
  

Anomalous centrality variation of two-particle angular correlations associated with 
minijets in Cu-Cu and Au-Au collisions at 62 and 200 GeV from STAR

Duncan Prindle   University of Washington (STAR Collaboration) 

Our results confirm a rapid transition of minijet correlation properties observed previously at 130 GeV [1]. Minijet systematic 
trends correspond well with the two-component systematics of single-particle p

t
 spectra, specifically the hard component and 

possible parton energy loss. Minijet structure is also evident in complementary 2D correlations on transverse rapidity (y
t1
,y

t2
) 

[where y
t
 = log((p

t
 + m

t
)/m

0
)]. Results will be shown for the 200 GeV Au-Au data which indicate that back-to-back minijets 

persist even in most-central Au-Au collisions. The strong increase of minijet correlations from peripheral to central Au-Au 
collisions is strongly inconsistent with expectations for thermalization in heavy ion collisions.

[1] J. Adams et al. (STAR Collaboration), Phys. Rev. C 73, 064907 (2006).

We have measured 2D autocorrelations on  for all unidentified charged hadrons  with p
t
 > 0.15 GeV/c, || < 1 and 

2azimuth from minimum bias Cu-Cu and Au-Au collisions at 62 and 200 GeV. The correlation structure is dominated by a 
“same-side" 2D peak centered at zero relative opening angle on  and  which we hypothesize is caused by minimum-bias jets 
(minijets), i.e. jets without lower-p

t
 acceptance cut-offs. We observe a large excess of minijet-induced correlations in more-

central Au-Au collisions relative to binary-collision scaling (more correlated pairs than expected even from volume emission and 
fragmentation of scattered partons). The minijet peak amplitude and  width undergo a sudden and dramatic increase relative to 
binary-collision scaling at an energy and A-dependent transition point on centrality. The transition point may scale with 
transverse particle density.
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Autocorrelations

Define: ρ(φ ) is single-particle density in one event

Loop over all particle 
pairs, make a histogram of 
their angular difference: 

Exact same form as the 
autocorrelation in conventional 
signal analysis

Step-by-step procedure :
• Loop over all possible pairs of particles
• Create two-particle correlation
• Project on to difference axis
• Average over many events

measure 
tracks in TPC

centersbin at  consider ∆φ

)( ∆φρr

bin width δ

Then average over many events

Multivariable Correlations

Like Sign Unlike Sign
η ∆

φ ∆

η Σ

φ Σ

If the structure is all in the difference variable 
then you can project without loss of information

2D Angular Autocorrelation

Make use of η∆ dependence to distinguish different structures

p-p 200 GeV

Jet-like structures
 No trigger

stationarity

Original measurement space Full angular space Autocorrelation space

average over
can make cuts

project

Δρ as a histogram on bin (a,b):

Normalize

measures number of 
correlated pairs per 
final state particle

ρ(p1,p2) = 2 particle density in momentum space 

Event 1

Event 2

ρsibling(p1,p2)

ρreference(p1,p2)

ε = bin width, converts density to bin counts

Start with a standard definition in statistics: 

Correlation Measure

Pearson’s Correlation Coefficient

28-38%36-46%64-74% 55-64% 46-55%

Subtracting cos(2) and narrow exponential shows sharp
increase in amplitude and  width of same-side peak
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Analyzed 1.2M minbias 200 GeV Au+Au events; 
included all tracks with pt > 0.15 GeV/c, |η| < 1, full φ 
 

STAR Preliminary

200 GeV Au-Au Data, selected centralities

CI=LS+US

M. Daugherity

21.5-26% 17-21.5% 13-17% 8-13% 3-8%

Analyzed 17M minbias 200 GeV Cu+Cu events; 
included all tracks with pT > 0.15 GeV/c, |η| < 1, full φ  

200 GeV Cu-Cu Data, selected centralities

200 GeV CuCu also shows growth in same-side 
amplitude and  width, but for more central collisions

STAR Preliminary
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2-point correlation functions

subtract cos(2) and exponential

2-point correlation functions

subtract cos(2) and exponential

Note: No track efficiency has been applied to
          Cu-Cu data shown in this poster.
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GLS GLS •Minijet amplitudes follow binary scaling for peripheral collisions, greatly exceeding
     binary scaling for more central collisions
•Minijet  width increases with centrality
•Minijet  widths are large for peripheral collisions, minijets go from elongation in
      to elongation in 
•Away-side cos() ridge is tightly correlated with minijet amplitude. Ratio of

     amplitudes depends on minijet multiplicity and acceptance of away-side jet
•Away-side cos() ridge is not attenuated by 'medium'. Particles separated by

      in azimuth are correlated

•cos(2) amplitude is smoothly varying while minijet amplitudes transition from

     binary collision scaling to greatly exceeding binary scaling

Subtracting cos(2) term from measured 2-point autocorrelations allows one

to observe a same-side peak and away-side ridge that both grow with centrality.
Fitting to a model function helps quantify features and indicate these features
are due to 'hard' scattering of partons.

same-side  widthsame-side peak amplitude

away-side peak amplitude

same-side  width

quadrupole amplitude

same-side/away-side

200 GeV Au-Au Data, selected centralities

74-84% 55-64% 38-46% 18-28% 5-9%

same-side like-sign away-side like-sign
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peripheral central

y t=ln mtp t/m0

P
t
=1.4 GeV/c

For same-side we see HBT on the like-sign diagonal
Low-y

t
 correlation strength increases with centrality for like-sign

Correlated high-y
t
 pairs continue to most-central events

P
t
=0.33 GeV/c

Away-side is largely independent of charge sign (like-sign~unlike-sign)
Few low-y

t
 pairs for peripheral events

Correlation strength  of high-y
t
 pairs increases with centrality

peripheral central

200 GeV Cu-Cu Data, selected centralities
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Cu-Cu (y
t1
,y

t2
) correlations are qualitatively similar to

Au-Au correlations. Note that the cos(2) amplitude

is an order of magnitude smaller for Cu-Cu.

No indication of centrality-dependent energy loss.
Expect particle traversing medium to lose energy, so
peak should move to lower y

t
 and spread off diagonal

same-side like-sign

same-side unlike-sign

away-side like-sign

away-side unlike-sign

peripheral central peripheral central

STRINGS

MINIJETS

hep-ph/0506172

yt1

yt2

same-side – small opening angle 
minijet + HBT

away-side – ΦΔ ~ π 

HBT 

string fragments – 1D 
Gaussian on ηΔ

• This is a minimum-bias 

jet, no trigger particle 
required

• we can see jet-like 
correlations down to 0.35 
GeV

Understand Au-Au and Cu-Cu by referring to proton-proton collisions.

y t=ln mtp t/m0

proton-proton collisions

Collisions occurring within 40 s of a trigger
can be reconstructed as the trigger or contribute
to triggered vertex.

Subtract (or isolate) pileup.
Estimate rejection factor f = 0.75

 CI

STAR Preliminary

Pileup contamination is a problem

without pileup cut

remove pileup

with pileup cut

isolate pileup

200 GeV CuCu, mid-centrality

The TPC readout from this trigger contains
tracks from a collision 20 s earlier. The
tracks on the right are reconstructed to a
vertex near the triggered primary.

5% of 200 GeV Cu-Cu and 0.5%  62 GeV AuAu
are contaminated with pileup. We reject 75%
of those and extrapolate to no pileup.

Conclusions

We have measured 2-point correlations in subspaces of the six dimensional (p
1
,p

2
) space.

There is little structure along the (
1
,

2
) and (

1
,

2
) diagonals allowing us to concentrate on (y

t1
,y

t2
) 

and (
1
-

2
,

1
-

2
)  () sub-spaces.

In the axial subspace the major structures are described by cos(2), cos() and 2D Gaussian centered

 at (0,0) terms. The cos() and 2D Gaussian are strongly correlated, increasing greatly in strength

with centrality. The 2D Gaussian is elongated in  for peripheral events, becoming strongly
elongated in  for central events.

The (y
t1
,y

t2
) subspace shows a strong feature centered near p

t
=1.5 GeV/c. This is strongly

Correlated with the 2D Gaussian and cos() component seen in the axial space.

No evidence for energy loss.

Observed 2-particle correlations are consistent with abundant particle production via
hard parton scattering and strongly inconsistent with a thermalized opaque medium.
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longitudinal fragmentation
1D gaussian 
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2D exponential
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Au-Au fit function
Use proton-proton fit function + cos(2φΔ) 
quadrupole term (~flow).  
This gives the simplest possible way to 
describe Au+Au data. 

ηΔ

φΔ

dipole

quadrupole

cos(2φΔ)

Fit Function (5 easy pieces)

Same-side “Minijet” 
Peak,  2D gaussian

Away-side 
-cos(φ)

“soft” “hard”

away-sidesame-side
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21.5-26% 17-21.5% 13-17% 8-13% 3-8%
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