

Energy Dependence Measurement of Deuteron Directed Flow at RHIC

Xionghong HE

Institute of Modern Physics, CAS

hexh@impcas.ac.cn

The 13th Workshop on QCD Phase Transition and Relativistic Heavy-Ion Physics (QPT 2019), Enshi, China

17-20 August

Outline

- 1. Motivation
- 2. Data analysis from STAR BES I
- 3. Results and discussion
- 4. Summary

Study the QCD Phase Structure via Light Nuclei Production in High-Energy Collisions

Phase Transition and Directed Flow

- The EOS is especially soft near the QCD phase transition
- Scan of collision energy can be used to search for phase transition
- The directed flow slope at mid-rapidity is sensitive to softening of EOS

Directed Flow v_1 in RHIC BES-I

STAR: Phys. Rev. Lett. 120, 062301(2018)

Light Nuclei v₁ Measurements

- Stronger collective flow observed for heavier nuclei
- The proton and deuteron directed flow increase monotonically with rising beam energy
- The differences in fragment flow become larger with rising beam energy

How about BES program energies???

Light Nuclei Production in Heavy Ion Collisions

Thermal model

- Assume chemical equilibrium
- Hadrons and nuclei are produced before chemical freeze-out(CFO)
- Their yields dN/dy and p_T distribution can be described with parameters related to CFO

Coalescence model

- Light nuclei formed at later stage of fireball evolution
- Through combination of protons and neutrons with close position and momentum

$$\frac{d^3N}{dp^3} \propto \left(\frac{d^3N_p}{dp_p^3}\right)^A$$

Deuteron v₁ from Nucleon Coalescence

Coalescence of deuteron : constituent nucleons are close in space and have similar velocities. At mid-rapidity:

$$\vec{p}(p) \approx \vec{p}(n) \rightarrow \vec{p}(d) \approx 2\vec{p}(p) \rightarrow E(d) \approx 2E(p)$$

$$\vec{p}_T(d) \approx 2\vec{p}_T(p),$$

$$\text{then} \qquad y(d) \approx y(p)$$

$$v_{1}^{d}(p_{T}, y) = \frac{2v_{1}^{p}(\frac{p_{T}}{2}, y)}{1 + \left(2v_{1}^{p}(\frac{p_{T}}{2}, y)\right)^{2}}$$

if
$$v_1 << 1$$
 $v_1^{d}(p_T, y) \approx 2v_1^{p}(\frac{p_T}{2}, y)$

The Beam Energy Scan at RHIC/STAR

Map QCD phase diagram

- Search for 1st order phase transition
- Search for critical point

Directed flow (v_1) is a key observable to search for the signature of 1st order phase transition.

Au+Au minimum bias events usable for analysis

$\sqrt{s_{\scriptscriptstyle NN}}$ (GeV)	7.7	11.5	14.5	19.6	27	39
Events ($ imes$ 10 ⁶)	4	12	10	36	70	130

Diagram of the STAR Detector

Particle Identification

1st Order Event Plane Reconstruction

 $\mathbf{v}_{1} = \left\langle \cos(\phi - \psi_{\mathrm{RP}}) \right\rangle$

- 1st order event plane (ψ_1) estimated with east and west BBC detectors

 \rightarrow BBC coverage 3.3 < $|\eta|$ < 5.0

 \rightarrow large η gap between TPC and BBC reduces non-flow effects

• The raw ψ_1 distributions were flatten by shifting method

The estimated event plane with respect to the real reaction plane is calculated by the event plane resolution.

$$R_{1} = \left\langle \cos(\psi_{1} - \psi_{RP}) \right\rangle$$
$$\left\langle \cos(\psi_{east} - \psi_{west}) \right\rangle = \left\langle \cos(\psi_{east} - \psi_{RP}) \right\rangle \left\langle \cos(\psi_{RP} - \psi_{west}) \right\rangle$$

 ψ_1 resolution improves at low collision energies because the stronger v_1 near the BBC rapidity coverage.

Rapidity Dependence of v_1

for mid-central collisions.

- non-flow effects (resonances, jets, final-states interactions) are reduced due to the large η gap between TPC and BBC
- Particle misidentification, background contamination and detector inefficiency was estimated by varying the track and particle selection cuts
- The difference of the slopes fitted with rapidity between |y|<0.6 and |y|<0.5 is considered as a systematic uncertainty related to the acceptance

Energy Dependence of v_1 Slope

- The v₁ slopes at mid-rapidity (dv₁/dy|_{y=0}) of deuteron are positive for all energies
- Strong enhancement of deuteron v₁ slope observed at $\sqrt{s_{NN}} < 7.7$ GeV, while close to zero for $\sqrt{s_{NN}} > 10$ GeV

AMPT Simulation

- A Multi-Phase Transport : a Monte Carlo transport model for heavy ion collisions at relativistic energies
- Hadronization : Lund string model for default AMPT

Phys. Rev. C 72, 064901(2005)
Phys. Rev. C 94, 054909 (2016)
Phys. Rev. C 96, 014910 (2017)

Hadron cascade : A Relativistic Transport model (ART)

In AMPT, (anti-)deuterons are produced and dissolved via nuclear reaction in the hadronic transport stage of AMPT.

 \rightarrow 0.2 million events were produced for each collision energy

 \rightarrow event centrality was determined by the multiplicity

Deuteron v₁ from AMPT Simulation

- The deuteron $v_1(y)$ was measured in Au+Au collisions at $\sqrt{s_{NN}}$ =7.7 -39 GeV with STAR experiment data. The slopes at midrapidity (|y|<0.6) were extracted.
- The dv₁/dy of deuteron are positive for all energies. Strong enhancement observed at $\sqrt{s_{NN}}$ <7.7 GeV, while close to zero for $\sqrt{s_{NN}}$ >10 GeV.
- In AMPT simulation, deuterons are produced via the nuclear reaction in the hadronic transport stage. The dv₁/dy are also positive for all energies, while are much larger than the measurement.

Back Up

Deuteron Selection

