Longitudinal Spin Transfer of Λ and Λ in Polarized Proton-Proton Collisions at \sqrt{s} =200GeV

Ramon Cendejas for the STAR Collaboration (UCLA/LBL)

Outline

- Introduction and Motivation
- Data
- Existing D_{LL} Measurements
- D_{LL} Uncertainty Estimates
- Summary

Introduction and Motivation

- The quark spin contribution to the proton spin is small [1]
- Polarized fragmentation is not well understood [2]

Helicity Distribution

 $\Delta q(x, Q^2) = q^+(x, Q^2) - q^-(x, Q^2)$

- The weak decay of the Λ is self-analyzing
- The weak decay channel, Λ → pπ, can be reconstructed at RHIC hence Λ polarization can be measured
- D_{LL} is expected to be sensitive to polarized fragmentation functions and polarized parton distribution functions

[1] EMC, J. Ashman et al, Nucl. Phys. B 328 (1989) 1
[2] e.g. Z.T. Liang and C. Boros, Phys.Rev.D57:4491-4494,1998
Nov. 4, 2010

Longitudinal Spin Transfer

$$D_{LL} \equiv \frac{\sigma_{p}^{+}_{p \to \Lambda} \sigma_{p}^{+}_{X} - \sigma_{p}^{+}_{p \to \Lambda} \sigma_{X}^{-}_{X}}{\sigma_{p}^{+}_{p \to \Lambda} \sigma_{X}^{+}_{X} + \sigma_{p}^{+}_{p \to \Lambda} \sigma_{X}^{-}_{X}}$$

Model Predictions

- $D_{LL}(\Lambda + \overline{\Lambda})$ curves are calculated using different polarized quark fragmentation models
- \overline{s} fragmentation is expected to dominate $\overline{\Lambda}$ production at high p_T

Relativistic Heavy Ion Collider (RHIC)

2006

2009

200

200

53/53

58/57

8.5

22

Solenoidal Tracker At RHIC (STAR)

Time Projection Chamber (TPC)

- |η| < 1.4
- Particle Identification via $\left(\frac{dE}{dx}\right)$
- Charged Particle Track Reconstruction

Barrel Electromagnetic Calorimeter (BEMC)

- |η| < 1.0
- Jet Patch Trigger
- Jet Reconstruction

Beam-Beam Counters (BBC)

- 3.4 < |η| < 5.0
- Relative Luminosity
- Local Polarimeter

V⁰ Reconstruction

- : Neutral reconstructed particle : Positive charge decay particle C^+ : Negative charge decay particle C^{-} : Primary vertex \mathbf{PV} DV : Decay vertex DCA: Distance of closest approach C^+ Track Relaxed selection cuts: $\mathbf{p}_{\mathbf{V}^0}$: \mathbf{V}^0 Reconstructed momentum vector \mathbf{r}_{PD} : Vector from PV to DV $\phi_{\rm RP}$: Angle between $\mathbf{r}_{\rm PD}$ and $\mathbf{p}_{\rm V^0}$ - DCA C⁺-C⁻ < 1.5 cm. DCA C^+ -DCA V^0 -PV < 1.5 cm. DV DCA π -PV > 0.15 cm. C^- Track Extrapolated - DCA p-PV > 0.25 cm. $- \Lambda$ Decay Length > 3.0 cm. Reconsti DCA C⁺-PV - K_{s}^{0} Decay Length > 2.0 cm. _{DCA V⁰-PV-} DCA C⁻-PV $-\phi_{RP} < 0.25$ rad. Extrapolated C^- Track
- Selection cuts are tuned per p_T range, further reducing the combinatorial background
- The min Λ decay length cut trends upward from 5cm to 13cm as p_T increases

Nov. 4, 2010

Λ Identification & Background

• Armenteros-Podolanski relation allows identification of unstable neutral particle species

K_S⁰ Background

- A small sample of pions is misidentified as protons to form a Λ candidate
- K_s⁰ are spin-zero particles which will dilute the Λ polarization
- A candidates which also satisfy K_s⁰ conditions are rejected if they have ionization energy loss values closer to the expected K_s⁰ range

Existing STAR D_{LL} Measurement

B.I. Abelev et al.[STAR Collaboration] Phys.Rev.D80:111102,2009

- Data taken in 2005
 - 1 < p_T < 5 GeV
- Half of BEMC was operational
- Limited by statistics
- At $< p_T >= 3.7$ GeV and $< \eta >= 0.5$
 - D_{LL}(Λ) = -0.03 ± 0.13 ± 0.04
 - D_{LL}($\overline{\Lambda}$) = -0.12 ± 0.08 ± 0.04
- For highest p_T, statistical uncertainties are comparable to the spread between the model predictions

2009 D_{LL} Uncertainty Estimates

- 2006 shows similar precision as 2005
- 40x more Λ's in run 2009 than in 2005
- 2009 improves on 2005 statistical uncertainties
- Additional sample of away side Λ's with similar precision

Summary

- The statistical uncertainty from 2005 $\rm D_{LL}$ measurement is comparable to the model prediction spread at large $\rm p_T$
- 4x smaller statistical uncertainties for 2009
- D_{LL} will extend in p_T up to ~6-7 GeV for 2009
- Systematic uncertainties are being studied
- K_s^{0} sample will be used for a null measurement
- Similar-sized sample of away side $\Lambda's$ will complement the near side D_{LL} analysis