Dihadron Correlations Relative to the Event Plane in 200 GeV Au+Au Collisions from STAR

Fuqiang Wang (Purdue Univ) for the STAR Collaboration

Physics Motivations

- Novel phenomena:
- The near-side ridge
- The away-side cone

STAR, PRC82 (2010)

STAR, arXiv:1010.0690

Dihadron correlations w.r.t. EP

- Jet-like correlations independent of ϕ_{s}.
- Strong variations of large- $\Delta \eta$ correlations with ϕ_{s}.
- No v_{3} correction at the time. Only estimated the v_{3} effect.

Estimated v_{3} effect

In arXiv:1010.0690v1

- V_{3} effect does not change with ϕ_{S}.
- $\quad V_{3}$ does not account entirety for the observed ridge or double-peak away-side.

What's new?

- Better understanding of v_{n}, both theoretically \& experimentally.
- Experimental measurements of v_{n}
- Subtraction of v_{3}
- Further exploration of the limits of possible v_{n} effects

Word of caution: With non-vanishing odd harmonics, nothing really prevents people from fitting everything to v_{n}. Fine in itself, but dangerous if people subsequently take it as entirely flow.

Luzum, PLB 696 (2011)

ALICE, PRL 107 (2011)

If $p_{T}{ }^{\text {assoc }}=p_{T}{ }^{\text {ref }}$, then
"flow" $v_{n}\left(p_{T}{ }^{\text {trig }}\right) v_{n}\left(p_{T}{ }^{\text {assoc }}\right)=$ trig-assoc dihadron correlation
\rightarrow signal $=$ data - data $=0$.
The real question is what's in v_{n} ?

What is in v_{n} ?

Flow due to hydrodynamic pressure

> Anisotropy due to pathlength-dep. energy loss

Nonflow correlations

- Flow \rightarrow factorization (with caveats); Factorization \rightarrow flow
- Fourier components do not give further insights.
- The real challenge is to separate flow and nonflow in v_{n}.

Update: revised v_{2} syst. uncertainty

$$
\begin{array}{cc}
v_{2}=\left(v_{2}\{2\}+v_{2}\{4\}\right) / 2 & v_{4}\left\{\psi_{2}\right\}=1.15 v_{2}^{2} \\
\frac{d N}{d \Delta \phi}=B\left[1+2 v_{2}^{(a)} v_{2}^{(t, R)} \cos (2 \Delta \phi)+2 v_{4}^{(a)}\left\{\psi_{2}\right\} v_{4}^{(t, R)}\left\{\psi_{2}\right\} \cos (4 \Delta \phi)\right]
\end{array}
$$

Lower bound: $\mathrm{v}_{2}\{4\}$ from 4-particle cumulant Upper bound: $\mathrm{v}_{2}\{2$, Away-side\}, good if only even harmonics

Syst. error small because $v_{2}{ }^{(a)} \& v_{2}{ }^{(t, R)}$ anticorrelated

$$
\begin{aligned}
& \mathrm{V}_{\text {, }}^{\max \left\{2, \eta_{\mathrm{gap}}=0.7\right\} \text { with a reference particle } 0.15<\mathrm{p}_{\mathrm{T}}<2 \mathrm{GeV} / \mathrm{c}} \\
& \text { vew: } \quad v_{n}\{2\}\left(p_{T}\right)=\frac{V_{n}\left\{p_{T} \text {-ref, } \eta_{\mathrm{gap}}=0.7\right\}}{\sqrt{V_{n}\left\{\text { ref-ref, } \eta_{\mathrm{gap}}=0.7\right\}}} \quad V_{\mathrm{n}}=<\cos (\mathrm{n} \Delta \phi)>
\end{aligned}
$$

Update: v_{3} subtraction

$$
v_{2}=\left(v_{2}\{2\}+v_{2}\{4\}\right) / 2 \quad v_{4}\left\{\psi_{2}\right\}=1.15 v_{2}^{2}
$$

$$
\frac{d N}{d \Delta \phi}=B\left[1+2 v_{2}^{(a)} v_{2}^{(t, R)} \cos (2 \Delta \phi)+2 v_{4}^{(a)}\left\{\psi_{2}\right\} v_{4}^{(t, R)}\left\{\psi_{2}\right\} \cos (4 \Delta \phi)+2 v_{3}^{(a)} v_{3}^{(t)} \cos (3 \Delta \phi)\right]
$$

$v_{3}\left\{2, \eta_{\text {gap }}=0.7\right\}$ with a reference particle $\quad v_{n}\{2\}\left(p_{T}\right)=\frac{V_{n}\left\{p_{T} \text {-ref, } \eta_{\text {gap }}=0.7\right\}}{\left.\sqrt{V_{n}\left\{\text { ref-ref }, \eta_{\text {gap }}\right.}=0.7\right\}}$

Testing the limits of effect of vn subtraction:

- The subtracted v_{3} is upper bound, may contain nonflow contributions.
- Residual ridge remains on near side; away side double-peak persists.

Exploring other v_{n} limits

$$
v_{2}=\left(v_{2}\{2\}+v_{2}\{4\}\right) / 2 \quad \mathrm{~V}_{3}\left\{2, \eta_{\mathrm{gap}}=0.7\right\} \quad v_{4}\left\{\psi_{2}\right\}=1.15 v_{2}^{2}
$$

$$
v_{n}\left\{p_{T}-p_{T}\right\}\left(\phi_{s}\right)=\sqrt{V_{n}\left\{p_{T}-p_{T}, \eta_{\mathrm{gap}}=0.7\right\}\left(\phi_{s}\right)}
$$

which again may contain (or even be dominated by) nonflow.

$$
\begin{aligned}
& \mathrm{v}_{4}\left\{2, \eta_{\text {gap }}=0.7\right\} \text { with a reference particle } \\
& V_{4}\{\text { uc }\}=v_{4}^{(t)}\{2\} v_{4}^{(a)}\{2\}-v_{4}^{(t)}\left\{\psi_{2}\right\} v_{4}^{(a)}\left\{\psi_{2}\right\}
\end{aligned}
$$

$$
\frac{d N}{d \Delta \phi}=B\left[1+2 v_{2}^{(a)} v_{2}^{(t, R)} \cos (2 \Delta \phi)+2 v_{4}^{(a)}\left\{\psi_{2}\right\} v_{4}^{(t, R)}\left\{\psi_{2}\right\} \cos (4 \Delta \phi)+2 v_{3}^{(a)} v_{3}^{(t)} \cos (3 \Delta \phi)+2 V_{4}\{\mathrm{uc}\} \cos (4 \Delta \phi)\right]
$$

- The ridge is further reduced (maybe gone). Away-side double-peak persists.

Summary of updates

Updates in red

> | arXiv:1010.0690 |
| :---: |
| $v_{2} \max \{2, A S\}$ |
| $v_{4}\left\{\psi_{2}\right\}=1.15 v_{2}{ }^{2}$ |

$v_{2}{ }^{\max }\left\{2, \eta_{\text {gap }}=0.7\right\}$
$v_{4}\left\{\psi_{2}\right\}=1.15 \mathrm{v}_{2}{ }^{2}$
$\mathrm{v}_{2}{ }^{\max \left\{2, \eta_{\text {gap }}=0.7\right\}}$
$\mathrm{v}_{3}\left\{2, \eta_{\text {gap }}=0.7\right\}$
$\mathrm{v}_{4}\left\{\psi_{2}\right\}=1.15 \mathrm{v}_{2}{ }^{2}$
$\mathrm{v}_{2}\{2\}\left(\phi_{5}\right)$
$v_{3}\left\{2, \eta_{\text {gap }}=0.7\right\}$
$v_{4}\left\{\psi_{2}\right\}=1.15 \mathrm{v}_{2}{ }^{2}$
$v_{4}\{$ uncorr. $\}$

The question of v_{1}

- In the pt=1-2 GeV/c region, directed flow fluctuation effect may be negligible.

Remarks and Summary

- Recent progress in theo. and exp. understanding of v_{n}
- Improvement in dihadron correlation analysis in STAR
- We cannot conclude on the nature of the ridge just from two-particle correlations alone:
- If including long-range correlation in v_{n}, then any ridge would be subtracted.
- On the other hand, we cannot rule out ridge not being part of hydrodynamic response.
- Away-side broadening (and perhaps double-peak) seems robust against wide range of flow subtraction
- More work needed to understand nonflow contributions in v_{n}

Have to rethink about inclusive dihadron

- We have used so far $\left\langle v^{t}\{2\}^{*} v^{a}\{2\}>=<v^{t}\{2\}>^{*}\left\langle v^{a}\{2\}>\right.\right.$. This is OK because fluctuations are already included in $\mathrm{v}\{2\}$.
- However, if $v\{2\}$ depends on slice, then $<v^{t}\{2\}_{\text {slice }} *^{*}\{2\}_{\text {slice }}>\neq\left\langle v^{t}\{2\}_{\text {slice }}\right\rangle^{*}<v^{a}\{2\}_{\text {slice }}>$.
- $<\mathrm{v}^{\mathrm{t}}\{2\}_{\text {slice }} * v^{a}\{2\}_{\text {slice }}>=\left(\mathrm{v}^{\mathrm{t}}\{2\}_{1} * v^{a}\{2\}_{1}+\mathrm{v}^{\mathrm{t}}\{2\}_{6} * v^{\mathrm{a}}\{2\}_{6}\right) / 2$
$=\left(v^{t}\{2\}_{1}{ }^{*} v^{a}\{2\}_{1}+v^{t}\{2\}_{6}{ }^{*} v^{a}\{2\}_{1}-v^{t}\{2\}_{6}{ }^{*} v^{a}\{2\}_{1}+v^{t}\{2\}_{6}{ }^{*} v^{\mathrm{a}}\{2\}_{6}\right) / 2$
$=<v^{t}\{2\}>^{*} v^{a}\{2\}_{1}-v^{t}\{2\}_{6}{ }^{*}\left(v^{a}\{2\}_{1}-v^{a}\{2\}_{6}\right) / 2$
$\left.><v^{t}\{2\}\right\rangle^{*} v^{\mathrm{a}}\{2\}_{1}$ which is the maximum.

ϕ_{s}-dep. v2 subtraction,

Large $\Delta \eta$ to reduce nonflow?

Xiao et al. arXiv:1208.1195

Petersen, QM 2012

Forward rapidity
Harmonic planes may decorrelate over $\Delta \eta$

