The 8th Asian Triangle Heavy-Ion Conference

5-9 November 2021 Inha University, Incheon, South Korea

Search for CME with STAR experiment

Fuqiang Wang (Purdue University)

For the STAR Collaboration

Supported in part by

PURDUE UNIVERSITY

OUTLINE

- Physics motivation and observables
- Brief historical review of STAR (and other) measurements
- Recent CME measurements from STAR
 - \odot Invariant mass
 - EPD measurements
 - \circ Other observables/approaches
 - **O Spectator/participant planes**
 - \odot Isobar collisions
- Summary and outlook

CHIRAL MAGNETIC EFFECT (CME)

Discovery of the CME would imply: Chiral symmetry restoration (current-quark DOF & deconfinement); Local P/CP violation that may solve the strong CP problem (matter-antimatter asymmetry) ³

Fuqiang Wang

ATHIC Conference, Nov. 5-9, 2021, Inha University, South Korea

THE R VARIABLE

Ajitanand et al., PRC 83 (2011) 011901 Magdy et al., PRC 97 (2018) 061901(R)

$$\Delta S = \frac{\sum_{1}^{p} \sin\left(\frac{m}{2}\Delta\varphi_{m}\right)}{p} - \frac{\sum_{1}^{n} \sin\left(\frac{m}{2}\Delta\varphi_{m}\right)}{n}$$
$$R(\Delta S_{m}) \equiv \frac{N(\Delta S_{m,\text{real}})}{N(\Delta S_{m,\text{shuffled}})} / \frac{N(\Delta S_{m,\text{real}}^{\perp})}{N(\Delta S_{m,\text{shuffled}}^{\perp})}, \quad m = 2, 3, ...,$$

Yufu Lin's talk this afternoon

Choudhury et al. arXiv:2105.06044 [nucl-ex], CPC in print.

Width of R(Δ S) distribution reduces to variance sin*sin, cos*cos \rightarrow equivalently the $\Delta\gamma$ variable

$$\frac{S_{\text{concavity}}}{\sigma_{R2}^2} \approx -\frac{M}{2}(M-1)\Delta\gamma_{112}$$

$$\frac{S_{\rm concavity}}{\sigma_{R2'}^2} = \frac{S_{\rm concavity}}{\sigma_{R2}^2} \langle (\Delta S_{2,\rm shuffled})^2 \rangle \approx -\frac{M}{2} (M-1) \Delta \gamma_{112} \times \frac{2}{M} \approx -M \Delta \gamma_{112}$$

- Established analytical relationship between $\Delta \gamma$ and $R_{\Psi 2}(\Delta S)$
- "Equivalence" verified by MC simulations and the EBE-AVFD model
- $\Delta \gamma$ and $R_{\Psi 2}(\Delta S)$ have similar sensitivities to CME signal and background

STAR (and ALICE, CMS) MEASUREMENTS

MEASUREMENT IN INVARIANT MASS

Jie Zhao, Hanlin Li, FW, Eur.Phys.J.C 79 (2019) 168 STAR, arXiv:2006.05035

- Explicit demonstration of "resonance" background
- Exploit "ESE" to extract CME, assuming CME is mass independent
- Upper limit 15% at 95% CL

MORE RECENT LOW ENERGY (27 GeV) DATA

Yu Hu (STAR), arXiv:2110.15937, SQM 2021

- Higher statistics, new detector (EPD)
- New approach: inner EPD -> first-order harmonic plane; Outer EPD -> second-order harmonic plane.
- Current data consistent with background contributions

NEW OBSERVALES/APPROACHES

Signed balance function (SPF) Tang, CPC 44 (2020) 054101 Yufu Lin (STAR), NPA 1005 (2021) 121828, QM 2019

- r is out-of-plane to in-plane ratio of the SPF momentum-ordering difference
- Both r_{rest} and R_B=r_{rest}/r_{lab} are larger than unity, above model calculations without CME.

CME-helicity correlation Du, Finch, Sandweiss, PRC 78 (2008) 044908 Finch, Murray, PRC 96 (2017) 044911 Yicheng Feng (STAR), DNP 2020

- Positive correlation btw CME Δa_1 and Λ net-helicity from chirality anomaly
- Current signal consistent with zero within uncertainties

Sliding Dumbbell Jagbir Singh (STAR) QM 2019

- Select CME enriched sample
- Perform Δγ measurement with background subtraction in separate event classes

W.R.T. SPECTATOR & PARTICIPANT PLANES, 2021

Haojie Xu et al., CPC 42 (2018) 084103, arXiv:1710.07265 S.A. Voloshin, PRC 98 (2018) 054911, arXiv:1805.05300

Au+Au Collisions at 200 GeV (2.4B MB)

STAR, arXiv:2106.09243

- Consistent-with-zero signal in peripheral 50-80% collisions with relatively large errors
- Indications of finite signal in mid-central 20-50% collisions, with 1-3 σ significance
- Possible remaining nonflow effects

ATHIC Conference, Nov. 5-9, 2021, Inha University, South Korea

MODEL ESTIMATES OF NONFLOW

Feng et al., arXiv:2106.15595

$$f_{\rm CME}^* \approx \left(\epsilon_{\rm nf} - \frac{\epsilon_3/\epsilon_2}{Nv_2^2 \{{\rm EP}\}}\right) \left/ \left(\frac{1+\epsilon_{\rm nf}}{a^2} - 1\right)\right.$$

- 2-particle nonflow estimates from AMPT
- 3-particle nonflow estimates from HIJING
- Net effect on f_{CME} can possibly be negative (model dependent)
 - Further, additional model studies

Search for the Chiral Magnetic Effect with Isobar Collisions at $\sqrt{s_{NN}}$ = 200 GeV by the STAR Collaboration at RHIC https://arxiv.org/abs/2109.00131

ISOBAR COLLISIONS

Voloshin, PRL 105 (2010) 172301

Same A \rightarrow same background Different Z \rightarrow different signal

Yicheng Feng, Yufu Lin, Jie Zhao, FW, arXiv:2103.10378

If AuAu f_{CME} =10%, then isobar 3% (1 σ effect)

Caveats: Axial charge densities and sphaleron transition probabilities could be different between Au+Au and isobar, e.g. AVFD-glasma μ_5 /s: isobar/AuAu ~ 1.5

ISOBAR SYSTEMS ARE NOT IDENTICAL: MULTIPLICITY

ISOBAR SYSTEMS ARE NOT IDENTICAL: V₂

$\Delta \gamma / v_2$ RESULTS FROM MULTIPLE GROUPS

All groups are consistent. $\Delta \gamma / v_2$ follows closely with N_{ch}

Ratio

20

10

$\Delta \gamma$, $\Delta \gamma / v_2$, $\kappa = \Delta \gamma / (\Delta \delta * v_2)$ MEASUREMENTS

Indeed a precision of 0.4% is achieved!

Ru+Ru/Zr+Zr ratios all below unity, naively unexpected; main reason is the 4.4% Nch difference

MONEY PLOTS

- Depending on the relative Ru+Ru/Zr+Zr difference of various nonflow effects, the baseline can be above, equal, or below unity
- Final isobar conclusion will require detailed nonflow studies

SUMMARY AND OUTLOOK

- CME is very important physics. Significant efforts in theory and experiments.
- STAR has pioneered and played significant role in the CME search. Primary efforts in understanding and removing backgrounds.
- The possible CME is a small fraction of the measured $\Delta\gamma$ signal. Most recent STAR data indicate a finite CME signal with 1-3 σ significance; nonflow effects under investigation.
- Isobar blind analysis is a tour de force. Anticipated precision down to 0.4% is achieved. No CME signal is observed in the blind analysis; not inconsistent with Au+Au data. Further (nonflow) investigations needed to quantify significance.
- Current data 2.4B MB Au+Au, 3.8B isobar events. Expect 20B Au+Au from 2023+25 runs, together with large BES-II data samples.

Backup slides

THE INVARIANT MASS METHOD

Zhao, Li, Wang, Eur. Phys. J.C 79 (2019) 2, 168

STAR, arXiv:2006.05035

CME fraction = $(2 \pm 4 \pm 5)\%$ CME upper limit 15% at 95% CL

Au+Au Collisions at 200 GeV (2.4B MB)

STAR, arXiv:2106.09243

ATHIC Conference, Nov. 5-9, 2021, Inha University, South Korea

MODEL ESTIMATES OF NONFLOW

Feng et al., arXiv:2106.15595

$$\frac{A}{a} = \frac{\Delta\gamma\{\text{SP}\} / v_2\{\text{SP}\}}{\Delta\gamma\{\text{PP}\}^* / v_2\{\text{PP}\}^*} = \frac{C_3\{\text{SP}\} / v_2^2\{\text{SP}\}}{C_3\{\text{PP}\}^* / v_2^2\{\text{PP}\}^*} = \frac{1 + \varepsilon_{\text{nf}}}{1 + \frac{\varepsilon_3 / \varepsilon_2}{Nv_2^2\{\text{PP}\}}}$$

NONFLOW EFFECTS IN $f_{\rm CME}$

There may indeed be hint of CME in the data, $\sim 2\sigma$

Au+Au DATA AND ISOBAR ARE CONSISTENT

Yicheng Feng, Yufu Lin, Jie Zhao, FW, arXiv:2103.10378

Caveats: Axial charge densities and sphaleron transition probabilities could be different between Au+Au and isobar, e.g. AVFD-glasma μ_5 /s: isobar/AuAu ~ 1.5

Fuqiang Wang

INVARIANT MASS MEASUREMENT

Relative pair multiplicity difference

- r deviates from unity, qualitatively consistent with 1/N ratio.
- $a' = v_2^{Ru+Ru}/v_2^{Zr+Zr}$
- r not included in the predefined a'
- Including *r* into a', $\Delta \gamma^{\text{Ru+Ru}}$ - a' $\Delta \gamma^{\text{Zr+Zr}}$ becomes numerically positive but within 1σ from zero.

CME FRACTION MEASUREMENTS

