Beam energy dependence of directed flow of deuteron in Au+Au collisions at RHIC

Xionghong HE

Institute of Modern Physics, CAS

hexh@impcas.ac.cn

Workshop on the QCD Phase Structure at High Baryon Density Region November 12, 2019

Outline

- 1. Introduction
- 2. Data analysis : STAR BES I
- 3. Results and discussion
- 4. Summary

Directed Flow

Directed Flow (v_1) : 1st harmonic in the Fourier expansion of particle azimuthal $\frac{d^3N}{dp_T dy d\phi} = \frac{d^2N}{dp_T dy} (1 + 2\boldsymbol{\nu}_1 \cos(\phi - \psi) + 2\nu_2 \cos^2(\phi - \psi) + \cdots)$ spectrum. 11 AGeV Hydro 0.5 ΗМ <px> (GeV/c) 00000 Phys. Lett. B 485, 454(1999) 0 QGP Ο 00000 -0.5

The directed flow slope at mid-rapidity is sensitive to softening of EOS?

Directed Flow v_1 in RHIC BES-I

Xionghong He

Deuteron Production

- Nuclei formed early | at hadronic freeze-out
- Deuteron yield can be described

STAR: Phys. Rev. C **99**, 064905(2019)

Deuteron binding energy is 2.2 MeV, how to keep bound in the fireball?

Thermal model

Light nuclei v₂

Coalescence Model

- Light nuclei formed at later stage of fireball evolution
- Through combination of protons and neutrons with close position and momentum

Mass scaling behavior of deuteron v_2 within $p_T < 3.0$ GeV/c nearly for all energies

Light Nuclei v₁ Measurements

- Stronger collective flow observed for heavier nuclei
- The proton and deuteron directed flow increase monotonically with rising beam energy
- The differences in fragment flow become larger with rising beam energy

How about BES program energies???

The Beam Energy Scan at RHIC/STAR

Map QCD phase diagram

- Search for 1st order phase transition
- Search for critical point

Directed flow (v_1) is a key observable to search for the signature of 1st order phase transition.

Au+Au events usable for analysis

$\sqrt{s_{_{NN}}}$ (GeV)	7.7	11.5	14.5	19.6	27	39
Events ($ imes$ 10 ⁶)	4	12	10	36	70	130

Xionghong He

Diagram of the STAR Detector

Diagram of the STAR Detector

Diagram of the STAR Detector

Particle Identification

Xionghong He

Phase Space Distribution

For v_1 calculation

- Rapidity : -0.6 < y < 0.6
- Transverse momentum : $0.4 < p_T < 2.0$ GeV/c for proton;
 - $0.8 < p_T < 4.0$ GeV/c for deuteron

1st Order Event Plane Reconstruction

 $\mathbf{v}_{1} = \left\langle \cos(\phi - \psi_{\mathrm{RP}}) \right\rangle$

- 1st order event plane (ψ_1) estimated with east and west BBC detectors

 \rightarrow BBC coverage 3.3 < $|\eta|$ < 5.0

 \rightarrow large η gap between TPC and BBC reduces non-flow effects

• The raw ψ_1 distributions were flatten by shifting method

The estimated event plane with respect to the real reaction plane is calculated by the event plane resolution.

$$\mathbf{R}_{1} = \left\langle \cos(\psi_{1} - \psi_{RP}) \right\rangle$$
$$\left\langle \cos(\psi_{east} - \psi_{west}) \right\rangle = \left\langle \cos(\psi_{east} - \psi_{RP}) \right\rangle \left\langle \cos(\psi_{RP} - \psi_{west}) \right\rangle$$

 ψ_1 resolution improves at low collision energies because the stronger v_1 near the BBC rapidity coverage.

Xionghong He

Rapidity Dependence of v_1

Energy Dependence of v_1 Slope

- The v₁ slopes at mid-rapidity of deuteron are positive for all energies
- Strong enhancement of deuteron v₁ slope observed at 7.7 GeV, while close to zero for 10 GeV

Coalescence Model

Deuteron v₁

constituent nucleons are close in space and have similar velocities. At mid-rapidity:

$$\vec{p}_{T}(d) \approx 2 \vec{p}_{T}(p), \quad y(d) \approx y(p)$$

$$v_{1}^{d}(p_{T}, y) = \frac{2v_{1}^{p}(\frac{p_{T}}{2}, y)}{1 + \left(2v_{1}^{p}(\frac{p_{T}}{2}, y)\right)^{2}}$$
if $v_{1} << 1$

$$v_{1}^{d}(p_{T}, y) \approx 2v_{1}^{p}(\frac{p_{T}}{2}, y)$$

p_T Dependence of Deuteron v_1 at 7.7GeV

Deuteron v₁ from AMPT Simulation

In AMPT, (anti-)deuterons are produced and dissolved via nuclear reaction in the hadronic transport stage of AMPT.

Summary

- The deuteron v₁ was measured in Au+Au collisions at $\sqrt{s_{NN}}$ =7.7 -39 GeV. The slopes at midrapidity (|y|<0.6) were extracted
- The dv₁/dy of deuteron are positive for all energies. Strong enhancement observed at $\sqrt{s_{NN}}$ =7.7 GeV, while close to zero for $\sqrt{s_{NN}}$ >10 GeV
- AMPT simulation : the dv₁/dy are larger than the measurement for most energies
- **Outlook** : precise measurement of v_1 for light nuclei with BES II

Thank you for Your Attention!

Back Up

DCA distribution

Phase space distribution

Xionghong |

24