9th Conference on Chirality, Vorticity and Magnetic Fields in Quantum Matter ICTP-SAIFR, São Paulo, Brazil

Measurements of azimuthal correlations with spectator and participant planes to search for the chiral magnetic effect in STAR

Fuqiang Wang Purdue University (for the STAR Collaboration)

Why CME?

VOLUME 81, NUMBER 3

PHYSICAL REVIEW LETTERS

20 JULY 1998

Possibility of Spontaneous Parity Violation in Hot QCD

Dmitri Kharzeev,¹ Robert D. Pisarski,² and Michel H. G. Tytgat^{2,3} ¹RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000 ²Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000 ³Service de Physique Théorique, CP 225, Université Libre de Bruxelles, Boulevard du Triomphe, 1050 Bruxelles, Belgium (Received 3 April 1998)

CME: Chiral symmetry restoration, Local P/CP violation, matter-antimatter asymmetry...

Fundamentally important physics

Heavy ion collisions are a good place to look for it

Outline:

- The $\Delta \gamma$ observable
- Flow-induced background
- Nonflow contamination
- Results
- Summary

How to look for it?

Voloshin, PRC 2004 STAR, PRL 2009, PRC 2010

Significant $\Delta \gamma$ observed

3/11

Flow-induced background is large

Voloshin 2004 FW 2009 Bzdak, Koch, Liao 2010 Pratt, Schlichting 2010

$$\begin{split} \gamma_{\alpha\beta} = \left\langle \cos(\varphi_{\alpha} + \varphi_{\beta} - 2\psi_{RP}) \right\rangle \\ \Delta\gamma = \gamma_{OS} - \gamma_{SS} \end{split} \qquad \begin{aligned} dN_z / d\varphi \propto 1 + 2v_1 \cos \varphi^{\pm} + 2a_z \cdot \sin \varphi^{\pm} + 2v_2 \cos 2\varphi^{\pm} + ... \\ \gamma_{\alpha\beta} = \left[\left\langle \cos(\varphi_{\alpha} - \psi_{RP}) \cos(\varphi_{\beta} - \psi_{RP}) \right\rangle - \left\langle \sin(\varphi_{\alpha} - \psi_{RP}) \sin(\varphi_{\beta} - \psi_{RP}) \right\rangle \right] \\ + \left[\frac{N_{cluster}}{N_a N_{\beta}} \left\langle \cos(\varphi_a + \varphi_{\beta} - 2\varphi_{cluster}) \cos(2\varphi_{cluster} - 2\varphi_{RP}) \right\rangle \right] \\ = \left[\left\langle v_{1,a} v_{1,\beta} \right\rangle - \left\langle a_a a_{\beta} \right\rangle \right] + \frac{N_{cluster}}{N_a N_{\beta}} \left\langle \cos(\varphi_a + \varphi_{\beta} - 2\varphi_{cluster}) \right\rangle v_{2,cluster} \\ \Delta\gamma = 2 \left\langle a_1^2 \right\rangle + \left[\frac{N_{\rho}}{N_a N_{\beta}} \left\langle \cos(\varphi_a + \varphi_{\beta} - 2\varphi_{\rho}) \right\rangle v_{2,\rho} \right] \\ \\ Flow-induced charge-dependent background: nonflow coupled with flow \\ \Delta\gamma_{Bkg} \propto v_2 / N \end{split}$$

4/11

f^{obs}_{CME} **removing flow background**

H.-j. Xu, et al., CPC 42 (2018) 084103 S.A. Voloshin, PRC 98 (2018) 054911 STAR, PRL 128 (2022) 092301

Midcentral 20-50%: ~2-3σ significance

Flow-induced background is removed by the SP/PP method

Nonflow contamination

Fuqiang Wang

6/11

V_{2} {2} nonflow

STAR, PRRes 6 (2024) L032005, PRC 110 (2024) 014905

 V_{2} {ZDC}(η) measurement -> V_{2} {ZDC}($\Delta \eta$) -> fit

- Flow decorrelation $1-2F_2\Delta\eta$, $F_2=1.15\% \pm 50\%$ (syst)
- Flow fluctuations effect: assumed constant over η

0.8 STAR + + 0.6 STAR FE SE C)

0.4

0.2

- Nonflow models by two Gaussians
- Fit flow+nonflow to $V_2(\Delta \eta)$

Chirality Conference 2025 -- ICTP-SAIFR, São Paulo, Brazil -- July 7-11, 2025

7 / 11

60

centrality (%)

80

STAR Run11+14+16 Au+Au 200GeV

STAR Preliminary

40

20

RP-independent 3-particle correlations

9/11

Chirality Conference 2025 -- ICTP-SAIFR, São Paulo, Brazil -- July 7-11, 2025

Fuqiang Wang

Average <f cm >

Summary

- Flow-induced background is well understood and under control by SP/PP comparison measurements
- Additional backgrounds from nonflow v2 contamination and RP-independent 3-particle correlations
 - Decomposition of flow and nonflow via a fitting procedure
 - The genuine 3-particle/2-particle correlation ratio $(\xi = C_{3p}/V_{2p})$ has weak model dependency and is robust against collective radial flow
 - Assume model ξ to correct for RP-independent 3-particle correlations
- f_{CME} extracted. Further scrutiny, e.g. MC closure.

- f_{CME}^{ODS} published previously by STAR PRL 128 (2022) 092301
- This analysis used the same data, with improved analysis cuts and systematic studies:
 - \circ p_T-dependent efficiency correction is applied
 - \circ $\Delta\eta$ cuts between POIs and between POI and particle *c* are applied
 - Systematic uncertainties are assessed with corresponding efficiency corrections
- Results are ~consistent given the p_T -dependent efficiency correction and $\Delta \eta$ cuts

Systematic uncertainty assessment

- For a quantity x, its default measurement is x₀ with statistical uncertainty e₀, and it has systematic variations x_i ± e_i.
- The differences are $d_i = x_i x_0$.
- The systematic uncertainty from each variation is s_i. If we use Barlow's check

if
$$d_i \ge \sqrt{|e_i^2 - e_0^2|}$$
, then $s_i = \sqrt{d_i^2 - |e_i^2 - e_0^2|}$
else $s_i = 0$

- ► For n_j variations from the same sources (e.g., multiple cuts on one quantity, set Q_j) s_{i∈Q_j}, RMS is used by default.
- Combining all those variations in quadrature

		Systematic variations in data analysis								
		V_z [max]	DCA (cm)		NI	nits	no eff.			
		$\geq 0 < 0$	< 0.8 <	(2 < 3)	≥ 15	≥ 25	[max]			
	-	Systematic variations in v_2 nonflow fit								
		v_2^2 ZDC fit fixed fixed $\Delta \eta$ decorr. [max]								
	۔ ۔ ۱	a Evloa	$olv5$ $\mu_2 =$	= 0 0.1	6-1.6	ZDC	FMS			
		Systematic variations in ξ								
		HI IING HI IING Pythia \downarrow HI IING BW/B [max]								
		default no quon $BW/B m = BW/B m$								
		default no quell. $DVVD-p_T$ $DVVD-r_T$								
										1
f _{CME}								-	default	
		STAR Preliminary							Vz<0	
									DCA<0.8	
	0.5								DCA<2.0	
									DCA<3.0	
									nHitsFit>=15	
				Į	երեր հ		т		nHitsFit>=25	
								-	no TPC eff	
		-		I.					0.16<∆η<1.6	
		-			un N				$ZdcV2 \Delta \eta pol3$	
		-	¥ 482		1			-0-	Zucv2 Δη pois	nonflow
		-				t the second		L.	ZDC ref.	
			₽₩	T. TEM		!	1		FMS ref.	
		_	20	40		60		- -	HIJING default	
								-0	HIJING no j-q	2
)					80	-0	Pythia RHIC tune	3-part.
					001	atrality	(0/)	-0	HIJING BWB-pt	
					601	nant	y (/o/		HUING BWB-P	

13/11

Chirality Conference 2025 -- ICTP-SAIFR, São Paulo, Brazil -- July 7-11, 2025

Hijing closure test checks out

- Apply v_2 -modulated weight. Input $v_2 = 0.05 p_T$ for $p_T < 2$ GeV/c, saturate at $v_2 = 0.1$. No centrality dependence. ٠
- PP fluctuates randomly about RP (=0) event by event, with Gaussian sampling of width $\pi/6$.
- The default HIJING (without flow input) is taken as nonflow. ٠

Fugiang Wang

Chirality Conference 2025 -- ICTP-SAIFR, São Paulo, Brazil -- July 7-11, 2025