ps]~$ consistent with PDG value $(263.1 \pm 2.0)[ps]~$

Systematic uncertainties

- (1) Analysis cuts
 - Imperfect description of topological variables between simulations and real data
- (2) Input MC p_T/rapidity
 - Imperfect knowledge in the real kinematic distributions of the hypernuclei
- (3) Single track efficiency
 - Mismatch of single track efficiency between simulations and data
- (4) Signal extraction
 - Uncertainties related to the background subtraction technique

	$^{3}_{\Lambda}$ H	$^4_{\Lambda}$ H
(1) Analysis cuts	9.7%	5.0%
(2) Input MC p⊤/rapidity	9.1%	1.3%
(3) Single track efficiency	7.7%	1.1%
(4) Signal extraction	3.8%	0.9%
Total	15.8%	5.4%

Results

Summary

• Presented the results from analyses of ${}^{3}_{\Lambda}H$ and ${}^{4}_{\Lambda}H$ lifetime measurements at $\sqrt{s_{NN}} = 3$ GeV

 $^{3}_{\Lambda}$ H : $\tau = 232.1 \pm 29.2$ (stat) ± 36.7 (sys)[ps] $^{4}_{\Lambda}$ H : $\tau = 218.3 \pm 7.5$ (stat) ± 11.8 (sys)[ps]

- Consistent with previous measurements
- Most precise $^4_\Lambda H$ lifetime measurement, providing more stringent constraints to theory
- <u>Further work</u> Additional studies to reduce systematic uncertainties
 - Other data sets to improve statistical precision

<u>Outlook</u>

- Precise measurements of hypernuclei binding energy, spectra expected with STAR BES-II
- Improve our understanding on properties of high baryon density matter

Backup slides follow

PV : primary vertex DCA_{V1}, DCA_{V2} : distance of closest approach of daughter particle to PV DCA₁₂ : distance of closest approach between daughter particles b: distance of closest approach of parent particle to PV

d: decay length of parent particle

Analysis outline (cont.)

- 2. Correct for efficiency as a function of $L/\beta\gamma$
 - From GEANT4 simulations
 - Apply weighting to simulations to describe p_{T} and rapidity distributions in real data

Invariant mass spectra

