Excited QCD Kopaonik, Serbia, 2018

Overview of recent heavy flavor results at STAR

Pavol Federič

for the STAR collaboration

Nuclear Physics Institute of the Czech Academy of Sciences

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

Outline

- STAR experiment at RHIC
- Open heavy flavor measurements
- Quarkonium measurements
- Summary

RHIC

The Solenoidal Tracker At RHIC (STAR) detector

Time Projection Chamber (TPC):

- tracking
- particle identification via dE/dx

Time Of Flight (TOF):

- particle identification via $1/\beta$

Heavy Flavor Tracker (HFT, 2014-2016):

- tracking
- secondary vertex reconstruction

Muon Telescope Detector (MTD):

- triggering
- muon identification

TPC/TOF/HFT: full azimuthal coverage at mid-rapidity ($|\eta| < 1$)

Heavy Flavor Tracker

Heavy Flavor Tracker (HFT):

- SSD Silicon Strip Detector
- IST Intermediate Silicon Tracker
- PXL Pixel Detector (MAPS, 356M pixels of silicon, 20x20 μm², 0.4% X₀, air-cooled)

Track pointing resolution $\sim 50 \ \mu m$ for Kaons with p = 750 MeV/c

Muon Telescope Detector

- Designed for muon triggering and identification $(p_T \gtrsim 1.2 \text{ GeV/c})$ with precise timing $\sigma \sim 100 \text{ ps}$
- Multi-gap resistive plate chambers (MRPC), similar technology as used for Time of Flight (TOF) detector
- Placed behind magnet, which is used as a hadron absorber (~ 5 λ_I)
- Geometrical acceptance: ~45% in azimuth within $|\eta| < 0.5$

Open heavy flavor in the QGP

Heavy quarks (c, b)

 $m_b > m_c >> T_{QGP}$, Λ_{QCD}

- Produced early in initial hard scatterings → experiencing the entire evolution of the hot nuclear matter → used as a probe to study properties of the QGP medium
- Charm production rates are well described by pQCD in p+p collisions
- Flavor dependence of parton energy loss is sensitive to the medium properties
- Compare yields of different charm hadrons to study the hadronization process

STAR

$D^0 R_{AA}$ and elliptic flow

- Significant yield suppression in central Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$ for $p_{_{T}} > 2.5 \text{ GeV/c} \rightarrow \text{ strong charm-medium}$ interaction
- R_{AA} of D^0 and D^{\pm} are consistent

STAR D⁰:2010/2011 PRL 113 (2014) 142301; v₂: PRL 118, 212301 (2017) TAMU: Eur. Phys. J. C (2016) 76: 107 & private comm.;

 $E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \psi_{r}))\right)$

- D⁰ azimuthal anisotropy significantly above zero for $p_T > 1.5 \text{ GeV/c} \rightarrow \text{ charm quark flows with the medium}$
- Models with strong charm-medium interactions describe qualitatively the data
- D_s charm quark spatial diffusion coefficient in the medium
- $(2\pi T)D_s = 2 12 \text{ for } T_c 2T_c$

SUBATECH: PRC 91(2015) 054902 & private comm.;Duke: PRC 92(2015) 024907 & private comm.; PHSD: PRC 90, 051901 (2014), PRC 92, 014910 (2015); LBT: Phys. Rev. C 94, 014909 (2016); 3D viscous hydro: PRC 86, 024911 (2012), PRD 91, 074027 (2015) & private comm.

Comparison to light flavors

PRC 77 (2008) 54901, PRL 116 (2016) 62301, PRL 118 (2017) 212301

- Mass ordering is observed below 2 GeV/c
- D^ov₂ exhibits same NCQ (number of constituent quarks) scaling as light hadrons
 - → charm quarks may have acquired similar flow as light quarks

D⁰ triangular flow

- First D⁰ v₃ measurement at RHIC
- Non-zero D⁰ v₃
 - \rightarrow importance of initial fluctuations
- Non-zero $D^0 v_2^{}$ and $v_3^{}$
 - \rightarrow strong collective behaviour
- D⁰ v₃ also follows the NCQ scaling within errors
- Need more statistics for solid conclusion (add data from 2016)

D_s / D^{0_-} study of charm hadronization mechanism

TAMU: PRL 110 (2013) 112301 H1 Collaboration, Eur.Phys.J.C38(2005)447 ZEUS Collaboration, Eur.Phys.J.C44(2005)351

- Strong enhancement of the D_s/D^0 ratio compared to fragmentation ratio measured at HERA and PYTHIA version 6.4
- Enhancement in 10–40% centrality seems stronger than the TAMU model calculation with charm quark coalescence

Λ_{c} reconstruction

- First measurement of charmed baryons in high-energy heavy-ion collisions
- $c\tau = 60 \ \mu m$
- B.R. = 6.35%
- $\Lambda_c^{\pm} \rightarrow p^{\pm} K^{\mp} \pi^{\pm}$

Distance between

vertices of daughter pairs

DCA to F

V_c / D_0

• Clear enhancement of Λ_{c} / D⁰ observed compared to PYTHIA:

STAR: PRL 108 (2012) 072301 SHM: PRC 79 (2009) 044905 Ko: PRL 100 (2008) 222301 Greco: arXiv:1712.00730

- STAR: 1.3 ± 0.3 (stat.) ± 0.4 (sys.)
- PYTHIA: 0.1 0.15
- Compatible with baryon-to-meson ratios observed for light hadrons
- Ko's model (0-5%) can describe the data with both di-quark + 1 quark, and three-quark scenarios
- Grecos's model is consistent with data
- SHM prediction is lower than the data

B production measurement

Separate measurements of c and b energy losses in the medium.

Excited QCD, Pavol Federič

B-decay daughter R_{AA}

- Suppression observed in $B \ \rightarrow \ J/\psi$ and D^0 at hight $p_{_{\rm T}}$
- B \rightarrow e is less suppressed than D \rightarrow e (2 σ effect) \rightarrow consistent with mass hierarchy of parton energy loss ($\Delta E_c > \Delta E_b$)

Quarkonia in the QGP

• Quarkonia dissociation in the medium due to color screening

- Charmonia: J/ψ , ψ' , χ_C
- Bottomonia: Y(1S), Y(2S), Y(3S), χ_B

- Sequential melting: different states dissociate at different temperatures – QGP thermometer
- Interpretation of $J\!/\psi$ suppression is complicated
 - → Hot medium effects
 - Dissociation
 - Regeneration from thermalized quarks
 - → Cold nuclear matter effects
 - → Feed-down from excited charmonium states and B-hadrons

Illustration: A. Mocsy, EPJC61 (2009) 705

J/ψ in p+p

- Precise J/ ψ production cross-section measured over wide p_T range in 200 and 500 GeV p+p collisions
- CGC+NRQCD & NLO NRQCD (prompt) are consistent with data above 1 GeV/c
- Improved CEM model (direct) describes 200 GeV data well at low $\ensuremath{p_{\rm T}}$

$J/\psi R_{pAu}$

- First J/ ψ R_{pAu} measurement at RHIC
- R_{pAu} is consistent with unity at high p_T and is less than unity at low p_T
- R_{pAu} is consistent with R_{dAu} within uncertainties
 - > Bit of tension at $p_T 3.5 5 \text{ GeV/c}$ with a significance of 1.4σ
 - Suggest similar CNM effects in these collision systems
- R_{pAu} favors additional nuclear absorption effect on top of nPDF effects

$J/\psi R_{AA}$ vs. centrality

- $J/\psi R_{AA}$ for $p_T > 0$ GeV/c: smaller at RHIC than LHC \rightarrow more recombination at LHC
- J/ ψ R_{AA} for p_T > 5 GeV/c: larger at RHIC than LHC \rightarrow stronger dissociation at LHC
- Transport models with both regeneration and dissociation can qualitatively describe the data

ALICE: PLB 734 (2014) 314 CMS: JHEP 05 (2012) 063 PHENIX: PRL 98 (2007) 232301 Transport models: Model I at RHIC: PLB 678 (2009) 27 Model I at LHC: PRC89 (2014) 054911 Model II at RHIC: PRC 82 (2010) 064905 Model II at LHC: NPA 859 (2011) 114

J/ψ at very low $p_{\scriptscriptstyle T}$

- Significant enhancement of $J/\psi R_{AA}$ for $p_T < 0.2$ GeV/c
 - results between Au+Au and U+U are consistent
- No obvious centrality dependence in the production yield
- Slope of the t-distribution is similar to that of ρ meson measured in UPC
- Production mechanism: coherent photon-nucleus interaction?

ΥR_{AA} vs. centrality

- $\Upsilon(1S+2S+3S) R_{pA}$:
 - → indication of CNM effects
- $\Upsilon(1S) R_{AuAu}$:
 - → suppression in central collisions
 - → similar suppression as CMS measurements
- $\Upsilon(2S+3S) R_{AuAu}$:
 - → larger suppression in central collisions than $\Upsilon(1S) \rightarrow$ **sequential melting**
 - → indication for less suppression than at the LHC in semi-central collisions

Excited QCD, Pavol Federič

STAR Υ R_{AA} vs. models

- SBS (Strongly Binding Scenario): fast dissociation - potential based on internal energy
- WBS (Weakly Binding Scenario): slow dissociation potential based on free energy
- Strickland, Bazov : NPA 879 (2012) 25
 - → No CNM, no regeneration
- Liu, Chen, Xu, Zhang : *PLB* 697 (2011) 32
 - → No CNM
 - Dissociation only for excited states: suppression of ground state due to feed-down
- Emerick, Zhao, Rapp : *EPJ A48 (2012) 72*
 - ➤ Includes CNM
 - → SBS case

Data seem to favor SBS models

Summary

- Successful data taking with MTD and HFT in Au+Au collisions
- Open heavy flavor measurements:
 - Measurements of D⁰ R_{AA} and anisotropic flow indicate:
 - > charm quarks interact strongly with the QGP medium
 - > charm quarks flow with the medium
 - Enhanced D_s/D^0 and Λ_c/D^0 ratios suggest that charm quarks also participate in coalescence hadronization.
 - B production measured via J/ψ, D⁰ and electron decay channels in 200 GeV Au+Au collisions:
 - → B → e is less suppressed than D → e (2σ effect) → consistent with mass hierarchy of parton energy loss ($\Delta E_c > \Delta E_b$)
 - > Suppression of $B \rightarrow J/\Psi$ and $B \rightarrow D^0$ in high $p_{_{\rm T}}$ region
- Quarkonium measurements:
 - $J/\psi R_{pAu}$:
 - $\sim R_{dAu}$: suggests similar CNM effects between p+Au and d+Au collisions
 - favors additional nuclear absorption effect on top of nPDF effect
 - $J/\psi R_{AA}$:
 - → high p_T is strongly suppressed at RHIC → strong evidence for QGP formation
 - $\, \succ \,$ excess at very low ${\bf p}_{\rm T}$ consistent with coherent photon-nucleus interaction
 - Υ R_{AA}:
 - ≻ stronger suppression of $\Upsilon(2S+3S)$ than $\Upsilon(1S) \rightarrow$ sequential melting
 - > data seem to favor models with Strongly Binding Scenario

Backup

The Solenoidal Tracker At RHIC (STAR) detector

Time Projection Chamber (TPC):

- tracking
- particle identification via dE/dx

Time Of Flight (TOF):

particle identification via 1/R

Excellent identification of long-lived hadrons and electrons in TPC and TOF

D⁰ eliptic flow data vs. models

3D viscous hydro and dynamic models are consistent with data.

- **3D viscous hydro**dynamic model tuned to light hadrons: charm quarks have achieved thermal equilibrium
- D_s charm quark spatial diffusion coefficient coefficient in the medium
- **TAMU**: non-perturbative T-Matrix approach: $(2\pi T)D_s = 2 \sim 10$
- SUBATECH: pQCD + Hard Thermal Loops for resummation: (2πT)D_c = 2 – 4
- **DUKE**: Langevin simulation with transport properties tuned to LHC data: (2πT)D_s = 7
- PHSD: Parton-Hadron-String Dynamics, a transport model
 (2πT)D_c = 5 12
- **LBT**: A Linearized Boltzmann Transport model -Jet transport model extended to heavy quarks $(2\pi T)D_s = 3 - 6$

Together: $(2\pi T)Ds = 2 - 12$ for T_c - 2T_c

$J/\psi v_2$

- Two main production mechanism of J/ψ :
 - Primordial: little or zero v₂
 - Regenerated: inherit v₂ from the constituent charm quarks
- J/ ψ v₂ from 200 GeV Au+Au and from 193 GeV U+U collisions are consistent with zero within uncertainties for p_T above 2 GeV/c.
 - > Disfavor the scenario that the regeneration is the dominant contribution in this kinematic range

$J/\psi R_{AA}$ in Au+Au collisons

- Consistent with di-electron channel results over entire p_T for all centralities
- Distinct rising R_{AA} with p_T for 20-40% and 40-60% centrality bins

Di-electron: STAR PLB 722 (2013) 55 STAR PRC 90, 024906 (2014)

