# Quarkonium Production at STAR



#### Christopher Powell for the STAR Collaboration

Lawrence Berkeley National Laboratory / University of Cape Town



International Europhysics Conference on High Energy Physics Grenoble, France, July 21 - 27, 2011

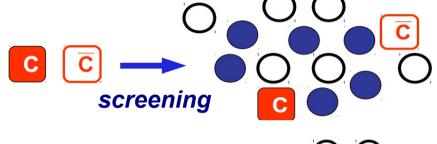


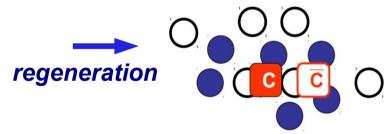
### Introduction

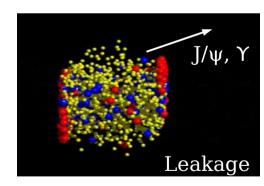
Heavy quarks are created in the initial hard scattering

 $\rightarrow$  exposed to the evolution of the system.

Quarkonium are used to probe the properties of the hot dense matter created at RHIC.


**Expect suppression in** a deconfined medium.


Similar suppression at SPS and RHIC


Regeneration from sea of quarks?

#### A+A collisions:

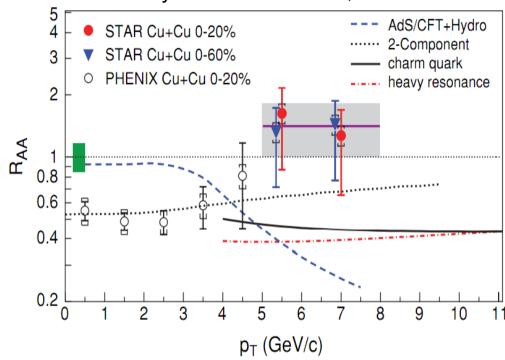
- Modification of production due to QGP (e.g. color-screening, regeneration);
- Initial-state gluon multi-scattering;
- Escape from fireball at high-p<sub>¬</sub>;
- Feed down from excited states;
  - $\rightarrow$  Measure p<sub>T</sub> spectra, elliptic flow (v<sub>2</sub>), R<sub>2</sub>







### **Previous Measurements**


Nuclear modification factor:

$$R_{\mathrm{AA}} = \frac{\mathrm{d}N/\mathrm{d}y\big|_{\mathrm{A+A}}}{N_{\mathrm{coll}} \cdot \mathrm{d}N/\mathrm{d}y\big|_{\mathrm{p+p}}}$$

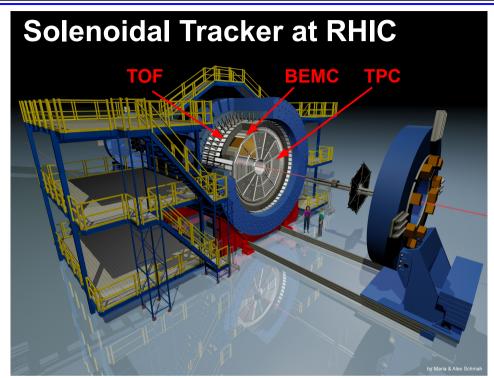
Look at high-p<sub>T</sub> J/ψ to understand system size and formation time effects

#### $J/\psi$ in Cu+Cu at 200 GeV

Phys.Rev.C80:041902,2009



No suppression in Cu+Cu 200 GeV at high-p<sub>T</sub>


#### $\rightarrow$ leakage / $p_{T}$ broadening

Data agrees with 2 Component model (dissociation, regeneration, formation time effects)



## STAR Experiment

J/ψ,  $Y \rightarrow e^+ e^-$  (BR = 5.9%, 2.4%)



### 

#### **Large Acceptance:**

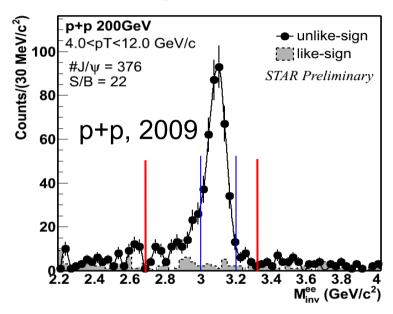
 $|\eta| < 1$ ,  $0 < \varphi < 2\pi$ 

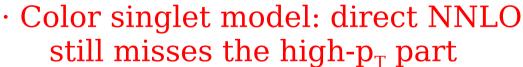
#### **Time Projection Chamber:**

Tracking  $\rightarrow p_T$ ,  $\eta$ ,  $\phi$  dE/dx  $\rightarrow$  PID

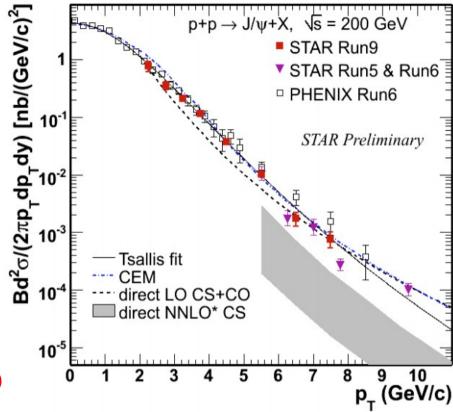
#### **Time Of Flight:**

Timing res. < 100 ps  $1/\beta \rightarrow \text{PID}$ 


# **Barrel Electromagnetic Calorimeter:**


Tower  $\Delta \eta \times \Delta \phi = 0.05 \times 0.05$ Energy  $\rightarrow$  E/p  $\sim$  1 (electrons)




# J/ψ Spectra in p+p 200 GeV

Look at p<sub>T</sub> spectrum in p+p to understand production mechanism



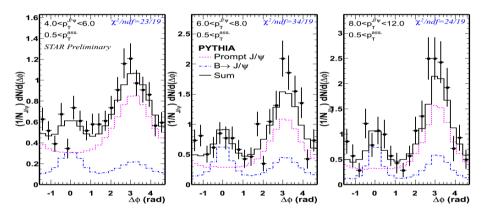


- · LO CS+CO: leave no room for feeddown at high p<sub>T</sub>
- · CEM can describe J/ψ in p+p 200 GeV data

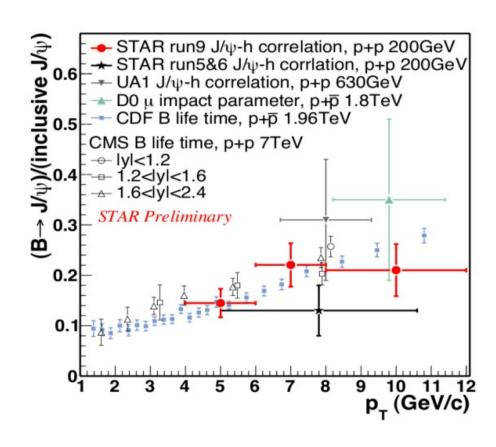


PHENIX: Phys. Rev. D 82, 012001 (2010) STAR: Phys. Rev. C80, 041902(R) (2009) Phys. Rev. Lett. 101, 152001 (2008) Phys. Rev. D68, 034003 (2003)

JPG 37, 085104 (2010) arXiv: hep-ph/0311048




## $B \rightarrow J/\psi$ (incl.) feed-down


#### J/ψ-hadron azimuthal correlations

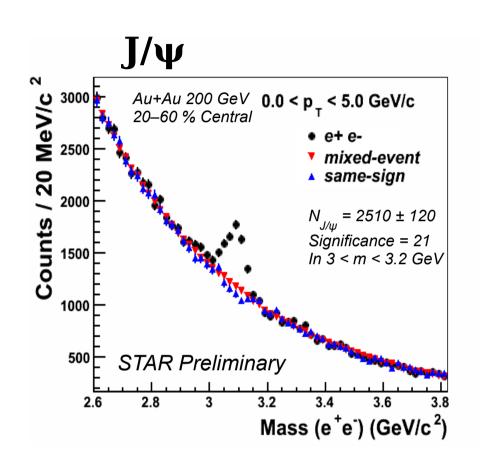
Separate direct J/ $\psi$  from B  $\rightarrow$  J/ $\psi$  feed-down:

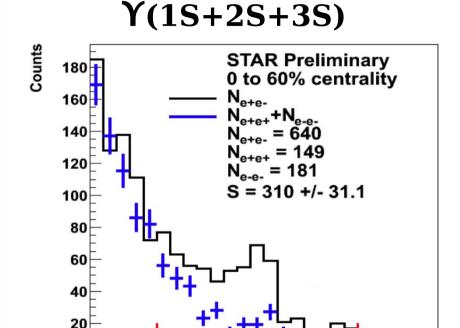
$$\cdot J/\psi_{Total} = J/\psi_{Direct} + J/\psi_{B \to J/\psi}$$



Model based extraction using PYTHIA




No significant beam energy dependence


Constrain feed-down contribution:

 $(B \to J/\psi) / (incl. J/\psi) \sim 10 - 25 \%$ 



# Signal in Au+Au 200 GeV



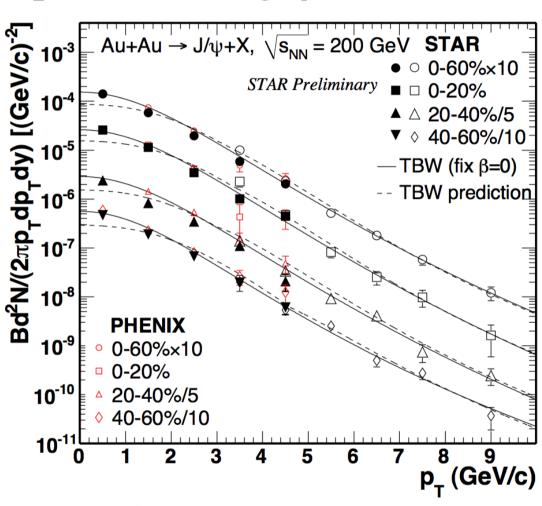


10

Mee (GeV/c2)

Clean signal with high significance for  $J/\psi$  and  $\Upsilon$ . First  $\Upsilon$  measurement in heavy ion collisions!

# J/ψ Spectra in Au+Au


#### Transverse momentum dependence of J/\psi

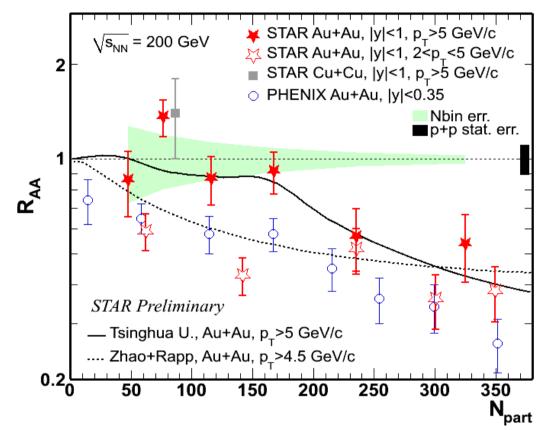
Hydro-inspired blast wave fit to data:

Softer spectra than light hadron prediction
→ low-p<sub>T</sub> regeneration

J/ψ range extended to low and high  $p_T$  from 0 - 10 GeV/c

Agreement between STAR (|y| < 1) and PHENIX (|y| < 0.35)




Phys. Rev. Lett. 98, 232301 (2007) JPG 37, 085104 (2010)



### $J/\psi R_{AA} in Au + Au$

Modification of  $J/\psi$  in A+A collisions

- → suppression, regeneration in central events
- → escape from hot medium at high p<sub>т</sub>



Suppression of J/ $\psi$  in central collisions. Data agrees with 2 Component model Smaller R for lower p across the cent

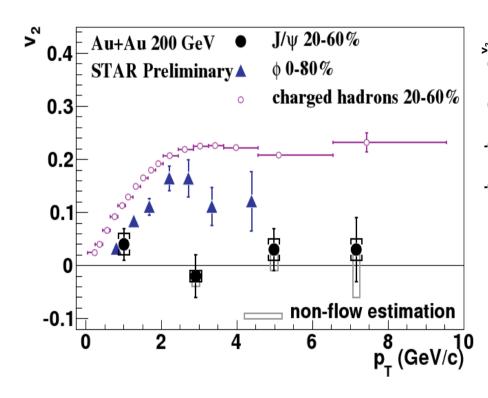
-Y. Liu et. al., PLB 678:72 (2009)

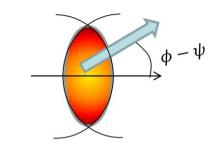
-X. Zhao, R. Rapp, PRC82,064905(2010)

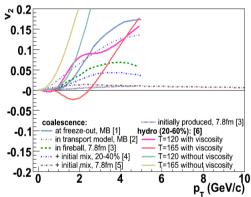
Smaller  $R_{AA}$  for lower  $p_{T}$  across the centrality range.

Formation time / system size effect




## $J/\psi v_2 in Au + Au$


A new probe of charmonium production and thermalization from azimuthal anisotropy:  $J/\psi$  elliptic flow  $v_2$ 


Significant flow of light hadrons and φ (ss) meson observed.

# J/ $\psi$ v<sub>2</sub> is consistent with zero!

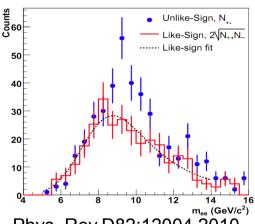
First hadron that does *not* flow.







- [1] V. Greco, C.M. Ko, R. Rapp, PLB 595, 202.
- [2] L. Ravagli, R. Rapp, PLB 655, 126.
- [3] L. Yan, P. Zhuang, N. Xu, PRL 97, 232301.
- [4] X. Zhao, R. Rapp, 24th WWND, 2008.
- [5] Y. Liu, N. Xu, P. Zhuang, Nucl. Phy. A, 834, 317.
- [6] U. Heinz, C. Shen, priviate communication.


Disfavor regeneration from thermalized charm quarks in 20 - 60 % central collisions.

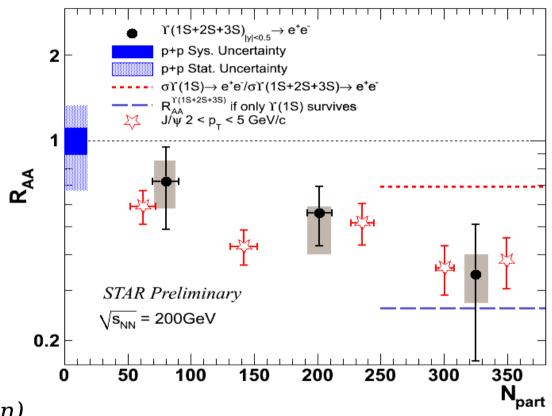


### $\Upsilon(1S+2S+3S)$ R<sub>AA</sub> in Au+Au

Cleaner probe of deconfinement (negligible regeneration)

Y in p+p at 200 GeV




Phys. Rev.D82:12004,2010

#### Comparison lines:

Red: 1S / (1S+2S+3S)

(from low energy data)

Blue: 1S direct (no feed-down)



Suppression of  $\Upsilon(1S+2S+3S)$  in 0-10%,  $R_{AA} = 0.34\pm0.17$ .

More statistics to come - reduce uncertainty by a factor of 2



## Summary

#### *In p+p collisions:*

J/ψ  $p_T$  spectrum extended to high  $p_T$ .

B feed-down to J/ $\psi$  measured ~ 10 - 25 %.

#### In heavy ion collisions:

Suppression of J/ $\psi$  and  $\Upsilon$  in central collisions. No suppression for high-pT J/ $\psi$  in Cu+Cu and peripheral Au+Au

→ formation time / system size effects.

 $J/\psi v_2$  is consistent with zero

- → disfavor regeneration of thermalized charm quarks.
- $\rightarrow$  J/ $\psi$  is the only meson that does not flow!

Quarkonium production is very exciting!

