Geometrical Effect on Conical Emission of Correlated Hadrons

Fuqiang Wang Purdue University For the STAR Collaboration

Double-peak in dihadron corr.

Broad away-side, and for selected pt region even double-peaked.

Double-peak in raw corr. in specific kinematic region without any bkgd subtraction!

 $v_2 = (v_2{4} + v_2{2}) / 2$ flow syst. = $v_2{4} : v_2{2}$ Large **flow syst.** applied: **± 30% !**

ZYAM: B(1+2 $v_{2,t}v_{2,a}\cos 2\Delta \phi$)

v_{2,t}v_{2,a} is small, ~< signal/bkgd

Even 10% uncertainty in **ZYAM** does not introduce dip.

Evidence of conical emission

Two-component model: event = correlated + uncorrelated (i.e. flow-bkgd)

Fuqiang Wang

Strangeness Quark Matter 2009

Cumulants

 $\hat{\rho}_{3}(\varphi_{t},\varphi_{1},\varphi_{2}) = \rho_{3}(\varphi_{t},\varphi_{1},\varphi_{2}) - \rho_{2}(\varphi_{1},\varphi_{2})\rho_{1}(\varphi_{t}) - \rho_{2}(\varphi_{t},\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1}) + 2\rho_{1}(\varphi_{t})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{1})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{2})\rho_{1}(\varphi_{2})\rho_{1}(\varphi_{2}) - \rho_{2}(\varphi_{t},\varphi_{2})\rho_{1}(\varphi_{2})$

Conical emission angle

STAR, PRL 102, 052302 (2009)

Fuqiang Wang

Speed of sound?

$$\cos\left(\theta_{M}\right) = c_{s}$$

Measured
$$\theta = 1.37$$

speed of sound
 $c_s \sim 0.2$

 c_s far smaller than HG or QGP. Must have mixed phase (phase transition).

However, model calculations indicate that Mach Cone angle can be altered by medium flow.

Model study of flow effect on Mach cone angle

Back-to-back ridge + Away conical emission

2 Gaus: Ridge at 0 and ridge at π , same shape, diff. magnitudes 2 Gaus: identical conical emission peaks symmetric about π .

Away peak fit positions

Fit: Back-to-back ridge + Away conical emission peaks

Away-side asymmetric cone positions

- Evidence of flow effect on conical emission.
- It appears that the conical emission "particles" are pushed by flow, perhaps not so much the away-side partner parton.

- Conical emission peaks are broadened, but signal strengths appear symmetric.
- No evidence of medium absorption.
- It appears that conical emission "particles" are pushed by flow.

Summary

- Conical emission of correlated hadrons from 3-particle correlation measurement.
- Dihadron correlation relative to RP as a tool to study geometrical effects (medium flow).
- Evidence of flow effects on conical emission hadrons.
- No evidence for medium absorption.

Backups

v2 systematic uncertainties

- Jet σ constant with ϕ_s .
- Ridge σ decreases with ϕ_s .
- Cone σ increases with ϕ_s .

- Jet σ decreases with p_{T} .
- Ridge σ constant with p_T .
- Cone σ decreases with p_T .

Back-to-back ridge + Away conical emission

Azimuthal correlation for large $|\Delta \eta|$ >0.7; Separate 1st and 2nd quadrants trigger particles

Fuqiang Wang

Fit parameters

Fuqiang Wang

STAR Preliminary

Strangeness Quark Matter 2009

Large combinatorics

p_T^{trig}=3-4 GeV/c, p_T^{assoc}=1-2 GeV/c

Fuqiang Wang

Strangeness Quark Matter 2009

3-particle azimuthal correlation

Strangeness Quark Matter 2009

Theory calculations

pQCD + hydro: Neufeld et al. arXiv:0807.2996 quark v = 0.99955

Box density

T_A density

Parton energy loss: Renk et al. PRC 76, 014908 (2007)

AdS/CFT Correspondence

Maldacena (1997), Gubser, Klebanov, Polyakov; Witten (1998)

 \mathcal{N} = 4 Super-Yang-Mills theory in 4d with SU(N_c)

A string theory in 5d AdS

YM observables at infinite $N_{\rm C}$ and infinite coupling can be computed using classical gravity.

Measure heavy quark Mach-cone shock waves: → Experimental consequence of string theory?