1	Light Nuclei v_1 and v_2 in Au+Au Collisions at $\sqrt{s_{NN}} = 3$ GeV from STAR
2	Xionghong HE (for STAR Collaboration)
3	Institute of Modern Physics, China
4	(Dated: May 26, 2021)
5	The study of the collectivity of light nuclei in heavy-ion collisions, which will reflect their produc-
6	tion mechanism and the underlying collision dynamics, is of particular interest for both theoretical
7	and experimental efforts [1]. Comprehensive measurements of light nuclei anisotropy v_1 and v_2 pro-
8	vide valuable information on the nucleon coalescence and will lead to a better understanding of light
9	nuclei production mechanism in such collisions. Particularly, in the collision energy regime of a few
10	GeV, the relatively long passing time of the colliding two nuclei naturally leads to cross-talk between
11	the spectator fragments and the fireball. The light nuclei flow pattern may be strongly affected by the
12	spectator fragments.
13	In this talk, we will present high statistics measurements of v_1 and v_2 for deuterons, tritons, ³ He,
14	and ⁴ He in Au+Au collisions at 3 GeV collected by the STAR experiment with the fixed target mode
15	at RHIC. The particle rapidity and transverse momentum dependence of v_1 and v_2 for these particles
16	will be presented. These results will also be discussed within the framework of nucleon coalescence
17	and compared with available model calculations.

18 [1] Peter Braun-Munzinger and Benjamin Dönigus, Nuclear Physics A, **987**, 144 (2019).