Transverse Single Spin Asymmetry in STAR at Forward Rapidity

Mriganka Mouli Mondal (for the STAR Collaboration)
Texas A\&M University

Transverse SSA

unpolarized PDF, wellknown --upolarized DIS
helicity PDF, known --polarized DIS, pp
transversity, chiral-odd, poorly constrained, inaccessible through inclusive DIS

Transverse momentum-dependent (TMD) parton distributions and factorization
a) spin correlated k_{T} in PDFs -->Sivers effect
--partonic orbital angular momentum contribution to proton spin

$$
\left\langle k_{T}^{\text {parton }} \cdot\left(\vec{s}_{\text {proton }} \times \vec{p}_{\text {proton }}\right)\right\rangle \neq 0
$$

b) spin correlated $\mathrm{k}_{\top} / \mathrm{j}_{\top}$ in FFs -->Collins effect --spin dependent fragmentation, chiral-odd

Separating Sivers and Collins effects

Sivers mechanism: asymmetry in the forward jet or y production

Collins mechanism: asymmetry in the forward jet fragmentation

- Need to go beyond inclusive π^{0} to measurements of jets or direct Y

рт dependence

To test our understanding of QCD at amplitude level connections of TMD approach with collinear twist-3 effect

These 2 approaches apply to different kinematic ranges, and have been proven to be equivalent in overlapping region

transition from low p_{T} to high p_{T}

RHIC: the world's first polarized hadron collider

FMS in STAR

Forward Meson Spectrometer (FMS) :
Pb glass EM calorimeter covering $2.5<\eta<4.0$ Detect π^{0}, η, direct photons and jet-like events in the kinematic region where asymmetries are known to be large.

Large inclusive TSSA

- Large single-spin asymmetries at CM energies of 20 and 200 GeV
- May arise from the Sivers effect, Collins effect, or a combination

STAR Published Run 6 (FPD $\sqrt{ }$ s $=200 \mathrm{GeV}$)

PRL 101, 222001 (2006)

- Rising A_{N} with $X_{F}\left(0.25<X_{F}<0.5\right)$ from 0% to $5-10 \%$
- No evidence of fall in A_{N} with increasing P_{T} up to $P_{T} \sim 3 \mathrm{GeV} / \mathrm{c}$

η / π^{0} at $X_{F}>0.5$ Phys. Rev. D 86, 051101

Ongoing analysis on run-II pp 500 GeV data

π^{0} production measured at STAR Forward
Meson Spectrometer ($2.5<\eta<4.0$)

$\operatorname{Cos}(\Phi)$
production asymmetry extracted from the slope

of azimuthal dependence of the raw yield asymmetry :

$$
\begin{aligned}
& \text { Yield asy. }=(N \uparrow-N \downarrow) /(N \uparrow+N \downarrow)=R_{\text {lumi }}+\text { Pol. } * A_{N} \cos (\phi) \\
& \mathrm{R}_{\text {lumi }}=\frac{L_{\text {up }}-L_{\text {down }}}{L_{\text {up }}+L_{\text {down }}}
\end{aligned}
$$

$\Pi^{0} A_{N}$ vs XF

$$
\left.x_{F}=2 p_{L} / \sqrt{(} s\right) \simeq E_{\pi^{0}} / E_{b e a m}
$$

Scale of A_{N} similar like other energies

Forward rapidity hadron production

Isolation of Π^{0} 's Event Selection:

1. Analyze FMS for all photon candidates. (Showers that are fit successfully to photon hypothesis) Photon candidates must have a minimum of 6 GeV in the small inner detector or 4 GeV in the outer cells.
2. Find Clusters of EM energy grouping photon candidates that are within opening angle cone $\Delta \theta$ (relative to energy weighted center)
3. We consider 2 event classes $\{1$ and 2\} 1. $\Delta \theta=0.072$ Photon clusters, Pi0 Mass (isolation radius of .07 radians).
4. $\Delta \theta=0.032$ Photon clusters ,Pi0 Mass (isolation radius of .03 radians).

No indication of falling A_{N} as p_{T} as opposed to twist-3 expectations

same trend observed for different X_{F}

A_{N} at various isolation cones

Transverse Single Spin π^{0} Asymmetry vs P_{T} for small and large π^{0} isolation cones.
(Errors shown are statistical)

Higher Twist or other PQCD related models suggest A_{N} should fall at large P_{I} with at least 1 power of P_{I}
These plots include 2 parameter fits for $A_{N} v P_{T}$:

$$
A_{N}\left(P_{T}\right)=\left[p_{0}\right] \times\left(P_{T}\right)^{\left[p_{1}\right]}
$$

Fits are shown for both the 70 mRad and 30 mRad isolation cones.

Asymmetries seem to be larger when the π^{0} is isolated within a larger cone

Neutral Jets in FMS

Goals : to correlate jets with neural energy in FMS with that of EEMC+BEMC(-1<n<2) and find A_{N} for jets and inclusive pions for various event topologies
simulation study on PYTHIA events with FMS only PYTHIA is used for $\mathrm{p}^{+} \mathrm{p}$ at $\sqrt{ }=500 \mathrm{GeV}$ lager fraction of jets in FMS :

$$
x_{F}>0.3
$$

pt-hard $>7 \mathrm{GeV} / \mathrm{c}$

After associating a detector-photon jet with a particle-photon jet in FMS

analysis on Pp 500 transverse data is undergoing...

Status on run-12 pp 200GeV transverse running

Results of 12 run from full datasets of 627 runs

2-photons ($\mathrm{E}>6 \mathrm{GeV}$) $35<$ energy $_{r Y}<75 \mathrm{GeV}$ $2.55<\eta<3.85$ $0.035<\mathrm{m}_{\mathrm{YY}}<.235 \mathrm{GeV}$

First physics results from run 12 will be presented in DIS ...

Conclusions

- STAR FMS is very useful in transverse spin study of quarks in a transversely polarized proton. TSSA for inclusive pions and eta mesons for 200 GeV are published.
- Recent 500 GeV asymmetry concludes :
- A_{N} increases with X_{F} (as seen at lower energies).
- A_{N} less dependent on P_{T} than models predict to $\mathrm{P}_{\mathrm{T}} \sim 10 \mathrm{GeV} / \mathrm{c}$. Data may be consistent with flat dependence on P_{T}.
- For data points at $X_{F}<0.32, A_{N}$ is significantly larger when the π^{0} s are more isolated (0.07 Rad).
- Future analysis will contain more rigorous standard jets with neutral energies in addition of involvement of central detectors.
- Results for new 2012 transverse data for pp 200 GeV with average polarization $\sim 60 \%$ are coming soon.

