

Rapidity Upgrade

Kenneth N. Barish for the STAR Collaboration

23rd International Spin Symposium September 2018

Physics with STAR in 2021+

Opportunity:

Unique program addressing several fundamental questions in QCD

Motivation: (The RHIC Cold QCD Plan for 2017 to 2023: A Portal to the EIC (arXiv:1602.03922)**)**

- Central to the mission of the RHIC physics program in cold and hot QCD
- Fully realize the scientific promise of the EIC
 - → Lay the groundwork for the EIC, both scientifically and by refining the experimental requirements
 - → Test EIC detector technologies under real conditions, i.e SiPMs

Take full advantage of STAR's unique capability including upgrades for BES-II:

Midrapidity program based on existing STAR detector utilizing iTPC, eToF and EPD upgrades (https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669)

Forward rapidity program based on upgrade consisting of Hcal + Ecal+ Tracking (Si + sTGCs) at 2.5 < η < 4 [Focus of Talk] (https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648)

Goal: Complete upgrade for potential polarized pp@500 GeV run in 2021 and the sPHENIX data taking periods

Open Questions in Cold QCD

- How are the sea quarks & gluons and their spins, distributed in space and momentum inside the nucleon? How do the nucleon properties emerge from them and their interactions?
- How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium? How do the confined hadronic states emerge from these quarks and gluons? How do the quark-gluon interactions create nuclear binding?
- How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions? What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?

200000, 200

STAR in 2021

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends h coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c

EndCap TOF: PID at η = 0.9 to 1.5

inner TPC upgrade Endcap TOF Event Plane Detector **EPD**: • Improves trigger Reduces background Allows a better and independent reaction plane

π ,K,p,e Acceptance and PID capabilities with the combination of iTPC and eTOF.

Forward Instrumentation for STAR Upgrade (I)

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~60%/√E	
Tracking	charge separation	$0.2 < p_T < 2 \text{ GeV/c with } 20-30\%$
	photon suppression	$1/p_{T}$

Calorimeter System

Intensive R&D work on both ECal and HCal as part of STAR and EIC Detector R&D

- Beam tests and STAR in situ tests
- System optimized for cost and performance
- \succ Same readout for both calorimeters \rightarrow cost

ECal Reuse PHENIX PbSC calorimeter with new readout instead of W/ScFi SPACAL

- Significant cost reduction ③
- Non-compensating calorimeter system ⁽²⁾
 HCal: Sandwich iron-scintillator plate sampling calorimeter.

CS SIDE VIEW 5-4-18

Side View

Tracking

sTGC

Forward Instrumentation for STAR Upgrade (II)

Si + Small-strip Thin Gap Chambers

Momentum resolution: 20-30% for 0.2 < p_T < 2 GeV/c track finding efficiency: 80%@100 tr/ev

3 Silicon disks + 4 sTGC disks

- Si- disks: 90, 140, 187 cm from IP
 Built on successful experience with STAR IST
 - → Single-sided double-metal mini-strip sensors
 - $\rightarrow~$ Granularity: fine in ϕ and coarse in R
 - \rightarrow Reuse of the IST cooling system
- > sTGC: 270, 300, 330, 360 cm from IP (outside
 - Magnet)
 - \rightarrow Position resolution: ~100 μm
 - → Material budget: ~0.5% per layer, 2 layers / disk
 - → Readout: reuse current STAR TPC electronics

TMDs at STAR (I)

Pushing forward => higher x: $0.05 \leq x \leq 0.5, 10 \leq Q^2 \leq 100 \text{ GeV}^2$

TMDs at STAR (II)

Unique Opportunities:

- constrains TMD evolution
- > are TMDs relevant in the gluon and sea-quark dominated regime?
- high precision data sets to test QCD concepts of factorization and universality
 - \rightarrow answers critical to have a optimal TMD program at EIC

Goals:

- Increase statistics for A_N DY from 2017
 - \rightarrow TMD evolution world best constrain
 - $\leftarrow \rightarrow A_N(W^{+/-}Z^0)$
 - \rightarrow Sivers sign change

Unravel the mystery what is the underlying process of A_N

 \rightarrow measure A_N for $\pi^{+/-}$

ightarrow clear prediction of importance of special Collins like FF

Flavor tagging of the Twist-3 equivalent of the Sivers fct.

 \rightarrow Observable h^{+/-} with z > 0.5 in jet

TMDs at STAR (III): Collins

200 vs. 500 GeV Comparison:

- First observation of a TMD at low x and high Q²
- \succ Evolution: 200 GeV \leftarrow \rightarrow 500 GeV factor 3 in Q
- Test of factorization & Universality
 - → compare with transversity from IFF
 - → compare with SIDIS and e+e-
- Inspired a lot of theory work
 - → proof of factorization: Kang et al. arXiv:1705.08443
 - → asymmetry calculation: Kang et al. arXiv:1707.00913

STAR arXiv:1708.07080 (PRD 97, 032004 (2018))

 $A_{UT}^{\pi^{*}} \approx \frac{h_{1}^{q_{1}}(x_{1},k_{T})f_{q_{2}}(x_{2},k_{T})\hat{\sigma}_{UT}(\hat{s},\hat{t},\hat{u})\Delta D_{q_{1}}^{\pi^{*}}(z,j_{T})}{f_{q_{1}}(x_{1},k_{T})f_{q_{2}}(x_{2},k_{T})\hat{\sigma}_{UU}D_{a}^{\pi^{*}}(z,j_{T})}$

Kenneth N. Barish - Spin 2018, Ferrara

TMDs at STAR (III): Transversity

Transversity is the 3rd PDF critical to fully describe the Proton wave function Measure at high x via hadron in jet: $p + p \rightarrow jet(h^{\pm})$ **Understating transversity enables constraints of tensor charge**

➤ tensor charge useful for low-energy explorations of BSM, but precision required. $\delta q^a = \int_0^1 \left[\delta q^a(x) - \delta \overline{q}^a(x) \right] dx$

Kenneth N. Barish - Spin 2018, Ferrara

Gluon Polarization

Data till 2009 1.0 $\int dx \Delta g \sim 0.2 \pm_{0.07}^{0.06} @ 10 \text{ GeV}^2$ 0.05

STAR and PHENIX data till 2015 reduce uncertainties at $x \sim 10^{-3}$ by factor 2

Only way to constrain low x further \rightarrow go forward **Di-Jets@2.5** < η < 4.0

 10^{-3}

NLO pQCD, $\sqrt{s} = 510$ GeV, anti- k_T , R=0.6, 2.8 < $y_1 < 3.7$, 2.8 < $y_2 < 3.7$

Kenneth N. Barish - Spin 2018, Ferrara

 10^{-1}

 10^{-3}

qd

 $d\sigma/d\ln(x)$,

Initial State of Nuclei

Understanding the initial state of heavy nuclei is critical to RHIC and LHC programs

Knowledge currently limited when compared to our knowledge of free protons

> Opportunities with pA@RHIC:

- Can measure nuclear PDFs (nPDFs) in a x-Q² region where nuclear effects are large
 - \blacktriangleright Q² > Q_s² over a wide range in x
- Access to observables free of final state effects
 - ➢ Gluons: R_{pA} for direct photons
 - Sea-quarks: R_{pA} for DY
- Access to saturation region at forward rapidities
- Capability to scan A-dependence prediction by saturation models

pA@RHIC: unique kinematics

Nuclear PDFs

pA: Direct Photon@2.5 < η < 4.5

Probe gluon nPDF via forward direct- γ

pA: Drell-Yan@2.5 < η < 4.5

Probe sea-quark nPDF via forward Drell-Yan

- Pilot measurements from 0.45 pb⁻¹ p+Au and 1 pb⁻¹ p+Al taken in 2015
- Planned 2023 runs -> significant impact on global analyses
- Sensitive to $10^{-3} \le x \le 10^{-2}$ and $6 \le Q^2 \le 40 \text{ GeV}^2$ where nuclear modifications should be significant
- Complimentary observables and kinematics with EIC
- Precision of pA data-> enable stringent test of nPDF universality when combined with data from EIC

Saturation

 \succ Scan A-dependence \rightarrow study the evolution of Q_s²(x) vs. A

Resolve ambiguity what causes the suppression in dAu

PHENIX Phys. Rev. Lett. 107, 172301 (2011)

(c) 14

NMC

 10^{2}

10

10

BCDMS E665 SLAC CCFR

Saturation with Forward Upgrade

Future increased luminosity+upgrades enables additional probes, e.g. forward γ + jet.

- Sensitive only to dipole gluon density
- > Sample 0.001 < x < 0.005 for both γ and jet in range 1.3 < η < 4.0 with p_T> 3.2 GeV/c²
- \succ Complement with probes, e.g. $\gamma + h$ and di-jet
- \rightarrow rigorous test of theory predictions
- \rightarrow get a handle on the different gluon distributions
- → provide variety of high precision data to test universality of CGC ← → EIC
- Study of evolution/universality of Q_s² with A and x for different probes

Summary of Forward pp & pA Measurements

	Year	\sqrt{s}	Delivered	Scientific Goals	Observable	Required	
		(GeV)	Luminosity			Upgrade	
	2023	$\mathbf{p}^{T}\mathbf{p}$	300 pb ⁻¹	Subprocess driving the large	A_N for charged	Forward instrum.	
		200	8 weeks	A_N at high x_F and η	hadrons and	ECal+HCal+Tracking	
					flavor enhanced		
ch					jets		
edu	2023	p [↑] Au	1.8 pb^{-1}	What is the nature of the	R_{pAu} direct		
llee		(a)	8 weeks	initial state and hadronization	photons and DY	Forward instrum.	
d R		200		in nuclear collisions		ECal+Hcal+Tracking	
$\mathbf{\overline{O}}$				Clear signatures for	Dihadrons, γ-jet,		
		T		Saturation	h-jet, diffraction		
	2023	p'Al	12.6 pb ⁻¹	A-dependence of nPDF,	R_{pAl} : direct	Forward instrum.	
on Du			8 weeks	A dependence for Seturation	photons and DY	ECal+HCal+Tracking	
		200		A-dependence for Saturation	Dihadrona y jot		
					Difficultion λ_{-jet} , $\lambda_{$		
	2021	$\mathbf{n}^{T}\mathbf{n}$	1.1 fb^{-1}	TMDs at low and high x	1 for Collins	Forward instrum	
_	2021	pp@ 510	1.1 IU 10 waalka		A_{UT} for Commis	Forward instrum.	
lit _		510	10 weeks		badron in jet	ECal+fiCal+fiacking	
Pot							
ent) ru					modulations at η > 1		
nn	2021	ก *ทิ(a)	1.1 fb^{-1}	$A\sigma(r)$ at small r	A_{ij} for jets, di-	Forward instrum	
g	2021	510	10 weeks	$\Delta g(x)$ at small x	$\frac{11}{10}$ iets. h/v-iets	ECal+HCal	
		010			at $n > 1$		

Opportunities at Midrapidity

Related Studies at Midrapidity

- Fragmentation functions in pp and pA, e.g. through hadrons within jets
- ✓ Nuclear modification of hadronization, e.g. through Collins effect in pA

Diffractive Physics

- ✓ SSA for UPC J/ Ψ production → GPDs
- ✓ Di-jets in UPC → gluon Wigner function (arXiv:1706.01765)
- ✓ R_{pA} for diffractive events → saturation

STAR Roman Pot the optimal tool to tag diffractive processes

Much, much more: https://drupal.star.bnl.gov/STAR/starnotes/public/sn0669

Opportunities in AA Collisions

The forward STAR upgrade unique opportunity to:

Δŋ

V₂Δ

study the structure of the initial state that leads to breaking of boost invariance in heavy ion collisions and to explore of the transport properties of the hot and dense matter formed in heavy ion collisions near the region of perfect fluidity.

	Physics Measurements Detectors		Longitudinal de-correlation $C_n(\mathcal{A}\eta)$ $r_n(\eta_{ab}\eta_b)$	η/s(T), ζ/s(T)	Mixed flow Harmonics <i>Cm,n,m+n</i>	Ridge	Event Shape and Jet- studies
	Forward Calorimeter (FCS)	$-2.5 > \eta > -4.2 E_T$ (photons, hadrons)	One of these		One of these detectors necessary	Good to have	One of these detectors needed
	Forward Tracking System (FTS)	$-2.5 > \eta > -4.2$ (charged particles)	necessary	Important		Important	
0.01 0.008 0.006 0.004 0.002	IηI<1 Au+Au 200 GeV (STAR Preliminary Data Short-Range Intermediate-range Long-Range	$C(\Delta \eta)$ Short-range Intermediate Long-range		$\begin{array}{c} & \times 10^{-6} \\ & & & \\ &$	Adamczyk et al 1701. $\cos(\Psi_1 + 2\Psi_2 - 3\Psi_3))$ $\sin(2\Psi_2 + 2\Psi_2 - 4\Psi_4))$ $(\Psi_1 + 2\Psi_2 - 3\Psi_3)$ $(\Psi_1 + 2\Psi_2 - 3\Psi_3))$ $(\Psi_1 + 2\Psi_2 - 3\Psi_3))$ $(\Psi_1 + 2\Psi_2 - 3\Psi_3))$	$\eta = 0 (x \approx 2 \times 10^{-3}) \qquad \eta = -2.$	$3 (x \approx 2 \times 10^{-4}) \qquad \eta = -4.8 (10^{-4}) = -4.8 (10^{-4$

Δn

1 2 3 Δη

Summary

- STAR results play a central role in expanding the frontier of cold-QCD
- ➢The forward upgrade builds upon the strengths of STAR to establish innovative and precision probes
 - to address critical questions, now
 - to fully realize the scientific promise of the future EIC
- Strongly endorsed by the RHIC PAC:
 - ...a rich program for future operation after BES II that addresses many important and innovative topics in p + p, p + A and A + A physics.
 - ...would enable studies of novel reaction channels...of interest to hadron structure and QGP physics alike.

Additional slides ...

Fragmentation Functions in pp & pA

Opportunities in AA Collisions (I)

Goal : Measurements of global observables in heavy ion collisions over wide range of rapidity

- Constraining longitudinal structure of the initial stages of HICs
- Constraining the temperature dependence profile of transport parameters

Till today:

No RHIC data for higher order flow harmonics (v_3, v_4, v_5) & rapidity density correlations/fluctuations $\langle \frac{dN}{dY_1} \frac{dN}{dY_2} \rangle$

Why do we need wider window in rapidity?

Flow like correlations are

- early time long-range → large Δη
 Background comes from Jets & non-flow
 - \rightarrow small $\Delta \eta$

Precise extraction of flow (azimuthal correlations) requires measurements over wide window of rapidity

Opportunities in AA Collisions (II)

Long-range two particle correlations are of great interest \rightarrow ridge in small systems

Δŋ

BNL PAC Recommendations

2017:

- As the physics program that is foreseen for forward physics is substantial, full utilization of future polarized proton beam time must be made to realize the proposed forward physics program.
- RHIC management is encouraged to find a way to enhance and include a forward physics program at RHIC.

2018:

STAR presented a rich program for future operation after BES II that addresses many important and innovative topics in p+p, p+A and A+A physics. The most interesting of these is focused on forward physics that would be made possible by a forward upgrade covering rapidities up to 4.2 with \$5.3 M further investment, and would enable studies of novel reaction channels including several specific diffractive reactions and ultra-peripheral collisions of interest to hadron structure and QGP physics alike. Hadron structure measurements, such as diffractive dijet production, are highly relevant for the physics to be investigated at EIC, both for their e+p and e+A components, and may help to further sharpen the EIC physics case. From the heavy-ion perspective, QGP vorticity and Lambda polarization measurements in peripheral collisions would address vorticity generation at the microscopic level. Several international groups have submitted or are ready to submit proposals to finance most of the needed cost-efficient forward hardware upgrades. We commend STAR for developing and sharpening this option, which enriches the range of future opportunities for BNL. However, to realize a significant fraction of this program, multi-year running will be necessary. We urge the directorate to decide within this year whether the realization of these plans is realistic. A timely analysis of the 2017 data with transverse polarization could set the pace for the data analysis of possible STAR running after BES II and should be given high priority.