Anomalous centrality variation of two-particle angular correlations associated with

minijets in Cu-Cu and Au-Au collisions at 62 and 200 GeV from STAR
Duncan Prindle University of Washington (STAR Collaboration)

We have measured 2D autocorrelations on (1,0) for all unidentified charged hadrons with p > 0.15 GeV/c, n| <1 and Our results confirm a rapid transition of minijet correlation properties observed previously at 130 GeV [1]. Minijet systematic
27 azimuth from minimum bias Cu-Cu and Au-Au collisions at 62 and 200 GeV. The correlation structure is dominated by a trends correspond well with the two-component systematics of single-particle p, spectra, specitically the hard component and
“same-side" 2D peak centered at zero relative opening angle on 1 and 7t which we hypothesize is caused by minimum-bias jets possible parton energy loss. Minijet structure is also evident in complementary 2D correlations on transverse rapidity (y,,,y.,)
(minijets), i.e. jets without lower-p_acceptance cut-offs. We observe a large excess of minijet-induced correlations in more- 'where y = log((p, + m)/m)]. Results will be shown for the 200 GeV Au-Au data which indicate that back-to-back minijets
central Au-Au collisions relative to binary-collision scaling (more correlated pairs than expected even from volume emission and ~ Persist even in most-central Au-Au collisions. The strong increase of minijet correlations from peripheral to central Au-Au

fragmentation of scattered partons). The minijet peak amplitude and 1 width undergo a sudden and dramatic increase relative to ~ Collisions is strongly inconsistent with expectations for thermalization in heavy ion collisions.
binary-collision scaling at an energy and A-dependent transition point on centrality. The transition point may scale with

transverse particle density [1] J. Adams et al. (STAR Collaboration), Phys. Rev. C 73, 0649507 (2006).
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2-point correlation functions 2-point correlation functions 15] 62 GeV CuCu are due to 'hard' scattering of partons.
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*Minijet amplitudes follow binary scaling for peripheral collisions, greatly exceeding
binary scaling for more central collisions

*Minijet 1 width increases with centrality

*Minijet ¢ widths are large for peripheral collisions, minijets go from elongation in
¢ to elongation in N

«Away-side cos(9,) ridge is tightly correlated with minijet amplitude. Ratio of
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amplitudes depends on minijet multiplicity and acceptance of away-side jet
«Away-side cos(¢,) ridge is not attenuated by 'medium’. Particles separated by
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M. Daugherity R REi e T O e g o - «cos(2¢,) amplitude is smoothly varying while minijet amplitudes transition from
CI=LS+US Subtracting cos(2¢) and narrow exponential shows sharp CI=LS+US 200 GeV CuCu also shows growth in same-side “_”""l‘m‘i'lzm‘"'lam‘"'l""""'l"'"""'l"""""l*"""lé"""l%}ﬁo binary collision scaling to greatly exceeding binary scaling

increase in amplitude and 1|, width of same-side peak amplitude and 1, width, but for more central collisions
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y.=In((m,+p,)/m) 200 GeV Au-Au Data, selected centralities Understand Au-Au and Cu-Cu by referring to proton-proton collisions. Pileup contamination is a problem
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Low-y, correlation strength increases with centrality for like-sign Few low-y, pairs for peripheral events . o . o
t t , are contaminated with pileup. We reject 75%
Correlated high-y, pairs continue to most-central events Correlation strength of high-y pairs increases with centrality 2 of those and extrapolate to no pileup.
lected it Conclusions
200 GeV Cu-Cu Data, selected centralities
same-side like-sign away-side like-sign We have measured 2-point correlations in subspaces of the six dimensional (p,,p,) space.
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There is little structure along the (n,,m,) and (¢,,0,) diagonals allowing us to concentrate on (y ,,y,,)
and (n,-N,,0,-¢,) = (M,,9,) sub-spaces.

peripheral - central peripheral . central In the axial subspace the major structures are described by cos(2¢,), cos(¢,) and 2D Gaussian centered
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at (0,0) terms. The cos(¢,) and 2D Gaussian are strongly correlated, increasing greatly in strength

with centrality. The 2D Gaussian is elongated in ¢ for peripheral events, becoming strongly
elongated in M for central events.

same-side unhke 51gn away _side unlike- 51gn

The (y,,,y,,) subspace shows a strong feature centered near p =1.5 GeV/c. This is strongly
Cu-Cu (y,,,y,,) correlations are qualitatively similar to No indication of centrality-dependent energy loss.

Au-Au correlations. Note that the cos(2¢ ) amplitude Expect particle traversing medium to lose energy, so Correlated with the 2D Gaussian and cos(¢ A) component seen in the axial space.
4 peak should move to lower y_and spread off diagonal

is an order of magnitude smaller for Cu-Cu. No evidence for energy loss.

Observed 2-particle correlations are consistent with abundant particle production via
hard parton scattering and strongly inconsistent with a thermalized opaque medium.
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